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Summary  

It is well established that resource quantity and elemental stoichiometry play major roles in shaping  

below and aboveground plant biodiversity, but their importance for shaping microbial diversity in soil  

remains unclear. Here, we used statistical modeling on a regional database covering 179 locations and  

six ecosystem types across Scotland to evaluate the roles of total carbon (C), nitrogen (N) and  

phosphorus (P) availabilities and ratios, together with land use, climate and biotic and abiotic factors, in  

determining regional scale patterns of soil bacterial diversity. We found that bacterial diversity and  

composition were primarily driven by variation in soil resource stoichiometry (total C:N:P ratios), itself  

linked to different land uses, and secondarily driven by other important biodiversity drivers such as  

climate, soil spatial heterogeneity, soil pH, root influence (plant-soil microbe interactions) and  

microbial biomass (soil microbe-microbe interactions). In aggregate, these findings provide evidence  

that nutrient stoichiometry is a strong predictor of bacterial diversity and composition at a regional  

scale.   

Key words. Carbon cycle, Nitrogen cycle, Phosphorus cycle, Terrestrial ecosystems, Biodiversity,  

Bacteria, Ecological stoichiometry.   
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Introduction 

Soil bacterial communities are among the most abundant and diverse on Earth, and are responsible for 

key ecosystem processes, including decomposition, nutrient cycling, and detoxification (van der 

Heijden et al., 2008; Jing et al., 2015; Delgado-Baquerizo et al., 2016a). Many of these functions are 

also critical for ecosystem services, such as primary production and water purification (van der Heijden 

et al., 2008; Bardgett and van der Putten 2014). Despite the importance of these soil microbial 

communities for human well-being, we lack both a theoretical framework and solid empirical data to 

explain bacterial diversity patterns in terrestrial ecosystems (Waldrop et al., 2006; Bardgett and van der 

Putten 2014). Several prominent ecological theories emphasize the important role of resource supply 

and competition driving the diversity of plants and animal in terrestrial ecosystems (Tilman 1982; 

Hooper et al., 2000; Sterner and Elser 2002). Similarly, it has been proposed that plant and soil animal 

diversity (e.g. plant consumer) are positively related to resource quantity and heterogeneity due to 

greater niche differentiation (Hooper et al., 2000; Bardgett et al., 2005; Sardans et al., 2012), with 

growing support from empirical evidence (Hooper et al., 2000; Wardle 2006; Sardans et al., 2012). 

Surprisingly, there is a lack of knowledge about how bacterial communities relate to resource quantity 

and stoichiometry in terrestrial ecosystems; and no regional studies have been conducted on this topic 

yet. 

 Soil elemental stoichiometry is a major driver of organic matter decomposition and nutrient 

cycling in terrestrial ecosystems; processes that are largely conducted by microbial communities 

(Zechmeister-Boltenstern et al., 2015 for review). For instance, substrate carbon-to-nitrogen ratio is one 

of the main factors regulating critical microbial processes such as nutrient mineralization and 

immobilization in terrestrial ecosystems (Zechmeister-Boltenstern et al., 2015). However, we lack a 

system-level perspective including how key ecological drivers such as the quantity and stoichiometry 

of total carbon (C), nitrogen (N) and phosphorus (P) relate to soil bacterial diversity and composition. 

Climate change and human management are altering soil elemental stoichiometry in terrestrial 

ecosystems worldwide (Peñuelas et al., 2012; Delgado-Baquerizo et al., 2013); and thus, assessing how 

variations in soil elemental stoichiometry may affect the microbial diversity and composition is critical 

for our understanding of ecosystem functioning under changing environments, and for formulating 

sustainable management and conservation policies.  

Bacterial communities often obtain their energy from the soil organic matter (e.g. organic 

matter decomposition and mineralization) (Hooper et al., 2000; Wardle 2006; Zechmeister-Boltenstern 

et al., 2015), and the elemental stoichiometry (e.g., C:N, N:P and C:P ratios) of soil organic matter may 

influence the composition and diversity of these microorganisms in terrestrial ecosystems. Following 
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the growth-rate hypothesis (Sterner and Elser 2002), fast-growing organisms such as bacteria require 

high demand for P (i.e. ribosomes, ATP, DNA and RNA; Peñuelas and Sardans 2009), and are 

characterized by a low C:P stoichiometry (e.g. vs. plants; Peñuelas and Sardans 2009; Zechmeister-

Boltenstern et al., 2015). In this respect, if diversity mirrors productivity within bacterial communities, 

P supply might drive bacterial diversity. While C and N are relatively easy to obtain from the 

atmosphere for some microbial communities (photosynthesis and N-fixation), the availability of P is 

largely bounded to the bedrock (McGill and Cole 1981). Thus, environments with high P and low C:P 

ratios (e.g. young soils or those of agricultural vs. natural ecosystems) may support a high microbial 

diversity (Fig. 1). On the other hand, soils with low P and high C:P ratios (e.g. old soils or those of 

natural vs. agricultural ecosystems) may constrain the diversity of these microbial communities by 

leading to high competition-to-exclusion between microbial species and to the consequent reduction in 

diversity (Fig. 1; Tilman 1982; Waldrop et al., 2006; Wardle 2006). Alternatively, highly productive 

systems, especially those modified by agriculture, may have less diversity due to high human 

disturbance.  

 Here we tested whether resource quantity (i.e. total C, N and P) and stoichiometry (C:P, N:P 

and C:N ratios) can explain variations in soil bacterial diversity (i.e. alpha diversity) and community 

composition (i.e. beta diversity) in terrestrial ecosystems at a regional scale, and compare their effects 

to other hypothesized influences. Previous studies have explored the relationship between microbial 

diversity and proxies of nutrient availability (e.g., inorganic N and P concentrations in soil solution; 

Jing et al., 2015; Delgado-Baquerizo et al., 2016a). Inorganic pools reflect the difference between gross 

mineralization driven by microbial activity and uptake by microbes and plants, and represent a very 

small percentage of total N and P (usually <1%). Here instead, we explore the relationship between 

total C, N and P and bacterial diversity. While microbial composition and diversity may drive the soil 

solution pools of inorganic N and P via mineralization processes, they will unlikely drive total soil C, N 

and P which are linked to long-term plant productivity, N fixation and bedrock availability in the case 

of total P (McGill and Cole 1981). As a consequence, total C, N and P are potential drivers of microbial 

diversity more than they are regulated by this diversity. We predicted that conditions that favor the 

dominance of fast-growing soil bacteria, such as relatively low total C and low C:N, N:P and C:P 

ratios, would promote their diversity (Hooper et al., 2000; Peñuelas and Sardans 2009; Zechmeister-

Boltenstern et al., 2015). Similarly, different bacterial communities may be adapted to different 

availability of C, N and P in soil, and thus changes in soil C:N:P ratios and availability will alter their 

composition among different terrestrial ecosystems. In this paper, we used structural equation modeling 

(SEM) to build a system-level understanding of the key abiotic (e.g. soil pH and spatial heterogeneity; 
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Fierer et al., 2009; Lauber et al., 2009; Ranjard et al., 2013) and biotic (microbial biomass and plant  

roots; Waldrop et al. 2006; Maestre et al. 2015) drivers of bacterial diversity in order to gain a more  

comprehensive understanding of the role of soil elemental stoichiometry in driving the diversity of soil  

bacteria in terrestrial ecosystems. In doing so, we seek to further our capacity to predict how complex  

soil microbial communities will respond to future global change, including land use intensity and  

climate change (Bardgett and van der Putten 2014; Maestre et al., 2015).  

  

Results  

Relationship between soil chemistry and elemental stoichiometry with bacterial diversity   

Total C was negatively related to total P in soil (Fig. S1), however, both total C (Fig. S1) and P (Fig.  

S1) were positively related to total N. In addition, C:P ratio was highly related to both N:P (Fig. S1)  

and C:N (Fig. S1) ratios in soil, and C:N ratio was strongly related to N:P ratio (Fig. S1).   

Across all sites, soil bacterial diversity was negatively related to total C and the ratios of C:P,  

N:P and C:N (Fig. 2), and positively related to total P (Fig. 2e). Soil bacterial diversity was not related  

to total soil N (Fig. 2b). Similar results were found when we explored the relationship between total C,  

N and P uncorrected for bulk density and bacterial diversity (Fig. S2), although the bulk density  

correction changed the relative strength of effects. Moreover, we found similar results when exploring  

the relationship between C, N and P concentration and ratios and the residuals of bacterial diversity  

(residuals of the relationship between soil depth and bacterial diversity) in our study sites. (Fig. S3).  

Our SEM explained 57% of the variance in the soil bacterial diversity. When including both  

direct (proximate) and indirect (ultimate) effects, soil total P (+), organic matter (-), and land use  

intensity (+) were the most important drivers controlling soil bacterial diversity at a regional scale (Fig.  

3a). Similar results were found when we explicitly included bulk density and uncorrected values (i.e.  

by bulk density) for C, N and P in our model (Figs. S4 and S5). Interestingly, land use intensity did not  

show any direct effect on bacterial diversity (Fig. 3a). Thus, all effects from land use intensity on  

bacterial diversity were indirectly accounted for via total P, organic matter, and soil pH (Fig. 3a). In  

particular, land use intensity showed a direct negative effect on soil organic matter (Fig. 3; Fig. S6), but  

a direct positive effect on soil total P (Fig. 3; Fig. S6), which together had a total positive effect on soil  

bacterial diversity (Fig. 3b; Fig. S7). Soil pH showed direct positive effects on soil bacterial diversity  

(Fig. 3a), however this variable itself is highly driven by land use intensity, the amount of soil organic  

matter and total P in soil (Fig. 3a). We did not find any effects of soil spatial heterogeneity, microbial  

biomass (microbe-microbe interaction) and root influence (plant-microbe interaction) on the soil  

bacterial diversity (Fig. 3a). Overall, total standardized effects (sum of direct and indirect effects from  
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each single variable) from SEM suggest that soil total P, pH, total C, and climate (in that order) were 

the most important drivers of soil bacterial diversity (Fig 3a). Soil total C and total P showed total 

negative and positive effects on soil bacterial diversity, respectively (Fig. 3a and b). Moreover, total N 

showed a total positive effect on bacterial diversity. 

Regarding distance-based multi-model inference, the best-fitting models accounted for over 

57% of the variation in soil bacterial diversity; and always included resource quantity and 

stoichiometry as predictor variables (Table S1). Further, the same models without resource quantity 

and stoichiometry had a higher AICc (>20) indicating that resource quantity and stoichiometry provide 

unique information to predict soil bacterial diversity. In agreement with the results in Table S1, 

variation partitioning modeling provided further evidence that resource quantity and stoichiometry 

explain a unique portion of the variance of soil bacterial diversity, which was not explained by other 

land use and environmental predictors (Fig. 4).   

 

Relationship between soil chemistry and elemental stoichiometry with bacterial composition 

Bacterial communities were dominated by Acidobacteria, Actinobacteria, Chloroflexi and α-

Proteobacteria (Fig. S9). Our db-RDA analyses indicate that changes in C, N and P availabilities and 

C:N:P ratios, as a consequence of land use, can also alter soil bacterial composition at the OTUs level 

(Fig. S8). Moreover, similar to what was found for bacterial diversity, our variation partitioning 

modeling indicated that resource quantity and stoichiometry explain a unique portion of the variance of 

soil bacterial community composition at the OTU level (Fig. 4). Regarding, individual taxa, we found 

that the relative abundance of Chloroflexi and Firmicutes decreased in parallel with increasing soil C:P, 

N:P and C:N ratios, while the opposite pattern was observed for α-Proteobacteria, Acidobacteria, 

Plactomycetes and Spirochaetes (Fig. 5; Table S2). Structural equation modeling provided further 

evidence that the relationship between soil organic matter and total P and main bacterial taxa are 

maintained (directly or indirectly via soil drivers) after accounting for multiple drivers of microbial 

composition such as land use, climate, soil pH, microbial biomass, root influence and soil spatial 

heterogeneity (Fig. S10). In particular, total P directly affected the relative abundance of Firmicutes, 

Planctomycetes and Spirochaetes, but indirectly regulated the relative abundance of Chloroflexi and α-

Proteobacteria via soil pH (Fig. S10). Soil organic matter directly controlled the relative abundance of 

Firmicutes, Acidobacteria, Chloroflexi and α-Proteobacteria, and indirectly affected the relative 

abundance of Planctomycetes and Spirochaetes via changes in total P (Fig. S10). Total C or P were the 

main drivers of Acidobacteria, Chloroflexi, Planctomycetes and Spirochaetes (Fig. S11). In particular, 

total P showed the highest total negative effect (sum of direct and indirect effects from SEM) on the 
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relative abudance of Planctomycetes and Spirochaetes (Fig. S11); and total C showed the highest 

positive effect on Acidobacteria, and the highest negative total effect on the relative abundance of 

Chloroflexi (Fig. S11). Soil pH (negative) and land use intensity (positive) were the main driver of α-

Proteobacteria, and Firmicutes (Fig. S11).  

Discussion  

Our results demonstrate, for the first time, that the diversity of soil bacteria peaks under conditions of 

high P availability (which is key for the production of ribosomes, ATP, DNA and RNA to support fast 

growth rates), relatively low total C, and low ratios of C:N, N:P, and C:P. Following our conceptual 

framework (Fig. 1), soils with high P may support a high microbial diversity as some microbes can 

fulfill their C and N requirement fixing these elements from the atmosphere (Fig. 1). However, low soil 

P lessens bacterial diversity as a consequence of the competition-to-exclusion driven via P, which is 

derived almost exclusively from the bedrock. Moreover, high resource quality (i.e. often low C:N, N:P 

and C:P ratios) can in theory lead to a greater variety of resources for bacterial communities, enhancing 

their diversity by promoting greater niche differentiation (Hooper et al., 2000). Altogether, our findings 

provide empirical evidence that, as previously hypothesized for soil animal diversity (e.g. decomposers 

and detritivores) (Hooper et al. 2000), resource stoichiometry can also influence bacterial diversity in 

terrestrial environments. 

Although we found that bacterial diversity was strongly and positively related to low C and 

high P availability, and to elemental stoichiometry of C, N and P, these are bivariate correlations, and 

hence, potentially not causative relations. To address this issue, we used the principles of structural 

equation modeling (SEM) to jointly evaluate the multiple disparate hypotheses so as to build a system-

level understanding of the drivers of bacterial diversity. After accounting for multiple soil drivers of 

bacterial diversity, our SEM provided evidence that soil total P (+), organic matter (total C and N) and 

land use intensity were the most important drivers controlling soil bacterial diversity at a regional scale. 

Moreover, variation partitioning modeling provided further evidence that resource quantity and 

stoichiometry explain a unique portion of the variation in bacterial diversity and community 

composition (at the OTU level) which is not explained by other important land use and environmental 

predictors.   

The increase in C:P and total C, but decrease in total P, contrasting high to low intensity human 

managed ecosystems observed here, and by others (Xu et al., 2013), and the decrease in bacterial 

diversity with increasing C:P ratios, parallels what might be expected during long-term ecosystem 

development. Although this progression has been described at the geological time scale (thousands to 

millions of years), and changes in land use from natural to arable and improved grasslands occur at the 
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ecological time scale (years to hundreds of years), both contrasts may share the same biogeochemical 

signatures in terms of resource C:N:P stoichiometry’s and soil bacterial diversity (McGill and Cole 

1981; Jangid et al., 2014). Thus, although C and N accumulate in natural ecosystems with soil 

development, P, which is mainly supplied by the parent material, is progressively depleted and 

immobilized in plants and animal tissues and overtime becomes available in insufficient concentrations 

for microbes (McGill and Cole 1981), which may limit the diversity of fast growing microorganisms 

such as bacteria (McGill and Cole 1981; Jangid et al., 2014). Contrary to this, P becomes available in 

human managed ecosystems due to soil erosion (e.g. because of bedrock rejuvenation) and inorganic 

fertilization. Therefore, total C and N are largely reduced in human perturbed ecosystems, but these 

elements are still available for some microbes from biological processes such as photosynthesis and N 

fixation. Interestingly, total N showed a total positive effect on bacterial diversity in our SEM, which 

may be linked to the use of inorganic fertilizers in human managed systems (i.e. improved grasslands) 

and to the lowest N availability in low managed ecosystems such as bogs (Fig. S6). The matching 

relatively high availability of C, N and P for bacterial communities in soils perturbed by human 

activities may explain the highest bacterial diversity under high disturbance conditions (low vs. high 

intensity human managed ecosystems).   

Altogether our findings provide evidence that soil factors such as high disturbance intensity 

(human managed vs. natural ecosystems), relatively low total C, high P and low C:N, N:P and C:P 

ratios, which often promote the abundance of bacterial relative to fungi (Bardgett and McAlister 1999; 

Peñuelas and Sardans 2009; De Vries et al., 2012), can also enhance the diversity of soil bacteria. 

These conditions often promote the fast cycling of nutrients and high productivity environments 

(Peñuelas and Sardans 2009; Delgado-Baquerizo et al., 2013). Moreover, a reduction in soil organic 

matter content and a decrease in C:P, N:P and C:N ratios with land use intensity has been reported to 

reduce the abundance of other microbial groups, such as fungi, likely reducing the competition on 

bacteria (i.e. competition-to-exclusion; Waldrop et al., 2006; van der Heijden et al., 2008). All these 

factors may strongly benefit the diversity of fast-cycling organisms such as bacteria, further explaining 

our results.  

It is important to note that soils included in this study are relatively high in carbon content 

(Chapman et al., 2013). In this respect, the negative relationship observed here between total C and 

bacterial diversity may not necessarily occur for carbon-poor soils (e.g. arid regions). For instance, 

Maestre et al. (2015) found a positive relationship between soil total carbon and bacterial diversity in 

drylands. Contrary to what occur in highly organic soils from Scotland (average soil total C = 25.7%), 

carbon is a main limiting factor for microbial activity in drylands (average soil total C = 1.6%; Maestre 
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et al. 2015) explaining the differences in the direction of the relationship between total carbon and 

bacterial diversity reported here and by Maestre et al. (2015). Even the arable soils included in the 

Scotland dataset, had total soil carbon (2.90%) almost twice than dryland soils from Maestre et al. 

(2015). For this reason, the description of low carbon in this study is low in a relative sense only. 

Regarding bacterial composition, our results indicate that changes in C, N and P availabilities 

and C:N:P ratios, as a consequence of land use, can alter bacterial composition in soil (Fig. 5; Figs. S8-

11 and Table S2). For example, the relative abundance of Chloroflexi and Firmicutes decreased in 

parallel with increasing soil C:P, N:P and C:N ratios, while the opposite pattern was observed for α-

Proteobacteria, Acidobacteria, Plactomycetes and Spirochaetes (Fig. 4; Table S2). A plausible 

explanation for this result is that bacterial phyla such as Chloroflexi and Firmicutes likely belong to old 

bacterial phyla which evolved in a young Earth characterized by a strongly mineral soil low in soil C. 

Thus, these microbial taxa may prefer low C:P and C:N ratios environments as supported by our results 

(Battistuzzi and Hedges 2009). Contrary to this, bacteria phyla such as Proteobacteria, Acidobacteria, 

Plactomycetes and Spirochaetes are likely to be comparatively young phyla which may have evolved in 

organic soils with a high C:P and C:N ratios (Fig. 4; Table S2) as they have a large capacity to degrade 

a range of organic C compounds from labile to recalcitrant (Battistuzzi and Hedges 2009; Trivedi et al., 

2013). Alternatively, some bacterial taxa such as Chloroflexi may outcompete other phyla such as 

Acidobacteria under low C conditions, due to their ability to survive desiccation and low nutrient 

availability conditions (Battistuzzi and Hedges 2009; Maestre et al. 2015). Of course, it is likely that 

changes in total C, N and P in our study are also driven by direct effects of land use intensity, which in 

turn, indirectly influences the relative abundance of microbial taxa in our soils (Figs. S8-11). We 

acknowledge that our interpretations, which are based on observational data, have limitations. While 

SEM allows some of the hypothesized connections to be evaluated and falsified, other assumptions are 

inherent (e.g., directionality of influence). Also, the models evaluated are approximations of the true 

system and variables omitted from the analysis could have important consequences for our findings. 

However, we believe that our study provides a useful summary of existing relationships and also a 

strong framework toward further advancing our understanding of the importance of resource quantity 

and stoichiometry in shaping soil bacterial diversity and composition.    

Finally, soil pH was positively related to soil bacterial diversity (Fig. 2; Spearman´s ρ = 0.726; 

P< 0.001). Soil pH has been considered the best driver of soil bacterial diversity at continental and 

global scales (Fierer et al., 2009; Lauber et al 2009; Delgado-Baquerizo et al. 2016b), however, soil pH 

can be the result of many factors such as the degree of accumulation of organic matter and minerals in 

soil as supported by our SEM (Fig. 3). For example, soil acidification can happen with increasing 
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organic matter (e.g. humic and fulvic acids) concentration (Adams et al., 2012). On the contrary,  

human activities such as agriculture and pasture alter soil pH; agronomic practices, and especially  

liming, directly increase soil pH. Moreover, tilling practices usually bring back parent material to the  

soil surface, which may contain minerals such as carbonates (e.g. calcium and magnesium carbonate)  

and apatite (calcium phosphate) that increase soil pH (Table S3). Our study suggest that the effects of  

soil pH on bacterial diversity (Fierer et al., 2009; Lauber et al 2009) is, indeed, the result of the direct  

impact of parent material and organic matter on this variable, which should be explicitly considered for  

the development of future theoretical framework and simulation models.  

  

Conclusions  

In conclusion, our findings provide evidence that resource stoichiometry is an important driver of  

bacterial diversity in terrestrial ecosystems at a regional scale. Bacterial diversity peaked under high P  

availability, reduced soil organic matter and low C:N, N:P and C:P ratios, which often define favorable  

conditions for bacterial-dominated communities. These results further indicate that resource  

stoichiometry provides a unifying theory of biodiversity for both above and belowground communities,  

and improve our understanding on the main drivers that control bacterial diversity and composition in  

soil environments. Taken together, our results offer a novel integrative view of the factors that drive  

bacterial diversity and composition from natural to human perturbed ecosystems. This knowledge is  

critical for formulating sustainable natural resource management and conservation policies for  

microbial diversity.   

  

Methods  

Soil sampling and soil properties.   

To test our hypotheses, we used a regional database (National Soils Inventory of Scotland 2 [NSIS];  

Lilly et al., 2010) covering 179 locations and six ecosystem types (bog, moorland, semi-natural  

grassland, forest, arable and improved grassland) across Scotland. Using a gradient of ecosystem types,  

including both low and high intensity human managed ecosystems, at a regional scale provides a  

unique opportunity to explore the role of resource quantity and stoichiometry controlling bacterial  

diversity and composition in terrestrial ecosystems. Beyond C, N and P availabilities and ratios, the  

NSIS database provides valuable information on key drivers of microbial diversity such as land use,  

climate (mean annual temperature and precipitation), soil spatial heterogeneity, microbial biomass,  

plant root influence and soil properties (e.g. pH), which allow us to evaluate the relative importance of  
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resource quantity and stoichiometry vs. other well-known environmental drivers on bacterial diversity  

and composition at a regional scale.  

Field data were collected in each location across Scotland, using a 20 x 20 km2 sampling grid  

during 2006–2009. Each site included a central pit under the most representative plant community. One  

bulked soil sample was collected from the mid-point in the upper-most horizon of soil (average of  

14.99±0.34cm) under this central pit. In addition, four other replicates were taken at random orientation  

and at distances of 4, 8, 16 and 20 m from the central pit and used here to calculate the spatial  

heterogeneity of our plots (Appendix S1). Field moist soils were sieved to < 4 mm and visible pieces of  

plant material, and soil animals were removed before use. The details and protocols for soil sampling  

and profile description are given in Lilly et al., 2010. Each sample was separated into three portions.  

The first portion was air dried for chemical analysis. The second portion was stored at 4°C for  

biochemical analyses. The third portion was stored at -20°C until DNA extractions were performed.  

The former portion only corresponds to the samples collected under the central pit of each plot.   

Climate and soil predictors   

Mean annual precipitation (MAP) and temperature (MAT) were obtained in the same manner using  

interpolations provided by Worldclim (http://www.worldclim.org/; Hijmans et al., 2005). Observed  

temperature and precipitation were highly related to MAT (Spearman ρ = 0.76; P < 0.001) and MAP  

(Spearman ρ = 0.89; P < 0.001), respectively. We used MAP and MAT instead of observed  

temperature and precipitation, as it is likely that microbial assembly across different sites is rather  

influenced by long-term climatic conditions than by annual cycling (e.g., Andam et al., 2016). We  

determined pH in water on a 3:1 (water: soil) in all the soil samples with a pH meter. We used glucose  

substrate induced respiration (SIR-glucose) as our proxy of soil microbial biomass (Campbell et al.,  

2003). Soil spatial heterogeneity (based on the coefficient of variation of total, C, N, P and pH) and  

plant root influence (NMDS axes based on measurements of depth, frequency and size of plant roots)  

were measured as explained in Appendix S1.   

Total C, N and P measurements.   

Total C and N was analyzed in a Flash EA 1112 Series Elemental Analyser connected via a Conflo III  

to a DeltaPlus XP isotope ratio mass spectrometer (all Thermo Finnigan, Bremen, Germany). Soil total  

P was measured by using sodium hydroxide fusion method (Smith and Bain 1982). Because of the  

huge differences in soil density (Fig. S12) among land uses, we considered this when calculating soil  

C, N and P (expressed as Kg ha-1). Soil total C, N and P stocks were calculated to 10cm. As total C, N  

and P content and bulk density were measured on samples taken from the mid-point in the upper-most  

horizon, there was an assumption that they were representative of the whole horizon.   
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Bacterial diversity.   

We characterized bacterial diversity (Shannon) and composition in the soil samples from NSIS by  

using amplicon 454 pyrosequencing and the 341F/806R (Herlemann et al., 2011) primer set (see details  

in Appendix S1). Shannon diversity was selected as our metric for alpha diversity because it is highly  

recommended when analyzing microbial diversity (Haegeman et al., 2013).  

Statistical analyses  

We first explored the relationship between the availability and stoichiometry of C, N and P on soil  

bacterial diversity and main bacterial phyla/classes using linear regressions. Carbon, N and P  

availability and stoichiometry data were log10-tranformed to achieve normality before conducting these  

analyses. We also conducted correlations (Spearman) between different total C:N:P concentrations and  

ratios with the relative abundance of the main bacteria phyla and Proteobacteria classes in this study.  

Soil depth.   

In this study, we collected our soil samples based on a horizon approach instead of collecting samples  

to a particular soil depth. The logic behind this approach is that in organic soils, comparing similar  

horizons among different sites may be more accurate than simply comparing similar depth. In order to  

further take into account the biases derived from collecting soil samples at different depth (average of  

14.99±0.34cm), we repeated the linear regressions between C, N and P availabilities and ratios with  

bacterial diversity (Fig. 1), but using the residuals of the relationship between bacterial diversity and  

depth instead of bacterial diversity itself. By doing this, we aim to correct any bias derived from  

different soil depths on our bacterial diversity index.   

PERMANOVA analyses.   

Differences for bacterial communities, C, N, P availability and ratios were tested among different land  

uses. To do this, and because our data was not normally distributed, we used a one-way semi- 

parametric PERMANOVA (Anderson 2001), with land use as a fixed factor. In addition, because the  

soil samples in the NSIS were collected from the upper-most horizon of soil, we use soil depth as a co- 

variable in each PERMANOVA analysis in order to correct any bias in our results derived from the  

different depth of each sample.  

Structural equation modeling (SEM).   

We used structural equation modeling (SEM) (see Appendix S1 for details) to evaluate a hypothesized  

network of linkages among key drivers of bacterial diversity (Fig. S13). For instance, we know that  

land use and climate will influence soil total C, N and P (McGill and Cole 1981). Similarly, total C, N  

and P, which are the result of long-term biological fixation (C and N) and bedrock availability (P;  

McGill and Cole 1981) may drive bacterial diversity but this relationship may unlikely in the opposite  
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direction. This is especially true for total P that almost entirely comes from the bedrock (McGill and  

Cole 1981). One useful characteristic of SEM for our purposes here is its utility for partitioning direct  

and indirect effects that one variable may have on another, and estimate the strengths of these multiple  

effects. Unlike regression or ANOVA, SEM offers the ability to separate multiple pathways of  

influence and view them as parts of a system, and thus is useful for investigating the relationship  

complex networks found in natural ecosystems (Grace 2006).   

We included in this model bacterial diversity or main microbial taxa (response variables) and  

important direct and indirect predictors of biodiversity such as precipitation and temperature (lumped  

as climate for graphical simplicity but not lumped in analyses), land use intensity (a categorical  

continuous variable including two levels of human management and soil disturbance, namely low  

intensity, which included bog and moorland, forest and semi natural grasslands, and high intensity,  

which included agriculturally improved grassland and arable), climate (mean annual temperature and  

precipitation) soil organic matter (a composite variable of total C and N), soil P content, plant root  

influence (plant-soil microbe interaction), microbial biomass (soil microbe-microbe interaction), soil  

pH and soil spatial heterogeneity (Appendix S1). MAP, total C, N, P, microbial biomass, and pH were  

log-transformed, and MAT was squared to improve normality. Note that the use of composite variables  

does not alter the underlying SEM model, but collapses the effects of multiple conceptually related  

variables into a single composite effect, aiding interpretation of model results. Finally, to aid final  

interpretation in light of this ability of SEM, we calculated the standardized total effects of land use  

intensity, climate, abiotic and biotic drivers on the diversity of soil bacteria. The net influence that one  

variable has upon another is calculated by summing all direct and indirect pathways between the two  

variables. If the model fits the data well, the total effect should approximate be the bivariate correlation  

coefficient for that pair of variables.  

  

Distance-based multimodel inference.   

To examine whether observed effects of resource quantity (total C, N and P) and stoichiometry (N:P,  

C:P and C:N ratios) were important compared to those of land use and other environmental factors (i.e.  

climate, microbial biomass, root influence, spatial heterogeneity and soil pH) as drivers of bacterial  

diversity, we used a multi-model inference approach based on information theory and non-parametric  

distance-based linear regressions (DISTLM; McArdle and Anderson 2001). In particular, this analysis  

provided insights on whether the inclusion of resource quantity and stoichiometry in our models offer  

additional explanatory power to predict diversity of soil bacteria after accounting for other important  

land use and environmental factors. The Euclidean distance was used as the measure of dissimilarity  
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between pairs of samples. We ranked top five models that could be generated with our independent  

variables according to the second-order Akaike information criterion (AICc). The lower the AICc index  

the better the model. Here, we consider a ∆AICc > 2 threshold to differentiate between two  

substantially different models and then select the best of those models (Burnham and Anderson 2002;  

Burnham et al., 2011). Then, we compared the AICc of the best model which presumably includes  

resource quantity and stoichiometry to that of the corresponding model without resource quantity and  

stoichiometry. Differences<2.0 in AICc between alternative models indicate that they are  

approximately equivalent in explanatory power (Burnham and Anderson 2002; Burnham et al., 2011).  

We conducted distance-based multimodel inference with the PRIMER v6 statistical package for  

Windows (PRIMER-E Ltd., Plymouth Marine Laboratory, UK).  

  

Variation partitioning modeling.   

The variance partitioning linked to resource quantity (total C, N and P) and stoichiometry (N:P, C:P  

and C:N ratios), land use (a categorical continuous variable with two levels: 0 (low intensity of human  

management: bog, moorland, forest and semi-natural grassland and 1 (high intensity of human  

management: improved grassland and arable) and other environmental factors (i.e. climate, microbial  

biomass, root influence, spatial heterogeneity and soil pH) on bacterial diversity and community  

composition (at the OTU level) was calculated using the package vegan from R package (Tedersoo et  

al., 2014; Oksanen et al., 2015). The main goal of these analyses was to quantify the relative  

importance of resource quantity and stoichiometry vs. land use and other environmental variables as  

predictors of bacterial diversity and community composition. In particular, this analysis provided  

insights on whether resource quantity and stoichiometry can explain a unique portion of the variance,  

which is not explained by other predictors.   

  

Distance-based Redundancy Analysis (db-RDA).   

We use db-RDA to explore the effects of human management, temperature, precipitation, pH, spatial  

heterogeneity, total C, N, P, C: N ratio, N: P ratio, C: P ratio, microbial biomass, root development on  

bacterial diversity (based on bacterial composition at OTUs level). We conducted db-RDA with the  

PRIMER v6 statistical package for Windows (PRIMER-E Ltd., Plymouth Marine Laboratory, UK),  

using the Bray-Curtis similarity.  
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Figure Legends 

Figure 1. Conceptual framework exploring the effects of land use intensity and nutrient stoichiometry 

on the diversity of soil bacteria. Land use intensity alters C:N:P stoichiometry. Cultivation reduces 

organic matter (organic C and total N) but brings back the bedrock via erosion (total P). Fast-growing 

organisms such as bacteria require high P to support high growth rates (i.e. ATP, DNA and RNA) and 

are characterized by low C:P ratios. In this respect, if diversity mirrors productivity within bacterial 

communities, P supply might drive bacterial diversity. Places with high P may support a high microbial 

diversity as microbes can fulfill their partial C and N requirement fixing these elements from 

atmosphere (i.e. C, N and P are available for microbes). However, places with low P lessen bacterial 

diversity as a consequence of the competition-to-exclusion driven via P which is coming almost 

exclusively from the bedrock (i.e. only C and N are available for microbes). 

Figure 2. Relationships between C, N and P availabilities and ratios and the soil bacterial diversity in 

our study sites. P values were calculated using a distance-based linear model (DISTLM) from 

PERMANOVA.  

Figure 3. Structural equation modeling on the direct (a) and total (b) effects of climate (MAT and 

MAP), land use, organic matter (Total C and N), total P, plant root, microbial biomass, soil pH, soil 

spatial heterogeneity on bacterial diversity. Numbers adjacent to arrows are standardized path 

coefficients, analogous to relative regression weights, and indicative of the effect size of the 

relationship. Continuous and dashed arrows indicate positive and negative relationships, respectively. 

The width of arrows is proportional to the strength of path coefficients. The proportion of variance 

explained (R2) appears above every response variable in the model. Climate is included as two 

independent observable variables in the model, however we group them in the same box in the model 

for graphical simplicity. Goodness-of-fit statistics for each model are shown in the lower right corner. 

Hexagons are composite variables. Squares are observable variables. Significance levels are as follows: 

*P< 0.05, ** P< 0.01 and *** P< 0.001.  MAP = mean annual precipitation. MAT = mean annual 

temperature.  

Figure 4. Relative contribution of resource quantity and stoichiometry, land use and other 

environmental factors as predictors of bacterial diversity and community composition at the OTU level. 

Panels represent results from variation partitioning modelling aiming to identity the percentage 

variance of bacterial bacterial diversity and community composition explained by resource quantity and 

stoichiometry, land use and other environmental factors. Shared effects of these variable groups are 

indicated by the overlap of circles.   
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Figure 5. Selected relationships between C:P and C:N ratios with the relative abundance of main 

bacterial groups in this study. P values were calculated using a distance-based linear model (DISTLM) 

from PERMANOVA. Correlations (Spearman) between C, N, P availability and ratios and bacterial 

groups are available in Table S2.   
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Supporting information 

Additional Supporting Information may be found in the online version of this article at the publisher’s 

website: 

Appendix S1. Supplementary Methods 

Figure S1. Relationships between total C, N and P and between C:P, N:P and C:P. Solid lines represent 

the fitted linear regressions (n = 179). P values were calculated using a distance-based linear model 

(DISTLM) from PERMANOVA. 

Figure S2. Relationships between total C, N and P (i.e. uncorrected by bulk density) with the diversity 

of soil bacteria. Solid lines represent the fitted linear regressions (n = 179). P values were calculated 

using a distance-based linear model (DISTLM) from PERMANOVA. 

Figure S3. Relationships between C, N and P availabilities and ratios and the residuals of bacterial 

diversity (residuals of the relationship between soil depth and bacterial diversity) in our study sites. P 

value were calculated using a distance-based linear model (DISTLM) from PERMANOVA. 

Figure S4. Alternative a priori model (for SEM) including bulk density and uncorrected values of total 

C, N and P (e.g. by bulk density). This model evaluated the effects of land use intensity, bulk density, 

climate, organic matter (total C and N), total P, soil pH, plant roots, microbial biomass and soil spatial 

heterogeneity on the diversity of soil bacteria. There are some differences between the a priori model 

and the final model structures due to the removal of paths with coefficients close to zero (see Fig. S4). 

MAP = mean annual precipitation. MAT = mean annual temperature.  

Figure S5. Alternative structural equation modeling considering the effects of bulk density, climate 

(MAT and MAP), land use intensity, organic matter (Total C and N), total P, plant root, microbial 

biomass, soil pH, soil spatial heterogeneity on bacterial diversity. Numbers adjacent to arrows are 

standardized path coefficients, analogous to relative regression weights, and indicative of the effect size 

of the relationship. Continuous and dashed arrows indicate positive and negative relationships, 

respectively. The width of arrows is proportional to the strength of path coefficients. The proportion of 

variance explained (R2) appears above every response variable in the model. Climate is included as 

two independent observable variables in the model, however we group them in the same box in the 

model for graphical simplicity. Goodness-of-fit statistics for each model are shown in the lower right 

corner. Hexagons are composite variables. Squares are observable variables. Significance levels are as 

follows: aP< 0.10, *P< 0.05, ** P< 0.01 and *** P< 0.001.  MAP = mean annual precipitation. MAT = 

mean annual temperature.  
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Figure S6. Mean values for total C, N and P and C:P, N:P and C:N ratios among different land uses:  

arable (n = 17), improved grassland (n = 28), semi-natural grassland (n = 32), woodland (n = 29),  

moorland (n = 39) and bog (n = 34). Bar graphs represent means and SE. We used PERMANOVA  

analyses to test for significant differences among land uses (n = 179) including soil depth as a co- 

variable in these analyses. Different letters in these figures indicate significant differences among land  

uses (P< 0.05, post-hoc test after PERMANOVA analyses). Semi-natural g. = semi-natural grassland;  

improved g. = improved grassland. Dark and white bars indicate low and high intensity human  

management, respectively.   

Figure S7. Mean values for soil bacterial diversity among different land uses: arable (n = 17),  

improved grassland (n = 28), semi-natural grassland (n = 32), woodland (n = 29), moorland (n = 39)  

and bog (n = 34).Bar graphs represent means and SE. We used PERMANOVA analyses to test for  

significant differences among land uses (n = 179) including soil depth as a co-variable in these  

analyses. Different letters in these figures indicate significant differences among land uses (P< 0.05,  

post-hoc test after PERMANOVA analyses). Semi-natural g. = semi-natural grassland; improved g. =  

improved grassland. Dark and white bars indicate low and high intensity human management,  

respectively.   

Figure S8. db-RDA ordination exploring the effects of, mean annual temperature (MAT), mean annual  

precipitation (MAP), pH, spatial heterogeneity, total C, N, P, C: N ratio, N: P ratio, C: P ratio,  

microbial biomass, root development on bacterial diversity across different land uses.  

Figure S9. Relative abundance of the main bacteria phyla in this study among different land uses:  

arable (n = 17), improved grassland (n = 28), semi-natural grassland (n = 32), woodland (n = 29),  

moorland (n = 39) and bog (n = 34).  

Figure S10. Structural equation modeling exploring the effects of climate (MAT and MAP), land use,  

organic matter (Total C and N), total P, plant root, microbial biomass, soil pH, soil spatial  

heterogeneity on selected microbial taxa. Numbers adjacent to arrows are standardized path  

coefficients, analogous to relative regression weights, and indicative of the effect size of the  

relationship. Continuous and dashed arrows indicate positive and negative relationships, respectively.  

The width of arrows is proportional to the strength of path coefficients. The proportion of variance  

explained (R2) appears above every response variable in the model. Climate is included as two  

independent observable variables in the model, however, we group them in the same box in the model  

for graphical simplicity. Goodness-of-fit statistics for each model are shown in the lower right corner.  
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Hexagons are composite variables. Squares are observable variables. Significance levels are as follows: 

*P< 0.05, ** P< 0.01 and *** P< 0.001.  MAP = mean annual precipitation. MAT = mean annual 

temperature.  

Figure S11. Standardized total effects (direct plus indirect effects) derived from the structural equation 

modeling, including the effects climate (MAT and MAP), land use, organic matter (Total C and N), 

total P, plant root, microbial biomass, soil pH, soil spatial heterogeneity on selected microbial taxa. 

Figure S12. Mean values for bulk density among different land uses: arable (n = 17), improved 

grassland (n = 28), semi-natural grassland (n = 32), woodland (n = 29), moorland (n = 39) and bog (n = 

34). Bar graphs represent means and SE. We used PERMANOVA analyses to test for significant 

differences among land uses (n = 179) including soil depth as a co-variable in these analyses. Different 

letters in these figures indicate significant differences among land uses (P< 0.05, post-hoc test after 

PERMANOVA analyses). The number of samples in each land use is: Semi-natural g. = semi-natural 

grassland; improved g. = improved grassland. Dark and white bars indicate low and high intensity 

human management, respectively.  

Figure S13. a priori model (for SEM) used in this study. Our model evaluated the effects of land use 

intensity, climate, organic matter (total C and N), total P, soil pH, plant roots, microbial biomass and 

soil spatial heterogeneity on the diversity of soil bacteria. There are some differences between the a 

priori model and the final model structures owing to the removal of paths with coefficients close to 

zero (see Fig. 3). MAP = mean annual precipitation. MAT = mean annual temperature.  

Figure S14. Rarefaction curves for bacterial diversity (Shannon, bits). Lines represent different soil 

samples.  

Table S1. Top five best-fitting models and the same models without resource quantity and 

stoichiometry. Shaded cells indicate that the variable has been included in the model. Models are 

ranked by AICc. AICc measures the relative goodness of fit of a given model; the lower its value, the 

more likely the model to be correct. ∆AICc are difference between the AICc of each model and that of 

the best model. MAT = Mean annual temperature; MAP = Mean annual precipitation; Soil 

heterogeneity = Soil spatial heterogeneity.  

Table S2. Correlation coefficients (Spearman´s ρ) between different C:N:P availabilities and ratios 

with the relative abundance of the main bacteria phyla and Proteobacteria classes in this study.  

Table S3. Correlation coefficients (Spearman´s ρ) between different total nutrients and pH in this 

study.  P-values in brackets. 
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Figure 1. Conceptual framework exploring the effects of land use intensity and nutrient stoichiometry on the 
diversity of soil bacteria. Land use intensity alters C:N:P stoichiometry. Cultivation reduces organic matter 
(organic C and total N) but brings back the bedrock via erosion (total P). Fast-growing organisms such as 
bacteria require high P to support high growth rates (i.e. ATP, DNA and RNA) and are characterized by low 

C:P ratios. In this respect, if diversity mirrors productivity within bacterial communities, P supply might drive 
bacterial diversity. Places with high P may support a high microbial diversity as microbes can fulfill their 

partial C and N requirement fixing these elements from atmosphere (i.e. C, N and P are available for 
microbes). However, places with low P lessen bacterial diversity as a consequence of the competition-to-

exclusion driven via P which is coming almost exclusively from the bedrock (i.e. only C and N are available 
for microbes).  
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Figure 2. Relationships between C, N and P availabilities and ratios and the soil bacterial diversity in our 
study sites. P values were calculated using a distance-based linear model (DISTLM) from PERMANOVA.  
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Figure 3. Structural equation modeling on the direct (a) and total (b) effects of climate (MAT and MAP), land 
use, organic matter (Total C and N), total P, plant root, microbial biomass, soil pH, soil spatial heterogeneity 
on bacterial diversity. Numbers adjacent to arrows are standardized path coefficients, analogous to relative 

regression weights, and indicative of the effect size of the relationship. Continuous and dashed arrows 
indicate positive and negative relationships, respectively. The width of arrows is proportional to the strength 
of path coefficients. The proportion of variance explained (R2) appears above every response variable in the 
model. Climate is included as two independent observable variables in the model, however we group them in 

the same box in the model for graphical simplicity. Goodness-of-fit statistics for each model are shown in 
the lower right corner. Hexagons are composite variables. Squares are observable variables. Significance 
levels are as follows: *P< 0.05, ** P< 0.01 and *** P< 0.001.  MAP = mean annual precipitation. MAT = 

mean annual temperature.  
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Figure 4. Relative contribution of resource quantity and stoichiometry, land use and other environmental 
factors as predictors of bacterial diversity and community composition at the OTU level. Panels represent 

results from variation partitioning modelling aiming to identity the percentage variance of bacterial bacterial 
diversity and community composition explained by resource quantity and stoichiometry, land use and other 

environmental factors. Shared effects of these variable groups are indicated by the overlap of circles.    
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Figure 5. Selected relationships between C:P and C:N ratios with the relative abundance of main bacterial 
groups in this study. P values were calculated using a distance-based linear model (DISTLM) from 

PERMANOVA. Correlations (Spearman) between C, N, P availability and ratios and bacterial groups are 
available in Table S2.    
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