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Abstract

This study has been inspired by numerous requests from researchers

who often confuse Saaty's AHP with the Pairwise Comparisons (PC)

method, taking AHP as the only representation of PC. Most formal
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results of this survey article are based on a recently published work by

Koczkodaj and Szwarc. This article should be regarded as an inter-

pretation and clari�cation of future theoretical investigations of PC.

In addition, this article is a re�ection on general PC research at a

higher level of abstraction: the philosophy of science. It delves into

the foundations and implications of pairwise comparisons. Finally,

open problems have also been reported for future research.

Keywords: pairwise comparisons, inconsistency, ratio scale

1 Introduction

The �rst use of the method of Pairwise Comparisons (PC method) is often
attributed to Ramon Llull, the 13th-century mystic and philosopher. His
works created a basis for computation theory, considering his acknowledged
in�uence on Gottfried Leibniz. Llull's contribution to PC, used for elections,
was recently mentioned in [24]. Fechner (see [25]) is regarded as the precursor
of using PC in Psychometrics, although it was Waber who really used PC in
such way. Similar to Llull, Condorcet also used PC in [22], for voting (win or
lose). In both cases, however, the PC method was not the main subject for
the scienti�c investigation but rather its use. Thurstone (see [56]) proposed
what is known as �The Law of Comparative Judgments� in 1927.

Saaty's seminal study [51] had a considerable impact on PC research.
However, his AHP should not be equated with PC, despite using them. The
�xed ratio scale (the scale in this presentation) assumed by Saaty has served
its proponents well. However, the �xed scale makes AHP a subset of PC;
PC is more general as it does not assume a particular scale, and allows for
non-numerical rankings. For instance, the non-numerical rankings of [33]
are relations, the �scales� in [45] are arbitrary groups, and abelian linearly
ordered groups (alo-groups) are employed in [20, 21, 50].

Despite its long history, the PC method is still a very attractive subject
for research. Ranking with a reference set of alternatives, as in [47, 48], is an
example of such explorations. �To pair or not to pair� is not the question.
�When and how to use PC� is the proper question. Due to the lack of
popularity of the PC theory, basic concepts need to be presented in the next
section; hence readers familiar with the theory may skip the next section.
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2 Pairwise comparisons basics

Usually, we de�ne an n×n pairwise comparisons matrix (abbreviated to PC

matrix) simply as a square matrix M = [mi,j] such that mi,j are positive real
numbers for all i, j = 1, . . . , n. A pairwise comparison matrix M = [mi,j] is
called:

(r) reciprocal if mi,j = 1
mj,i

for all i, j = 1, . . . , n (then automatically mi,i =

1 for each i = 1, . . . , n);

(c) consistent (or transitive) if mi,j ·mj,k = mi,k for all i, j, k = 1, 2, . . . , n.

Sometimes, it is very convenient to assign to a PC matrix M = [mi,j] the
matrix ln(M) = [ln(mi,j)] (cf. e.g. [41]). Then, for ai,j = ln(mi,j)), we have
mi,j = 1

mj,i
if and only if ai,j = −aj,i. Moreover, mi,j ·mj,k = mi,k if and only

if ai,j + aj,k = ai,k. Therefore, in this case, we consider two kinds or reci-
procity: multiplicative reciprocity for M and additive reciprocity for ln(M).
We also consider multiplicative consistency for M and additive consistency
for ln(M). In [20], a uni�ed framework for both multiplicative and additive
reciprocity and consistency was started by a general notion of a reciprocal
PC matrix over an abelian linearly ordered group. This approach has been
continued in [21] and [45] recently. In [45], among other results, notions
of reciprocal and consistent PC matrices over a group were introduced. To
avoid misunderstanding, let us recall that a group is an ordered pair 〈X,�〉,
denoted brie�y by X, where X is a set, while � is a mapping from X ×X
to X such that the following conditions are satis�ed:

(g1) if a, b, c ∈ X, then (a� b)� c = a� (b� c) (associativity);

(g2) there exists exactly one element 1X ∈ X (called the identity element of
the group) such that, for each a ∈ X, the equality a� 1X = a holds;

(g3) for each a ∈ X, there exists a−1 ∈ X, called the inverse element of a,
such that a� a−1 = 1X .

If, in addition, a � b = b � a for all elements a, b of the group X, then the
group is called abelian or commutative.

Now, let X = 〈X,�〉 be a group and let M = [mi,j] be an n × n matrix
such that mi,j ∈ X for all i, j ∈ {1, . . . , n}. Then we say that M is a
square matrix over the group X. According to [45], the matrix M is called
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a reciprocal PC matrix over the group X if mi,i = 1X and mj,i = m−1i,j for all
i, j ∈ {1, . . . , n}. The matrix M over X is called consistent if it satis�es the
following consistency (equivalently, transitivity) condition with respect to �:

mi,j �mj,k = mi,k,

for all i, j, k = 1, 2, . . . , n.

We denote the group of all positive real numbers equipped with their
standard multiplication by R+. Most applications of PC matrices have been
found for PC matrices over the group R+. This is why, in the sequel, we
assume that M is a reciprocal PC matrix over R+. Let M be of the form:

M =


1 m1,2 · · · m1,n
1

m1,2
1 · · · m2,n

...
...

...
...

1
m1,n

1
m2,n

· · · 1


where mi,j expresses a relative quantity, intensity, or preference of entity (or
stimuli) Ei over Ej.

While every consistent matrix is reciprocal, the converse is false, in gen-
eral. If the consistency condition does not hold, the matrix is inconsistent
(or intransitive).

Consistent matrices correspond to the ideal situation, in which there are
exact values for the quotients of entities: E1, . . . , En. Then the quotients
mij = Ei/Ej form a consistent PC matrix. For a consistent PC matrix, there
is a vector w = [w1, . . . wn], unique up to a multiplicative constant, which
generates this matrix, i.e., the condition mij = wi/wj holds. We usually call
w the vector of weights.

The main challenge for the PC method is the lack of consistency in the
PC matrices, which in practice is the case very often � in terms of realistic
inputs, most PC matrices are inconsistent. Only very simple or academic ex-
amples are fully consistent. �To err is human� and for such cases, a simpli�ed
PC matrix, proposed in [44], should be considered, as it requires only n− 1
comparisons while the inconsistent PC matrix requires at least n ∗ (n− 1)/2.
Given an n × n matrix M , which is not consistent, the theory attempts to
provide a consistent n× n matrix M , which di�ers from matrix M �as little
as possible�. Such approximation is only acceptable when the inconsistency
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is at an acceptable level. The acceptable level may be given by a rigorous
application of a statistical p-value.

Given any positive real values E1, E2, . . . , En, the matrixM = [mij] where
mij = Ei/Ej, is always consistent. It is an important observation since it
implies that a problem of approximation is really a problem of a norm se-
lection and distance minimization. For the Euclidean norm, the vector of
geometric means (equal to the principal eigenvector for the transitive ma-
trix) is the vector of weights which generates it. Oddly enough, it is also
equal (when normalized) to an eigenvector corresponding to the principal
eigenvalue. Needless to say, only optimization methods can approximate the
given matrix for the assumed norm as addressed in Sec. 7. Such type of
matrix is examined in [55] as an �error-free� PC matrix.

It is unfortunate that the singular form �comparison� is sometimes used,
considering that a minimum of three comparisons are needed for the method
to have a practical meaning. Comparing two entities (also stimuli or prop-
erties) in pairs is irreducible, since having one entity compared with itself
trivially gives 1. Comparing only two entities (2× 2 PC matrix) does not in-
volve inconsistency. Entities and/or their properties are often called stimuli
in the PC research but are rarely used in applications. On top of it, another
form exists in the scienti�c literature: �paired comparison� (both hyphenated
and not; singular or plural). Some researchers use also �pair comparison�.

As was mentioned at the beginning of this section, the additive version
of PC can be obtained by a logarithmic transformation; see [58] for a recent
study. Non-numerical PC have been studied recently in [33] � the authors
refer to the famous book [?] by the Nobelist K. Arrow, without commenting
on Arrow's impossibility theorem.

3 The ratio scale problem

A scale may be considered as a mapping from a set of qualitative judgments
to the set of real numbers. The qualitative judgments arise from comparing
pairs of objects, they have a natural order, and are usually considered to form
a constrained set. As a rule, one considers 7± 2 judgment gradations due to
psychological limitations of human thinking [1]. Following [2], we formalize
the notion of a scale in the following way. Let Λ = { 0,±1, . . . ,±8 } be the
set of numbers representing qualitative judgments (see Table 1). We assume
that for each pair of objects (Ci, Cj) being compared to each other, a number

5



λi,j ∈ Λ is assigned in the following way: if the �rst object in the pair, Ci,
is preferred to the second one, Cj, then a positive number from Λ is used,
otherwise it is a negative one. Note that λi,j = −λj,i since the judgments are
reciprocal.

In general, any positive function f such that f(λ1) < f(λ2), provided that
λ1 < λ2, is a scale. For a ratio scale, the following condition is also required:
f(−λ) = f−1(λ). As an example, we consider Saaty's ratio scale [51] which is
determined by the values 1/9, . . . , 1/2, 1, 2, . . . , 9. In the terms given above,
its representation is the following:

fS(λ) = (1 + |λ|)sgnλ. (1)

Note that for λ ≥ 0, the function (1) is a linear function of λ.
In this section, we describe a number of alternative ratio scales proposed

for pairwise comparisons and address the problem of choosing an appropriate
ratio scale. The following scales are considered besides Saaty's scale:

• the Ma-Zheng scale;

• the Lootsma scale;

• the Donegan-Dodd scale;

• the Salo-Hämäläinen scale.

The Ma-Zheng scale [3] is de�ned in the following way:

fMZ(λ) =

(
9

9− |λ|

)sgnλ

. (2)

The motivation for (2) was to propose a scale that would be linear for λ ≤ 0
in the same way as Saaty's scale is linear for λ ≥ 0.

The Lootsma scale [4] was proposed in the context of the multiplicative
AHP and is based on psychological insights. It is de�ned as follows:

fL(λ) = cλ, (3)

where c > 1 is a scale parameter.
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λ ∈ Λ Qualitative judgment
0 equivalence
2 weak superiority
4 strong superiority
6 very strong superiority
8 absolute superiority

1,3,5,7 intermediate judgments

Table 1: Representation of qualitative judgments as integer numbers.

The Donegan-Dodd scale [5] was suggested to handle the most extreme
judgments (λ = ±8 in our notation). It is based on the inverse hyperbolic
tangent function:

fDD(λ) = exp

[
tanh−1

(√
3|λ|
14

)]sgnλ
. (4)

The Salo-Hämäläinen scale [6] is related to so-called balanced scales and
was designed to give more uniform (`balanced') distribution of scale values
compared to Saaty's scale. It is de�ned in the following way:

fSH =

(
0.5 + |λ|s
0.5− |λ|s

)sgnλ

, (5)

where s is a scale parameter and is usually equal to 0.05 or 1/17.
A number of studies were carried out to compare the scales to each other

and determine the most suitable one for practical use. According to [7], the
Lootsma-like scale is the most appropriate based on the scale transitivity cri-
terion; also the authors describe a way to derive the proper value of the scale
parameter c. In [8], Saaty's, Ma-Zheng, Lootsma and Donegan-Dodd scales
were compared to each other using a Monte-Carlo simulation study. The
criterion for comparison was the symmetry of the priority value distribution;
according to this criterion, the Ma-Zheng scale was optimal. The reader is
also encouraged to reference [9], [10], and [2], for further investigation of the
scale problem.

A mathematical proof that a small ratio scale (1 to 3) has the most desired
mathematical properties (e.g., convexity) was provided in [28]. However, it
is not the only reason postulated in this study for using the ratio scale in
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PC. The strongest reason arises from human language, where comparisons
are naturally given in triples: e.g., big → bigger → biggest.

Fulop's constant was introduced in [27]. Subsequently, it was employed
in [28] for the derivation of the main result (the small scale). As proved in
[27], there exists a0 > 0 such that for any a > 0, the univariate function fa
de�ned as:

fa(x) = (ex − a)2 +
(
e−x − 1/a

)2
(6)

is strictly convex if and only if 1/a0 ≤ a ≤ a0.
When the condition 1/a0 ≤ a ≤ a0 is ful�lled for all i,j, then fa can be

transformed into the convex programming problem:

min
n−1∑
i=1

fain(xi) +
n−2∑
i=1

n−1∑
j=i+1

faij(xij)

s.t. xi − xj − xij = 0, i = 1, . . . , n− 2, j = i+ 1, . . . , n− 1.

(7)

with a strictly convex objective function to be minimized (see [27], Proposi-
tion 2). It implies that the programming problem (7) and the equivalent prob-
lem (6) have a unique solution which can be found using standard local search
methods. The mentioned constant equals to a0 = ((123 + 55

√
5)/2)1/4 =√

1
2

(
11 + 5

√
5
)
≈ 3.330191, what is a reasonable bound for real-life prob-

lems [27, 28].
However, an unbounded ratio scale is indispensable for measurable en-

tities such as distances, areas, or temperatures if the precise measurements
are available or could be obtained. There is an ongoing dispute about ratio
scales for entities lacking the �unit� (e.g., emotions or safety). Usually, the
ratio scale is assumed as arbitrary and the Likert scale is usually a ratio scale
with small values �close enough� to 3, on each branch (negative and positive)
as Fig. ?? demonstrates.

For the following PC matrix of the size 3 × 3:

M3 =

 1 9 x
1/9 1 9
1/x 1/9 1


8



Figure 1: Comparing two scale items

there is no such x in AHP that the matrix M is fully consistent. The sum
of sets A = {1, . . . , 9} and B = { 1

n
: n ∈ A} of AHP matrices' elements is

not closed under the multiplication, so it fails to create a group or even the
weakest algebraic structure, which is a magma (or groupoid).

Unfortunately, the same reasoning does apply to any other �xed value
of the upper bound for a rating scale. Evidently, the scale [1,∞) (and its
inverse (0, 1]) is a scale which does not su�er from the above lack of the
mathematical closure problem. It appears that such a scale is consistent
with the zero, one, and in�nity rule often used in computer science having
the interpretation of: the only reasonable numbers are zero, one, and in�nity
([17]).

The 0-1-∞ rule implies that we should not impose arbitrary limits on
the number of instances of a particular entity in the design of algorithms
of heuristics. If more than a single instance of it is allowed, then the size
should not have a �xed limit. Certainly, practicality may impose limits but
this should be done by design and necessity rather than chance. Binary
alternatives are the most commonly used in the decision making process
(e.g., go left or right, buy or sell, pass or fail, etc.). There are well-de�ned
cardinalities other than zero, one, and the arbitrary cardinality (represented
by ∞ in the above rule). Most Indo-European languages have developed a
concept of pairs or couples. It is also demonstrated by: �This� and �Not this�
or �This� and �The other,� or �One way� and �The other way�. Without the
use of binary choices there would be no computer technology since the binary
system has two digits.

4 The eigenvalue problem

For the Euclidean norm, the vector of geometric means is the best approx-
imation to a consistent matrix. However, the �best� approximation of an
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inconsistent PC matrix is not generated by the vector of geometric means
or by the eigenvector, although both are very accurate approximations for
small inconsistencies. The problem is that no one actually knows �how small
is small,� although it should not be a surprise since a similar problem can be
found in statistics with the p-value and α-value.

It is worth noticing that the normalized vector of the geometric means
and the normalized eigenvector (corresponding to the principal eigenvalue)
are identical for a consistent PC matrix. The Monte Carlo study was con-
ducted to verify whether the eigenvector approximation is better than the
geometric means as proposed in [30], and disproved such a claim on the basis
of 1,000,000 matrices. However, its proponents still insists on the superiority
of an eigenvector solution although the author's own Example 1, represented
by Table 1 in [52], is better approximated by the geometric means than by an
eigenvector. The same reasoning is applicable to most examples in Table 2.

The eigenvector approximation was criticized in the 1980s (when the ge-
ometric means method was proposed by [34]) and more recently in [18], who
used better argumentation based on recent research. However, old habits
die hard and the eigenvector method may survive for some time. In [19],
it was established that the geometric mean is the only method for deriving
weights from multiplicative PC that satisfy fundamental consistency require-
ments. According to [19], it is immune to the scale-inversion as well as to
rank reversal.

The most considerable reasoning to the lack of the eigenvector �superior-
ity� is provided by John Fichtner in his report in 1984 (see [26]). His eigen-
vector metric was misused by many researchers who have cited it. Fichtner
never claimed that his eigenvector distance should be used instead of Eu-
clidean distance.

Figure 2: Excerpt from Fitchtner's 1984 report
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In fact, his report �ndings were misused by twisting them around as Fig. 2
so well demonstrates. The Fichtner's distance for eigenvectors was de�ned as
follows (keep in mind that this is taken from an old typewritten manuscript,
where we transcribed the symbols as accurately as possible):

δ(A,B) =
√

(w1(A)− w1(B))2 + . . .+ (wn(A)− wn(B))2

+
1

2(n− 1)
|λ(A)max − λ(B)

max +
1

2(n− 1)
|λ(A)max − λ(B)

max ∗~

where:

wi(A) and wi(B) are, respectively, the i-th components of the normalized
principal eigenvectors of PC matrix A and of PC matrix B;

λ
(A)
max and λ

(B)
max are the corresponding principal eigenvectors;

~ is 0, if A = B, and 1, if A 6= B.

We leave it to the reader to assess whether it is �simpler and more accu-
rate� than the Euclidean distance.

5 The inconsistency concept

Erroneously, [51] is often credited for providing a consistency de�nition of
a PC matrix A. In fact, the condition �if and only if ai,j · aj,k = ai,k for
i, j, k = 1, 2, ..., n.� was de�ned and examined before 1977 by at least these
four studies published between 1939 and 1961: [36, 30, 29, 54].

Suppose that X = 〈X,�〉 is a group. Let T = 〈x, y, z〉 be a triad of
elements x, y, z of X. We call T consistent with respect to � if x � z = y.
Otherwise, T is called inconsistent with respect to � or an inconsistent triad
of the group X. In particular, 〈x, y, z〉 is an inconsistent triad of the group
R+ if and only if x, y, z are positive real numbers such that x · z 6= y.

In decision making processes, given an inconsistent n×n PC matrix A =
[ai.j] over the group R+, it might be desirable to �nd all inconsistent triads
〈ai,k, ai,j, ak,j〉 to help the creators of the matrix to change their judgements
to get an optimal consistent approximation of A. To do this, a common
expectation is to de�ne a mapping ii : R3

+ → R which has the following
properties:
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(A.1) ii(x, y, z) = 0 if and only if y = x · z,

(A.2) ii(x, y, z) ∈ [0, 1) - by common sense, the �ideal inconsistency� (repre-
sented by 1) cannot be achieved,

(A.3) there exists a metric d on R+ such that if 〈x, y, z〉 and 〈x′, y′, z′〉 are
triads of positive real numbers such that d(x · z, y) ≤ d(x′ · z′, y′), then
ii(x, y, z) ≤ ii(x′, y′, z′).

If a mapping ii : R3
+ → R satis�es conditions (A1)�(A3) and x, y, z ∈ R+, we

say that ii is an inconsistency indicator on the group R+, while ii(x, y, z) is
the inconsistency indicator value of the triad 〈x, y, z〉. We can look at condi-
tions (A.1)�(A.3) as de�ning axioms of inconsistency indicators over R+. The
third axiom A.3 is crucial for any axiomatization of inconsistency indicators
over R+. It seems that without this axiom, an inconsistency indicator would
not make sense in practice. For any assumed de�nition of an inconsistency
indicator, the inconsistency indicator value of a triad T1 = 〈x1, y1, z1〉 cannot
be smaller than that of T2 = 〈x2, y2, z2〉 if, roughly speaking, the distance of
T2 from a consistent triad is smaller than the distance of T1 from a consistent
triad. The third axiom can be summarized by �the further we go away from
y = x · z the bigger is the inconsistency value�.

Based on the proposed axioms for inconsistency indicator and on [37], for
positive real numbers x, y, z, let us de�ne:

f(x, y, z) = 1−min

{
y

xz
,
xz

y

}
.

Then:
f(x, y, z) = 1− e−|ln(

y
xz )|.

The function f is called Koczkodaj's inconsistency indicator map. It was
shown in [45] that the function df : R2

+ → R, de�ned by df (x, y) = f(x, y, 1)
whenever x, y ∈ R+, is a metric such that, for triads 〈x1, y1, z1〉 and 〈x2, y2, z2〉
of positive real numbers, we have df (x1 · z1, y1) ≥ df (x2 · z2, y2) if and only
if f(x1, y1, z1) ≥ f(x2, y2, z2), since f(x, y, z) = df (xz, y) for all x, y, z ∈ R+.
Now, it is evident that f satis�es conditions (A.1)�(A.3).
For ii = f and positive real numbers x, y, z, let us look at the following two
examples:

• ii(x, 2, z) ≥ ii(1.5, 2, 2.5) if x ≥ 1.5 and z ≥ 2.5, since df (x · z, 2) ≥
df (1.2·2.5, 2) for x ≥ 1.5 and z ≥ 2.5. On the other hand, ii(1.5, y, 2.5) ≥
ii(1.5, 2, 2.5) if y ≤ 2, since df (1.5 · 2.5, y) ≥ df (1.5 · 2.5, 2) for y ≤ 2.
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• ii(1.5, y, 1.2) ≥ ii(1.5, 2.5, 1.2) if y ≥ 2.5 , but if x ≤ 1.5 and z ≤ 1.2,
then ii(x, 2.5, z) ≥ ii(1.5, 2.5, 1.2).

In [45], a more general notion of an inconsistency indicator map on a group
X = 〈X,�〉 was introduced. Namely, a mapping J : X3 → R is called an
inconsistency indicator map on the group X if there exists a metric ρ : X2 →
R such that J(x, y, z) = ρ(x�z, y) for all x, y, z ∈ X. If J is an inconsistency
indicator map on the group X, then, for an arbitrary real number a such
that 0 < a < 1, we can de�ne Ja(x, y, z) = min{J(x, y, z), a} to obtain an
inconsistency indicator map Ja on the group X, such that Ja(x, y, z) ∈ [0, 1)
for all x, y, z ∈ X. Every inconsistency indicator map J on the group R+

satis�es conditions (A.1) and (A.3) (cf.[45]). Even if J does not satisfy (A.2),
we can replace J by Ja, for an a ∈ (0, 1), to get an inconsistency indicator
map which satis�es (A.1)�(A.3). The notion of an incosistency indicator map
on a group was generalized to a new concept of a G-inconsostency indicator
map over a group X where G = 〈G,⊗,≤〉 is an abelian linearly ordered
group such that J(x, y, z) ∈ G for all x, y, z ∈ X. Namely, a mapping
J : X3 → G is a G-inconsistency indicator map over X if and only if the
function dJ : X2 → G, de�ned by dJ(x, y) = J(x, y, 1X) for all x, y ∈ X
is a G-metric on X such that J(x, y, z) = dJ(x � z, y) for all x, y, z ∈ X.
For G = 〈R,+,≤〉, where + and ≤ are standard addition and linear order
in R, an example of a G-inconsistency indicator map on the group R+ is
Koczkodaj's inconsistency indicator map.

It is important to notice here that the de�nition of an inconsistency in-
dicator map given above allows us to localize the inconsistency in a PC
matrix in the following sense: if X is a group, G is an alo-group, while J
is a G-inconsistency indicator map on X, then, for a matrix A = [ai,j] over
the group X, we can localize all inconsistent triads 〈ai,k, ai,j, ak,j〉 by looking
whether J(ai,k, ai,j, ak,j) is the identity element of G. For a G-inconsistency
indicator map J on a group X and for a matrix A over X, we de�ne the
J-inconsistency indicator of A by the following formula:

J [A] = max{J(ai,k, ai,j, ak,j) : i, j, k ∈ {1, . . . , n}}.

Another possible de�nition of the inconsistency of a reciprocal PC matrix
has a global character and needs explanations. Let A = [ai,j]

n
i,j=1 be an n×n

reciprocal PC matrix over a group X = 〈X,�〉. Suppose that G = 〈G,⊗,≤〉
is an alo-group and that J is a G-inconsistency indicator map on X. The
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matrix A is consistent if and only if for any 1 ≤ i < j ≤ n the following
equation holds:

aij = ai,i+1 � ai+1,i+2 � . . .� aj−1,j.
Therefore, a global J-inconsistency indicator Jg[A] of A can be de�ned by
the formula:

Jg[A] = max
1≤i<j≤n

J(ai,j, ai,i+1 � ai+1,i+2 � . . .� aj−1,j, 1).

In particular, in much the same way, as in [43], if X is the group R+ while f
is Koczkodaj's inconsistency indicator map on R+, then, for every reciprocal
matrixA = [ai,j]

n
i,j=1 over R+, we can de�ne the global inconsistency indicator

fg[A] as follows:

fg[A] = 1− min
1≤i<j≤n

min

(
aij

ai,i+1ai+1,i+2 . . . aj−1,j
,
ai,i+1ai+1,i+2 . . . aj−1,j

aij

)
.

It is obvious that:

fg[A] = max
1≤i<j≤n

(
1− e

−
∣∣∣∣ln( aij

ai,i+1ai+1,i+2...aj−1,j

)∣∣∣∣)
For every reciprocal PC matrix A over the group R+, both de�nitions

of f [A] and of fg[A] have some advantages and disadvantages. The �rst
de�nition allows us to �nd the localization of the most inconsistent triad
elements of A. It follows what is adequately described by the idiom: �one
bad apple spoils the barrel�. The second de�nition may be useful when the
global inconsistency is more important.

The CPC counter-example for the incorrectness of the eigenvalue-based
inconsistency was supported by the mathematical reasoning in [43]. In all
likeliness, all panoptic-type inconsistency indicators and all inconsistency in-
dicators based on central tendency su�er from the similar problem because
the consistency condition has (by the de�nition) the requirement �for all
triads� and with the growing PC matrix size (n −→∞), the value of incon-
sistency indicator vanishes but the local estimation error does not.

If we accept the inconsistency �vanishing problem� as normal, by the
same logic, we should not worry about one �nuke� left behind by the col-
lapsed Great Empire since it is only one lost weapon for approximately
7,000,000,000 inhabitants of this planet. The nuke must be located and pos-
sibly destroyed. The same goes for inconsistency. Once located and found
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as unacceptable, the inconsistency must be reduced before any further com-
putations take place. Looking the other way around at the unacceptable
inconsistency and computing the approximation is as wrong idea as the fol-
lowing �proof�. Let us assume x=0 giving us x = 2 ∗ x since 0 = 2 ∗ 0.
If so, we ca simplify it by dividing both side of the equation x = 2 ∗ x by
x, getting 0=1, which we know is not exactly so. Our error comes from
k − n − o − w − i − n − g that x = 0 and dividing over it, despite knowing
that we should not do it.

Evidently, we should not use unacceptably large inconsistent assessment
to estimate our solution but AHP (and other inconsistency based on `central
tendency�) ignores such principle. As a consequence, an error of the arbitrar-
ily large value (e.g., 1,000,000% or more) is tolerated. The opponents of the
above point may say: �...but dividing by 0 is an exceptional phenomenon�.
Apparently, 1

10(−n) is not just one case. It generates arbitrary large values for

growing n although the divisor is not exactly 0 and there are ∞ of them.
Drawing mechanical conclusions, based on the �central tendency,� may be

very dangerous, as the following example demonstrates. Let us look at the
average weight of 80kg (200lbs) in a given population of 100 men. It does
not imply that there is even a single man with the weight of 80kg nor even
near that average. For example, it may happen that 50 men may each weigh
70kg and 50 weigh 90kg, which results in an average of 80kg. In the case
of inconsistency indicators, the unacceptably high inconsistency in one triad
may not contribute much to �the average� but it is unacceptable. Indeed,
most of us the local approximation error aberration occurs and the argument
that �we only lost one nuclear weapon� (which may be �accidentally found�
by terrorists) is unacceptable to most of us. However, it does take place
for the eigenvalue-based inconsistency as demonstrated by [43] for the CPC
counter-example.

Common sense dictates a simple rule: �locate the worse inconsistency and
check it; if unacceptable, reduce it�. Certainly, if we are unable to reduce
the inconsistency or there is n important reason (e.g., time) to continue with
the inconsistency, she may do it. It is also important to notice that there
are no inconsistencies in the simpli�ed version of PC recently introduced
in [44]. However, the zero inconsistency indicator does not guarantee that
assessments are accurate. The consistent (or doctored data) ignorance can
give result in 0 inconsistency. In fact, playing safe and giving all 1s for all
entries of the entire PC matrix gives 0 inconsistency, but may be a sign
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of the total ignorance, where everything is of equal importance. Certainly,
everything may be of equal (or unknown) importance and in such case, all
PC matrix entries should be equal to one.

Much has been done in this direction but more research is de�nitely still
needed. Firstly, the input values should be extended to indicate the certainty
of the assessment. It seems that fuzzy logic is the best approach to express
uncertainty. Although the fuzzy logic is widely accepted for modelling uncer-
tainly and approximate reasoning, Saaty vigorously opposed its use in two
of his publications by using �On the invalidity of fuzzifying numerical judg-
ments� in [16] and �There Is No Mathematical Validity for Using Fuzzy Num-
ber Crunching� in [16, 15], despite hundreds of well-documented successful
applications (e.g., [14] with 695 citations as of 2015-03-27). The hierarchical
classi�er has not been given enough attention. In 1960s and 1970s, the hier-
archical approach was popularized by many researchers in systems analysis.
The top-down design (based on a hierarchical structure) was promoted by
IBM researchers Harlan Mills and Niklaus Wirth in the late 1960s and early
1970s. The top-down strategy results in a hierarchical structure. The HIPO
model (abbreviation for Hierarchical Input Process Output model) was in-
troduced by IBM in early 1970s in [32] with a follow-up book [35]. However,
the hierarchical classi�er has been assumed rather than computed in most
applications. The hierarchical clustering seems to o�er the best solution for
a non-supervised learning.

Finally, there has not been a single publication on PCs in any of the
�agship AMS journals. The solid mathematical basis is recently proposed in
[45].

6 The inconsistency reduction process

Erroneously, [51] is often given credited for providing a consistency de�nition
of a PC matrix A. In fact, the condition �if and only if ai,j ∗ aj,k = ai,k for
i, j, k = 1, 2, ..., n.� was de�ned and examined before 1977 by at least these
four studies published between 1939 and 1961: [36, 30, 29, 54].

Localizing the inconsistency was proposed in [37]. The consistency-driven
process was postulated since it comes from the GIGO principle and common
sense. However, it is still not certain whether we should begin the reduction
process, starting with the worse triad (as the common sense may dictate)
or to improve the triad with the smallest inconsistency. In the second case,
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smaller errors may propagate through the PC matrix. A Monte Carlo study
has been launched and the preliminary �nding support the foreknowledge in
1993.

It is safe to assume that processing (e.g., approximating) random numbers
gives random results. In the case of PC, the �randomness� of the input is
associated with the inconsistency. It is evidenced in Fig. 3.

Figure 3: [Triad (2,5,3

If we assume that A/B = 2 and B/C = 3, evidently A/C cannot be
5 but rather 6. The problem is that these three comparisons might have
been conducted, without problems due to the Internet, on three di�erent
continents, based on the �undisputed taste� (as earlier noted). No one can
assert which of these three comparisons is (or is not) accurate.

The illustration of the inconsistency is even more drastic by the PC ma-
trix M3, which is generated by the triad (2, 1/2, 2). It gives unnormalized
weights v = [1, 1, 1] ([1/3, 1/3, 1/3] in its normalized form). Vector v gener-
ates a trivial matrix with all entries equal to 1 representing ignorance (lack of
knowledge). For this reason, we have to improve all individual triads. Which
strategy should be employed, is the key issue for future research.

Many PC method studies fail to see the real problem with the goal of
approximation. When we try to test the PC method on real examples related
to subjective data (say, public satisfaction), how can we be sure what is
and what is not �the right solution�? After all, it is said that the taste is
indisputable.

The reduction process in [37] was based on the common sense approach.
It called for �nding the most inconsistent triad and reducing it. In this
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study, the inconsistency reduction process was examined. It was based on the
reduction of the triad with the smallest inconsistency. Why? It is suspected
that the error propagation may be smaller than the triad with the worst
inconsistency. Some research partners of the author have even questioned
why bother with the inconsistency reduction when an approximation could
be achieved in one step by geometric means. It may not be easy to provide a
good response to such question, since it is probably impossible to provide an
analytical answer why an inconsistency is undesirable (other than the GIGO
adage but is it not a proof or even an unspoken rule since it is not true, in
general). It is not easy to conduct a Monte Carlo experimentation although
such preliminary study was conducted (see [38]) with the randomly generated
images for its area estimation.

According to [42], �nding consistent approximations of PC matrices with
a high level of inconsistency makes little practical sense. From the standard
mathematical logic, we know that only falsehood can generate both truth or
falsehood. The research in [23] demonstrated that a �little falsehood� should
still largely lead to the truth. However, the old adage that �one bad apple
spoils the barrel� seems to be more applicable here: even a little falsehood
may contribute to signi�cant errors and misjudgments. An approximation of
a PC matrix is meaningful, only if the initial inconsistency is acceptable (that
is, located, brought under control and/or reduced to a certain prede�ned
minimum; in our analogy, always remove an overripe fruit promptly if it is
possible to �nd it).

In practical applications, a high value of the inconsistency indicator is
a �red �ag,� or a sign of potential problems. A distance-based inconsis-
tency reduction algorithm focuses, at each step, on an inconsistent triad and
�corrects� it by replacing it with a consistent (or, more generally, a less in-
consistent) triad. It resembles �Whac-a-Mole,� a popular arcade game. One
di�erence is that instead of one mole, we have three array elements, as ex-
plained above. After hitting the mole (which generally results in some other
�moles� appearing), the next triad is selected according to some rule (which
may be for example the greedy algorithm) and the process is repeated. Nu-
merous practical implementations (e.g., a hazard ratio system for abandoned
mines in Northern Ontario) have shown that the inconsistency converges
relatively quickly. However, the need for rigorous prove of the convergence
(that is, showing that whacked moles always have the tendency of coming
out less and less eagerly) was evident. An approximation of a PC matrix
is meaningful only if the inconsistency in it is acceptable. This means that
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we need to localize the inconsistency and reduce it to a certain prede�ned
minimum, if it is too high.

6.1 Not-so-inconsistent matrices

Using completely random PC matrices for testing has very little scienti�c
merits, since they are simply random numbers and they defy all principles
of learning (machine or natural). Common sense dictates to use matrices
somehow inconsistent but not just a proverbial �bunch of random numbers�.
We will call such a PC matrix �not-so-inconsistent� (NSI) PC matrix. The
NSI matrix was de�ned in [31] as follows. We obtain NSI PC matrix M
from a random vector v with positive coordinates by: M = [vi/vj] where
i, j = 1, 2, . . . , n. We deviate M by random multipliers mij := mij ∗ rand().

NSI PC matrix have been recently used in [39] to check how quick is the
convergence to consistency by the reduction process. The results were very
positive. The number of iterations to reduce the inconsistency below the
accepted level (assumed as 1/3 for the distance-based inconsistency) turned
to be at most 10.

7 Deriving priorities from PC matrices

In PC we compare two elements, and assign a value, which represents an
assessment of the relative preference of Ei over Ej . If Ei is preferred to Ej
then aij > 1, otherwise 0 < aij < 1 . A full set of assessments for n elements
requires n(n− 1)/2 comparisons. In order to derive a priority vector from a
given set of assessments, [51] constructs a positive reciprocal matrix, whose
elements satisfy the reciprocal property aji = 1/aij , aij > 0, i, j ∈ 1, 2, . . . , n.

The eigenvector method (EV), proposed in [51] is based on the Perron-
Frobenius theorem. Saaty proves that the principal right eigenvector of A
can be used as a priority vector, so the EV solves the equation: Aw = λmaxw,
where λmax is the principal eigenvalue of A. However, EV method su�ers from
numerous drawbacks, discussed in the previous sections. Numerous alterna-
tive prioritization methods, have been proposed. Many of them are based
on the optimization approach. These methods need an objective function,
which measures the accuracy of the approximation of the initial compari-
son assessments by the candidate solution. Thus, the problem of priority
derivation is formulated as an optimization task of minimizing the objective
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function, subject to normalization and possible additional constraints.
The Direct Least Squares (DLS) method (probably for the �rst time intro-

duced in [34]) is based on the assumption that the errors between the initial
assessments and solution ratios should be minimized, so it uses the Euclidean
distance metric (or its square) as an objective function. The prioritization
task is formulated as a constrained optimization problem:

MinED =

(
n∑
i=1

n∑
j=1

(aij − wi/wj)2
)1/2

subject to:
∑n

i=1wi = 1, wi > 0.
On page 312 in [53], Saaty and Vargas state:

Remark: The most frequently used metric to measure closeness
and accuracy in n-dimensional spaces is the Euclidean metric.

Common sense dictates that there is a reason why the Euclidean metric
is the most frequently used. It is used for hundreds of years since it is simple,
elegant and accurate. The above quotation was not only true in 1984 but it
is still true at the time of drafting this study (after 31 yeas). No wonder that
Saaty and Vargas followed it by an �explanation�:

However, the Euclidean metric does not address the question of
inconsistency.

The above quotation leads us to the logical conclusion that the inconsis-
tency needs to be handled separately from approximation. In fact, no approx-
imation can really give a reliable solution for heavily polluted data hence the
inconsistency analysis should precede any approximation as recommended in
former sections. With the proper inconsistency analysis, MinED is the most
practical solution since it is simple and accurate. After all, the statistical
results (based on 1,000,000 randomly generated case in [31] and numerous
smaller Monte Carlo experimentation) support it.

8 Notable applications

The number of applications of PC is ever growing. It is currently one of a few
valid methods for processing subjective data. Listing any applications here
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would be risky since it may imply more importance over other applications.
To illustrate, we know that a society equipped with only medical doctors
would not survive for long since they may starve without farmers. Medicine
and farming can be, and should be, supported by PC. In the past, the PC
method was used for decision making on the national level, related to nuclear
weapons or energy [46]. Certainly, making such decisions must be guided by
many common sense �rules� and GIGO (garbage-in, garbage-out) is one of
them.

It is also important to point out that one of the sizable countries in
the European Union has already passed a law to use PCs for evaluations
at the national level as documented in [40], where scienti�c entities have
been evaluated. Credits for introducing PC to the ministerial regulations
in Poland should be given to Prof. R. Slowinskii, a Member of the Polish
Academy of Science.

9 Conclusions

There is still much to be done in PC. The biggest challenge is not so much the
technology: hardware and software, but rather the theory itself. However,
complicating the existing theory is not the solution. �Best practices,� as
they are often used in the Software Engineering approach, are needed ([11,
Section 4.5]).

Acknowledgements

The title of this study was inspired by the title of a report ([13]) downloaded
by Prof. K. Arrow, Nobel Laureate.

References

[1] George A Miller. The magical number seven, plus or minus two: some
limits on our capacity for processing information. Psychological review,
63(2):81, 1956.

21



[2] Victoria Kusherbaeva, Yuriy Sushkov, and Gaik Tamazian. Scales and
methods for deriving weights in the analytic hierarchy process. Vestnik
St. Petersburg University: Mathematics, 44(4):282�291, 2011.

[3] D Ma and X Zheng. 9/9-9/1 scale method of AHP. In Proceedings of

the 2nd International Symposium on the AHP, volume 1, pages 197�202,
1991.

[4] FA Lootsma. Scale sensitivity in the multiplicative AHP and SMART.
Journal of Multi-Criteria Decision Analysis, 2(2):87�110, 1993.

[5] HA Donegan, FJ Dodd, and TBM McMaster. A new approach to AHP
decision-making. The Statistician, pages 295�302, 1992.

[6] Ahti A Salo and Raimo P Hämäläinen. On the measurement of prefer-
ences in the analytic hierarchy process. Journal of Multi-Criteria Deci-

sion Analysis, 6(6):309�319, 1997.

[7] P Ji and R Jiang. Scale transitivity in the AHP. Journal of the Opera-

tional Research Society, 54(8):896�905, 2003.

[8] Malcolm Beynon. An analysis of distributions of priority values from
alternative comparison scales within AHP. European Journal of Opera-

tional Research, 140(1):104�117, 2002.

[9] Yucheng Dong, Yinfeng Xu, Hongyi Li, and Min Dai. A comparative
study of the numerical scales and the prioritization methods in AHP.
European Journal of Operational Research, 186(1):229�242, 2008.

[10] Michael A Elliott. Selecting numerical scales for pairwise comparisons.
Reliability Engineering & System Safety, 95(7):750�763, 2010.

[11] Barbara Sandrasagra and Michael Soltys. Complex Ranking Procedures.
Submitted for publication, February 2015.

[12] Search needed, 2014.

[13] www.researchgate.net

[14] Chang, DY Applications of the extent analysis method on fuzzy AHP
European Journal of Operational Research, 95(3): 649-655, 1996.

22



[15] Saaty, T.L., There Is No Mathematical Validity for Using Fuzzy Number
Crunching in the Analytic Hierarchy Process, Journal of Systems Science
and Systems Engineering, 15(4): 457-464, 2006.

[16] Saaty, T.L., Tran, L.T., On the invalidity of fuzzifying numerical judg-
ments in the Analytic Hierarchy Process, Mathematical and Computer
Modelling,46(7-8): 962-975, 2007.

[17] MacLennan, B., Principles of Programming Languages, Thomson Learn-
ing,1983.

[18] Bana e Costa, C.A., Vansnick, J-C., A critical analysis of the eigenvalue
method used to derive priorities in AHP, European Journal of Opera-
tional Research 187(3): 1422�142, 2004.

[19] Barzilai, J., Deriving Weights from Pairwise Comparison Matrices, The
Journal of the Operational Research Society, 48(12): 1226-1232, 1997.

[20] Cavallo, B., D'Apuzzo, S., A general uni�ed framework for pairwise
comparison matrices in multicriterial methods, Int. J. Intell. Syst. 24
(4), 37�398, 2009.

[21] Cavallo, B., D'Apuzzo, L., Reciprocal transitive matrices over abelian
linearly ordered groups: Characterizations and application to multi-
criteria decision problems. Fuzzy Sets nd Systems 266, 33-46, 2015.

[22] de Condorcet, N., Essay on the Application of Analysis to the Proba-
bility of Majority Decisions, Paris: l'Imprimerie Royale, 1785.

[23] Genest, C., Rivest, LP, , A Statistical Look at Saaty's Method of Es-
timating Pairwise Preferences Expressed on a Ratio Scale, Journal of
Mathematical Psychology 38(4): 477�496, Dec 1994

[24] Faliszewski, P.,Hemaspaandra, E., Hemaspaandra, L., Using complexity
to protect elections, Communications of the ACM 53(11): 74�82, 2010.

[25] Fechner, G.T., Elements of Psychophysics, Vol. 1, New York: Holt, Rine-
hart & Winston, 1965, translation by H.E. Adler of Elemente der Psy-

chophysik, Leipzig: Breitkopf und Härtel, 1860.

23



[26] Fichtner, J., Some thoughts about the mathematics of the analytic
hierarchy process, by Institut für Angewandte Systemforschung und
Operations-Research, Munich, Germany, Vol. 8403, pp. 78, 1984.

[27] Fulop, J., A method for approximating pairwise comparison matrices by
consistent matrices, Journal of Global Optimization, 42:423-442, 2008.

[28] Fulop, J., Koczkodaj, W.W., Szarek, S.J., A Di�erent Perspective on
a Scale for Pairwise Comparisons, Transactions on Computational Col-
lective Intelligence in Lecture Notes in Computer Science, 6220, 71�84,
2010.

[29] Gerard, HB, Shapiro, HN, Determining the Degree of Inconsistency in
a Set of Paired Comparisons, Psychometrika, 23(1): 33-46 1958

[30] Hill, RJ, A Note on Inconsistency in Paired Comparison Judgments,
American Sociological Review 18(5): 564�566, 1953.

[31] Herman, M.W., Koczkodaj, W.W., Monte Carlo Study of Pairwise Com-
parisons, Information Processing Letters 57(1): 25-29, 1996

[32] HIPO � A Design Aid and Documentation Technique, IBM Corp. Man-
ual No. GC20-1851-0, 1974.

[33] Janicki. R., Zhai, Y., On a pairwise comparison-based consistent non-
numerical ranking, Logic Journal of the IGPL, 20(4), 667-676, 2012.

[34] Jensen, R.E., An Alternative Scaling Method for Priorities in Hierarchi-
cal Structures, Journal of Mathematical Psychology 28: 317-332, 1984.

[35] Katzman, H., Systems Design and Documentation: an Introduction to
the HIPO Model, New York: Van Nostrand Reinhold, 1976.

[36] Kendall, M.G., Smith, B., On the Method of Paired Comparisons,
Biometrika 31(3/4): 324�345, 1940.

[37] Koczkodaj, W.W., A New De�nition of Consistency of Pairwise Com-
parisons. Mathematical and Computer Modelling 18(7): 79�84, 1993.

[38] Koczkodaj, W.W., Almowanes, A., Kakiashvili, T., Duncan, G., Water-
loo University Proceedings, Springer-Verlag, 2014 (to appear)

24



[39] Koczkodaj, W.W., Kosiek, M., Szybowski, J., Xu, D., Fast Convergence
of Distance-based Inconsistency in Pairwise Comparisons, Fundamenta
Informaticae (in print).

[40] Koczkodaj, W.W., Kuªakowski, K., Ligeza, A., On Quality Evalua-
tion of a Scienti�c Entity by Consistency-Driven Pairwise Comparisons
Method, Scientometrics, online �rst, 2014.

[41] Koczkodaj, W.W., Orlowski, M., Computing a Consistent Approxima-
tion to a Generalized Pairwise Comparisons Matrix, Computers and
Mathematics with Applications 37: 79�85, 1999.

[42] Koczkodaj, W.W., Szarek, S.J., On distance-based inconsistency reduc-
tion algorithms for pairwise comparisons, Logic J. of the IGPL, 18(6):
859�869, 2010.

[43] Koczkodaj, W.W., Szwarc, R., On Axiomatization of Inconsistency Indi-
cators for Pairwise Comparisons, Fundamenta Informaticae 132: 485�
500, 2014.

[44] Koczkodaj, W.W., Szybowski, J., Pairwise comparisons simpli�ed, Ap-
plied Mathematics and Computation 253: 387�394, 2015.

[45] Koczkodaj, W.W., Szybowski, J., Wajch, E., Mathematical
foundations of inconsistency analysis in pairwise comparisons,
http://arxiv.org/abs/1502.06160, 2015.

[46] Kutbi, I.I., A pragmatic pairwise group-decision making for selection of
sites for nuclear power plants, Nuclear Engineering and Design 100(1):
49�63, 1987.

[47] Kuªakowski, K., Heuristic Rating Estimation Approach to The Pairwise
Comparisons Method, Fundamenta Informaticae 133(4): 367�386, 2014.

[48] Kuªakowski, K., A heuristic rating estimation algorithm for the pairwise
comparisons method, Central European Journal of Operations Research
23: 187�203, 2015.

[49] Leung, LC, Cao, D, On consistency and ranking of alternatives in fuzzy
AHP, European journal of operational research 124(1): 102-113, 2000.

25



[50] Ramik, J., Pairwise comparison matrix with fuzzy elements on alo-
group, Information Sciences 297, 236�253, 2015.

[51] Saaty, T.L., A Scaling Method for Priorities in Hierarchical Structure,
Journal of Mathematical Psychology 15(3): 234�281, 1977.

[52] Saaty, T.L., On the Measurement of Intangibles. A Principal Eigenvector
Approach to Relative Measurement Derived from Paired Comparisons,
Notices of the AMS 60(2): 192�208, 2013.

[53] Saaty, T., Vargas, L., Comparison of eigenvalue, logarithmic least
squares and least squares methods in estimation ratios, Mathematical
Modelling 5: 309�324, 1984.

[54] Slater, P., Inconsistencies in a Schedule of Paired Comparisons
Biometrika 48(3/4): 303�312, 1961.

[55] Temesi, J., Pairwise comparison matrices and the error-free property of
the decision maker, Central European Journal of Operations Research,
19(2): 239�249, 2011.

[56] Thurstone, L.L., A Law of Comparative Judgments, Psychological Re-
views 34, 273�286, 1927.

[57] Web of ScienceTM

[58] Yuen, K.K.F., Pairwise opposite matrix and its cognitive prioritization
operators: comparisons with pairwise reciprocal matrix and analytic
prioritization operators, Journal of the Operational Research Society
63(3): 322�338, 2012.

26


