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Abstract 

Although there is still some scepticism within the biological community regarding the value 

and significance of quantitative computational modelling, important steps are continually 

being taken in order to enhance its accessibility and predictive power. We view these 

developments as essential components of an emerging “respectful modelling” framework, 

which has two critical aims: 1) Respecting the models themselves and facilitating the 

reproduction and update of modelling results by other scientists. 2) Respecting the 

predictions of the models, and rigorously quantifying the confidence associated with the 

modelling results. This respectful attitude will guide the design of higher-quality models and 

facilitate the use of models in modern applications, such as engineering and manipulating 

microbial metabolism by synthetic biology.  

Computational models in current research: Success and scepticism  

Quantitative computational models of cellular pathways and circuits are essential tools for 

generating clear, testable predictions about the behaviour of complex cellular machineries [1, 

2]. Their use is currently moving beyond the proof-of-concept stage towards real-world 

applications, such as engineering and optimising biological microorganisms to produce 

specific chemicals and biofuels [3-5], as has been shown most successfully for various 
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terpenoids [6] and for succinic acid [7]. Their applications in identifying potential drug 

targets in metabolic or signalling pathways are also rapidly advancing [8-10]. An increasing 

number of success stories demonstrate that computational models have a lot to offer to 

biologists, from surveying cellular development [11] and exploring signalling pathways [12] 

and genetic circuits [13], to investigating potential treatments for cancer [14, 15]. However, 

modelling is not yet part of the mainstream of biological practice, even in fields like synthetic 

biology that intend to embrace an engineering approach to manipulating biological 

complexity [16-18].  

Major progress is also being made in the case of genome-scale models [19-21], which match 

enzyme-coding genes with predicted reactions in metabolic pathways. Until recently, their 

nature limited the application of genome-scale models to stoichiometric constraint-based 

approaches, studying the fluxes through the system without being able to predict metabolite 

levels or the dynamics of responses to internal or external perturbations. However, efforts are 

being made to incorporate detailed information on enzyme regulation and kinetic 

mechanisms into such constraint-based models, thus transforming them into genome-scale 

kinetic models of metabolism [22-24].  

We aim to outline (Fig. 1) “respectful modelling,” an emerging set of closely related concepts 

and techniques that together enhance and advance earlier modelling approaches to make 

computational models both more approachable and more relevant for the work of 

experimental biologists. 

 

Figure 1: Respectful modelling manifests itself in various steps of the pipeline. 
R1: Respect for model construction: full documentation of all modelling decisions and sources in re-usable form for future 
updating. 
R2: Respect for limited knowledge: principled consideration of uncertainty of model parameter data. 
R3: Respect for model predictions: quantitative assessment of confidence intervals for all model predictions. 
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R4: Respect for model hypotheses: using models to inform real-world experimental hypothesis testing. 
R5: Respect for existing models: rigorous strategies for updating based on new experimental evidence. 
 

Many molecular biologists still doubt the relevance of computational models of cellular 

systems. One sometimes even hears the truism that “All models are wrong, but some are 

useful” [25], cited as if it meant “all models are false and most are useless”. In fact, models 

are meant to be explicit descriptions of our implicit knowledge about the function of a 

biological system. Therefore, they are ideally no more wrong than less-formal reasoning 

about the same system, yet they offer numerous advantages: most importantly, they put any 

assumptions about how a cellular mechanism works out into the open for everyone else to 

check and criticize, and they allow predictions about non-obvious (“emergent”) behaviours of 

a system that follow compellingly from these assumptions, even when the complexity and 

non-linearity of the systems make simple back-of-the-envelope arguments impossible.  

Yet, beyond the anecdotal observation that models are sometimes flippantly dismissed as 

“always wrong”, there are more serious indications that computational models of cellular 

pathways and circuits are not yet fully respected as scientific tools in molecular biology. For 

example, complex systems models are very rarely updated and developed further; with a few 

rare exceptions, such as some constraint-based models [26, 27], there are not many examples 

of “versioned” and iteratively improved models. Moreover, predictions of computational 

models in systems biology are usually reported without error bars. In contrast, the 

incorporation of uncertainty in models has long been common practice in other fields [28, 

29], from natural hazard insurance to economic forecasts, where the predictions and their 

associated confidence make a real difference to people’s lives. For example, in the prediction 

of human-induced climate change, error bars and the exploration of multiple scenarios are the 

dominant feature in all predictions, to the extent that they are even presented and discussed in 

the popular press [30]. 

 

A respectful approach to biological modelling 

So, what is needed to establish the same “respectful” attitude to modelling in biology, so that 

it can meaningfully contribute to areas such as synthetic biology or personalized medicine? 

Two aspects seem to be central:  

1. Respect for the model itself as a resource that can grow and develop. If we respect our 

models, we should not treat them as one-off exercises. Instead, we need to make them 

understandable and reproducible by other scientists and update them regularly and 
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continuously rather than discard them once new discoveries are made (or a new PhD student 

takes on the project). Therefore, reaction mechanisms and parameter values (such as assumed 

rate constants, enzyme concentrations, or substrate affinities) need to be documented, so that 

others can build on our work, and models that capture the full breadth of alternative 

hypotheses need to be maintained, instead of fixating on one “maximum likelihood” or 

preferred model. In this way, the model can improve iteratively as new data become 

available, instead of having to be rebuilt each time. 

2. Respect for the output of the model and for the predictions it generates. We should strive 

for accurate predictions that can be used for rational decision-making. When respecting our 

models, in the sense that we really care about their predictions, we need to care about the 

associated level of uncertainty, and we need to identify the different levels of confidence 

associated with each alternative prediction. Otherwise, we could not place reasonable bets on 

different possible outcomes. Therefore, we need model predictions with confidence intervals, 

correctly reflecting our current (limited) knowledge about the topology and dynamics of the 

biological system. We can only ignore confidence intervals as long as we are not interested in 

the real-world implications of our quantitative model predictions, i.e., when we only treat 

them as little more than random numbers that illustrate the elegant model-building and 

analysis algorithms. Once we have a true stake in generating accurate quantitative 

predictions, because we want to apply them in the design of actual biological experiments or 

the engineering of real living systems, we will listen much more carefully to what the models 

have to tell us. Looking for the uncertainty in the model predictions is not a sign of 

disrespectful mistrust, but an immediate consequence of taking the model serious as a 

predictive, rather than illustrative, tool. 

In fact, these two aspects are closely related. They both imply that our models should not be 

rigidly fixed but need to capture alternative scenarios, alternative parameter values [31], 

alternative circuit topologies [32], and generally alternative hypotheses about the biological 

system that is being studied. A recent study on the energy metabolism of the protozoan 

parasite Trypanosoma brucei [33, 34], the causative agent of sleeping sickness, illustrates 

how an explicit treatment of uncertainty can yield new insights even for well-studied model 

organisms (Box 1). The “respectful modelling” data identify a number of previously 

unexplored key experiments. In the trypanosome example, for instance, the exact level of 

permeability of the glycosomes for specific glycolytic intermediates could be determined by a 

more targeted measurement, or the sensitivity of trypanosomes to the inhibition of 

glycosomal enzymes with unexpectedly high control coefficients (i.e. triose phosphate 

isomerase) could be directly measured.   
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Box 1: “Respectful modelling” on trypanosome metabolism 

In trypanosome parasites in the human bloodstream, energy metabolism is mostly restricted to glycolysis, which takes place 
in unique, specialized organelles, the glycosomes; its enzymes are considered promising targets for newly developed drugs 
against sleeping sickness.  

The steps followed during the model design and analysis are depicted in Figure I. Starting from a highly curated model of 
trypanosomal energy metabolism, the experimental uncertainty of every enzyme kinetic parameter was determined by an 
extensive exploration of the original literature. Parameter sources, evidence for alternative model topologies (extra reactions), 
as well as any calculations (e.g., for the parameter means and standard deviations) were documented in a dedicated Wiki-
based database (A). Several versions of the model were created, in which alternative groups of metabolites with different 
molecular weight could freely diffuse across the 
membrane, representing the uncertainty about 
possible glycosome permeability resulting from 
recent evidence that the organelle membrane 
contains non-selective pores (B). 

For each of the alternative models, ranging from 
very tight to very leaky glycosomes, plausible 
combinations of parameter values were sampled 
according to the documented uncertainty by 
using a random number generator in accordance 
with each parameter’s assumed probability 
distribution. This resulted in a large collection of 
model variants, each using a different set of 
parameter values (C). The ensembles of models 
were then subjected to the same types of 
analysis as traditional dynamic models, e.g. 
determining steady-state concentrations of 
metabolites and calculating the control 
coefficients of enzymatic reactions that could 
identify the most promising drug targets (D).  

The analysis of the resulting ensembles of model 
predictions provided several interesting insights 
that had remained “hidden” in classical 
maximum-likelihood analyses of individual 
models. For example, it revealed unexpected 
fragilities in the existing models. Two 
metabolites, 3-phosphoglycerate and pyruvate, 
seemed to accumulate to impossible 
concentrations in many of the models, indicating 
that critical regulatory loops are probably still 
unaccounted for in our current understanding of 
trypanosome metabolism. Moreover, control of 
glycolytic flux seemed to be more widely 
distributed between several key reaction steps, 
rather than being largely restricted to the rate-
limiting glucose uptake transporter. The results 
also showed that the models that predicted steady-state metabolite concentrations and fluxes that most closely matched 
experimental observations, for the largest number of plausible parameter sets, were the ones with glycosomes permeable to 
small metabolites up to the size of fructose 6-phosphate and fructose 1,6-bisphosphate. This result challenges the current 
consensus view of trypanosome glycolysis that critically depends on highly controlled trans-membrane fluxes but is in good 
agreement with the presence of recently discovered unspecific glycosomal pores.  

 

Figure I: Flow chart of steps followed during the dynamic modelling of T. 
brucei energy metabolism with explicit consideration of parameter 
uncertainty. [33, 34, 50] 
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Therefore, these two aspects represent different levels of alternatives: on one hand, the degree 

of confidence in our predictions can be determined by examining ensembles of equally 

plausible models. On the other hand, models can be updated and re-used as our biological 

understanding evolves, by changing our assumptions about which models (and parameter 

values) are plausible and which are not.  

The advantages of respectful modelling are obvious:  

1. It quantitatively indicates each prediction’s robustness, which is helpful for identifying the 

most suitable experiments to carry out next: do we already have enough confidence in a 

prediction to build an expensive study around it, or are there specific uncertainties that we 

first need to reduce by targeted measurements? 

2. It enables collaborative and iterative work on model building and model improvement by 

explicitly identifying and documenting alternative model structures and parameter values.  

3. It allows managing alternative hypotheses about the functions of complex biological 

systems within a unified modelling framework, instead of having slightly different, 

incompatible, and often-incomparable models associated with each hypothesis. 

4. Finally, and perhaps most importantly, it makes modelling approaches available for 

systems in which quantitative information is incomplete and uncertain, thus unveiling 

otherwise inaccessible biological phenomena. This may also help bridging the conceptual gap 

between quantitative and qualitative modelling [35]. 

 

Respectful modelling showcases and applications 

Several important steps have recently been taken to provide the ingredients for a respectful 

modelling approach. 

1. Model descriptions are being standardised. This practice is becoming applied to every 

aspect of the model building process, from file formats to variable names and equation 

structures and to mandatory archiving of the resulting models. The Systems Biology Markup 

Language (SBML) [36], an XML-based machine readable language, is supported by 

almost all software tools in the field and is prevailing as a model representation format that 

facilitates model sharing and replication. Additionally, models are starting to comply with 

some basic community guidelines that describe the minimum information that needs to 

accompany a published model (MIRIAM) [37] along with conventions that facilitate data 
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integration in model building, such as SBtab [38]. Moreover, centralised model repositories 

such as BioModels [39], JWS Online [40], CellML Model repository [41] and the BiGG 

database [42] have been created to enable the distribution and curation of biological system 

models.  

2. Parameter information is being rigorously documented. The inclusion of 

supplementary material on the sources and values of the parameters (e.g., enzyme and 

substrate affinities, transcription rates, etc.) in published models is increasing [43-46]. For 

example, recently published updated models of central carbon metabolism in trypanosome 

parasites included a Wiki page dedicated to each biochemical reaction of the system [33, 34, 

47]. In this way, detailed information on the sources for each parameter value was provided, 

along with descriptions of the underlying calculations and assumptions, as well as alternative 

model versions with different topologies. This approach not only increases the accountability 

of modellers for the critical decisions made during model building; it also greatly facilitates 

the reconstruction, validation and updating of models by successive generations of 

researchers. 

3. Moreover, the detailed documentation of parameter sources enables the quantification 

of the uncertainty associated with each value, so that model predictions can take these 

uncertainties into consideration intuitively. A formal acknowledgement of uncertainty in 

computational models of biological systems not only describes the modellers’ beliefs and 

confidence in model structure and model parameters, but it also explicitly identifies 

alternative structures and parameter values and their associated plausibility [33, 34]. This 

approach mirrors the process of scientific progress by continuously exploring alternative 

hypotheses. Thus, rather than paralyzing the model’s analysis, the explicit acknowledgement 

of uncertainty actually enables the flexible evolution of biological models, which at each 

stage honestly represent our current knowledge about a biological system. This is in contrast 

to traditional modelling approaches, where alternative hypotheses and assessments of 

uncertainty are managed only in an ad hoc process taking place implicitly in the brains of the 

modellers and their collaborating expert biologists. Furthermore, acknowledging uncertainty 

and integrating it during the model building phase allows making predictions that are 

associated with specified confidence intervals, which can guide further experimentation [48, 

49].  

4. To transition from the collected information about parameter uncertainty to the 

resulting quantitative assessment of our confidence in specific model predictions, data-driven 

parameter sampling strategies have been formulated [33, 34, 47, 50, 51]. They employ 

informative distributions to describe what the modellers (and their biologist collaborators) 
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consider as plausible values for each parameter. These distributions correspond to the priors 

in a Bayesian statistical framework [52, 53], and can indeed be used for a Bayesian 

statistical analysis [54, 55] to update the parameter values when new experimental evidence 

becomes available, but they most importantly can be used in the next step to create an entire 

ensemble of plausible models by sampling values for each parameter from its corresponding 

distribution (Box 2). Experimental data, biological background knowledge, and biophysical 

plausibility (Box 3) can all contribute to defining the most appropriate distributions that 

capture our current state of knowledge accurately, not exaggerating the uncertainty, but also 

not being overconfident about specific values or connections in the network. 

Box 2: Generating probability distributions to describe uncertainty 

Describing the uncertainty associated with our knowledge of 
parameter values in molecular systems models is challenging. 
 
The natural choice for the shape describing the range of 
plausible parameter values is often a log-normal distribution: 
there will be a most likely value (the mode of the distribution), 
negative values are not allowed, and the distribution is 
symmetrical, in the sense that values that are x times larger than 
the most likely estimate, are just as plausible as values that are x 
times smaller (Fig. I). More specifically, the mode is the value 
xo for which the condition f(xo*δ) =  f(xo/δ) is fulfilled for all 
real numbers δ (where f is the probability density function). 
 
In contrast to common assumptions, the log-normal distribution 
is ubiquitous in nature across different fields and often a far 
better description of the data than a normal distribution. This is 
particularly seen in the medical and biological sciences, when 
the mean values are low and the variances are large, yet the 
values cannot be negative, whether they be latency periods of 
infectious diseases in epidemiology, species abundances in 
ecological studies, or enzyme kinetic parameters as in the 

present discussion [56]. The reason for this predominance of log-normal 
distributions is simple: when the change in a variable (observable) at each 
step of the process is proportional to its current value (i.e., when the process 
follows Gibrat’s law of proportionate effect), the resulting observations 
will be log-normally distributed [57]. In the life sciences, biochemistry, 
biophysics and population ecology are disciplines where processes 
characterized by Gibrat’s law are most obvious: reaction velocities, surface 
and volume measurements, and population growth (also at the molecular 
level) are regulated by factors that act in a multiplicative way, rather than in 
the additive way that would be required for data to become normally 
distributed. 

The challenge for the biological systems modeller is to decide on the 
appropriate values describing the distribution: what is the most likely value 
(described by the mode of the distribution) and how rapidly does the 
plausibility of the values decrease when moving away from this value 
(described by the standard deviation). These in turn determine the location 
and scale parameters μ and σ of the log-normal distribution. In many cases, 
a good estimate of the most likely parameter value exists, e.g. from actual 

experimental measurements. In other cases, related parameters have been measured, e.g., the kinetics of similar enzymes or even 
of the same enzyme in different species or conditions. In the extreme case, no measurements are available at all; but even in that 

Figure I: The properties of a log-normal distribution with μ=σ=1.  
The mode represented by the blue line is equal to 1, the mean is 
equal to 4.48 (green line), and the median is equal to 2.7 (yellow 
line). For any value of δ the product and the quotient of the mode 
and δ, have equal probability of being sampled (f(1*δ)=f(1/ δ); 
illustrated for δ = 2.5 by the edges of the grey area). 

Figure II: Distribution of the Km values retrieved from 
the BRENDA database. Km values retrieved from the 
database are shown in green and the corresponding 
fitted log-normal distribution is shown in red. [34]  
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case, an informed guess is usually possible. For instance, the most plausible Km value of an uncharacterized novel enzyme might 
be the average of all Km values ever recorded in a comprehensive enzyme database like BRENDA, which comprehensively 
records available experimental data on enzyme kinetic parameters from all domains of life. The spread of the distribution, its 
standard deviation, would in such a case reasonably be determined by the range of all reported values (Fig. II). 

 
It is also necessary to decide if there are any hard (biophysical) thresholds, beyond which a parameter value is not only 
implausible, but impossible; in other words, if the distribution should be truncated at the extremes. In every case, it is important 
to remember that determining plausible parameter distributions is not a mechanical exercise but has to be based on actual 
biological and biophysical reasoning. If there are arguments to support the idea that a given log-normal distribution does not 
match the expected range of plausible values, it needs to be adjusted accordingly. 

 

 

 

Box 3: Thermodynamic consistency 

Once the plausible values for each parameter have been described, there is another important factor that needs to be considered 
to decide if combinations of parameters are plausible: thermodynamic consistency. For example, imagine a reaction that is 
known to have an equilibrium constant very close to 1; i.e., its standard Gibbs free energy ΔGo = 0. We are trying to determine 
the kinetic parameters for the forward and backward component of this reaction, and we don’t know much about the rate of the 
reaction, so we sample each of the two parameters from a very broad distribution. If we do not take the additional 
thermodynamic information into account, we will often end up with sampling the forward reaction rate from the “fast” end of the 
spectrum, and the backward rate from the “slow” end, or vice versa. Thermodynamic consistency requires that we discard such 
samples and only keep samples where the two reaction rates are very similar (how similar will in turn depend on our uncertainty 
about the equilibrium constant) (Fig. I). 

 
Figure I: Sampling strategy for maintaining thermodynamic consistency of parameter sets. In order to ensure the thermodynamic feasibility of a 
parameter combination in the case of interconnected parameters (i.e. forward and backward reaction, kon, koff) a bivariate distribution is created. 
When the two marginal distributions are non-correlated, the generated points that represent parameter pairs form a circle. When the equilibrium 
dissociation constant, KD, is exactly known, the parameters kon and koff are tightly correlated through the KD value, and the points form a straight 
line [51]. Finally, if KD is approximately known (a distribution of values for KD exists) the resulting points of the bivariate system form an ellipse. 
The thickness and orientation of the ellipse depend on the magnitude of the correlation between the two marginal distributions and on the degree 
of uncertainty on the values of kon, koff and KD [Tsigkinopoulou et al., unpublished data].This case represents the realistic scenario when modelling, 
as usually the parameter values are approximately known. The first case (no correlation) does not respect thermodynamic consistency and is 
therefore undesirable. The second case, although taking into account the dependency of the two parameters, is in most cases unrealistic since the 
value of a parameter such as the equilibrium constant is rarely exactly known.  

 

 

5. Approaches that explicitly acknowledge model uncertainty have been developed and 

employed [31], such as Markov Chain Monte Carlo (MCMC) methods [58-60], ensemble 
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modelling [61, 62], and global sensitivity analysis [52, 63, 64]. Such techniques are based 

on the concept of sampling parameters from their associated probability distributions and thus 

creating a collection of models can undergo further analysis in a similar way as typical 

dynamic models. In contrast to analyses of the local effects of variable parameter values 

around their preferred value, the entire resulting landscape of solutions can be surveyed 

without focusing only on one optimal solution, which may in the future be rejected once new 

data become available. This approach is also highly preferable over methods that try to fit a 

single “maximum likelihood” set of parameters based on the best match to experimental data 

[54]. Such a “fitting” strategy is very popular in applications including transcriptional 

dynamics [65, 66], epigenetics [67], neuronal dynamics [68], and population-level 

epidemiology [69]. However, fitted parameters are also very likely to be trapped in transient 

and spurious global optima, given that the likelihood surface for complex biological systems 

is inherently extremely rugged (convex), and are always in danger of leading to overfitting 

and a failure to identify alternative hypothesis that could explain the results equally well[1, 

31]. Moreover, parameter values, once fitted, are rarely updated in the face of new 

experimental results. Avoiding fitting parameter values according to the maximum likelihood 

is particularly important in the case of biological models: their complexity and non-linearity 

lead to a highly non-convex (i.e. rugged) likelihood surface, which means that models with 

considerably different sets of parameter values can have quite similar likelihoods (Fig. 2). If 

one of them is preferred based on a momentarily higher likelihood, alternative options are 

easily overlooked later on. In order to avoid this pitfall, all options are kept in view in a 

respectful modelling approach, so that the model can be easily adapted. In this regard, and in 

important details of the parameter distributions [70], the respectful modelling approach 

closely approximates the Bayesian inference processes supposedly implemented in the human 

neocortex [71]. 
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Figure 2: By focusing only on the “best fit solution” a modeller might end up trapped in a local optimum 
and thus miss interesting alternatives which in the future might be supported by new experimental data. 
Instead, by surveying the entire landscape of solutions without focusing on one particular peak, 
respectful (Bayesian) modelling remains adaptable to future developments, especially when studying 
complex systems with rugged likelihood surfaces, where the availability of new experimental data can 
result in rapid changes in the relative likelihood of alternative model scenarios. (Courtesy of Danai 
Triantafyllopoulou) 

 

Conclusion 

It is probably clear by now that all of these developments offer reasonable and useful 

modifications of the way we build and analyse computational models for molecular biology. 

But why will they make a difference? They get us closer to the ideal expressed in another 

famous saying about computational modelling: “Models are not meant to be descriptions, 

pathetic descriptions, of nature; they are designed to be accurate descriptions of our pathetic 

thinking about nature” (J. Black, cited in [72]). To achieve this ideal, each model has to allow 

us to capture the “pathetic” aspects of our thinking, the uncertainties and incompleteness of 

the evidence, and to evolve as our thinking evolves on the basis of new experiments [73, 74]. 

In the future of molecular systems biology and modelling, nothing is certain except 

uncertainty itself (see Outstanding Questions). The increasing use of automated model 

building strategies will only increase the challenge [75], as models grow in size and the 

specific refinement of individual parameters by targeted experiments becomes even less 

feasible than it is now. The adoption of a respectful modelling framework will promote and 

facilitate collaboration within the biological community, stimulating the use of models as a 
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tool for fundamental research, but also as a valuable guide for the predictive engineering of 

biological systems and their informed manipulation by increasingly personalized drugs. 
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Respectful modelling manifests itself in various steps of the pipeline. 
R1: Respect for model construction: full documentation of all modelling decisions and 
sources in re-usable form for future updating. 
R2: Respect for limited knowledge: principled consideration of uncertainty of model 
parameter data. 
R3: Respect for model predictions: quantitative assessment of confidence intervals for all 
model predictions. 
R4: Respect for model hypotheses: using models to inform real-world experimental 
hypothesis testing. 
R5: Respect for existing models: rigorous strategies for updating based on new experimental 
evidence. 


