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Abstract. A geometric first-order axiomatization of differentially closed fields

of characteristic zero with several commuting derivations, in the spirit of
Pierce-Pillay [13], is formulated in terms of a relative notion of prolongation

for Kolchin-closed sets.
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1. Introduction

An ordinary differential field is a field of characteristic zero equipped with a
derivation, that is, an additive map δ : K → K such that δ(ab) = (δa)b + a(δb).
A differentially closed field is a differential field (K, δ) such that every system of
differential polynomial equations in several variables, with a solution in some dif-
ferential extension, has a solution in K. An elegant first-order axiomatization of
the class of ordinary differentially closed fields was given by Blum in [1]. In [13],
Pierce and Pillay give a geometric axiomatization. Their axioms say that (K, δ) is
differentially closed if and only if K is algebraically closed and whenever V and W
are irreducible (affine) algebraic varieties with W contained in the prolongation of
V and projecting dominantly onto V , then there is a K-point in W of the form
(x̄, δx̄).

Similarly, a field K of characteristic zero equipped with m commuting derivations
is differentially closed if every system of partial differential polynomial equations in
several variables with a solution in some extension has a solution in K. A first-order
axiomatization generalizing Blum’s was given by McGrail in [10] (other work along
these lines can be found in Tressl [15] and Yaffe [17]). However, the Pierce-Pillay
condition mentioned above is no longer true for differentially closed fields with m
commuting derivations (see [12], Counterexample 3.2). Nonetheless, in [12], Pierce
does find geometric first-order conditions on a subvariety W of the r-th prolongation
of affine space that will ensure that its projection on the (r − 1)-th prolongation
has a K-point of the form (δr1m · · · δ

r1
1 x̄ : r1 + · · ·+ rm < r). His conditions include

Pierce-Pillay type conditions, but also a requirement on which of the coordinates
form a transcendence basis for the function field K(W ). Pierce shows that these
conditions (ranging over all r) do axiomatize differentially closed fields. However,
his axiomatization does not specialize to the Pierce-Pillay axioms and ultimately
has a different flavor.

In this paper we take a different approach, establishing an axiomatization of
differentially closed fields with (m + 1) commuting derivations which is geometric
relative to the theory of differentially closed fields with m derivations. Our axioms
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are a precise generalization of the Pierce-Pillay axioms, and can be used in very
much the same way. Two complications arise in our setting that do not appear in
the ordinary case: one has to do with extending commuting derivations and the
other has to do with first-order axiomatizability. Differential-algebraic results due
to Kolchin are behind our solutions to both of these problems.

Suppose ∆ = {δ1, . . . , δm} are commuting derivations on a field K of character-
istic zero and D : K → K is an additional derivation on K that commutes with ∆.
If V is a ∆-closed set defined over the D-constants of K, then Kolchin constructs a
∆-tangent bundle of V which has x̄→ (x̄, Dx̄) as a section ([5], Chap. VIII, §2). In
general, if V is not necessarily defined over the D-constants, then D gives a section
of a certain torsor of the ∆-tangent bundle of V that we call the D/∆-prolongation
of V (cf. Definition 3.1). Our axioms will essentially say that (K,∆ ∪ {D}) is
differentially closed if and only if K is algebraically closed and whenever V and W
are ∆-closed sets with W contained in the D/∆-prolongation of V and projecting
onto V , then there is a K-point in W of the form (x̄, Dx̄). “Essentially”, because
in actual fact we also have to consider not just ∆ and D but also various linear
combinations of them (cf. Theorem 4.3 below).

Pierce-Pillay type axiomatizations have been obtained in various other contexts:
difference fields (Chatzidakis and Hrushovski [3]), difference-differential fields (Bus-
tamante [2]), derivations of the Frobenius and commuting Hasse-Schmidt deriva-
tions in positive characteristic (Kowalski [6], [7]). However, the techniques used in
these works do not seem to translate to our context.

The paper is organized as follows. In Section 2 we establish the differential-
algebraic facts that underpin our results. In Section 3 we introduce relative prolon-
gations and prove a geometric characterization of differentially closed fields. Finally,
in Section 4, we address the issue of first-order axiomatizability.

Acknowledgements: I would like to thank Rahim Moosa for all the useful discussions
and support towards the completion of this article.

2. Extending ∆-derivations

In this paper the term ring is used for commutative ring with unity and the term
field for field of characteristic zero.

Let us first recall some terminology from differential algebra. For details see [4].
Let R be a ring and S a ring extension. An additive map δ : R → S is called
a derivation if it satifies the Leibniz rule; i.e., δ(ab) = (δa)b + a(δb). A ring R
equipped with a set of derivations ∆ = {δ1, . . . , δm}, δi : R → R, such that the
derivations commute with each other is called a ∆-ring. A ∆-ring which is also a
field (of characteristic zero) is called a ∆-field.

We fix for the rest of this section a ∆-ring R. Let Θ denote the free commutative
monoid generated by ∆; that is,

Θ := {δrmm · · · δ
r1
1 : rm, . . . , r1 ≥ 0}.

The elements of Θ are called the derivative operators. Let x̄ = (x1, . . . , xn) be a
family of indeterminates, and define

θx̄ := {∂xj : j = 1, . . . , n, ∂ ∈ Θ}.
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The ∆-ring of ∆-polynomials over R in the differential indeterminates x̄ is R{x̄} :=
R[θx̄]; that is, the ring of polynomials in the algebraic indeterminates θx̄ with the
canonical ∆-ring structure given by δi(δ

rm
m · · · δ

r1
1 xj) = δrmm · · · δ

ri+1
i · · · δr11 xj .

We fix an orderly ranking in θx̄ by:

δrmm · · · δ
r1
1 xi ≤ δ

r′m
m · · · δr

′
1

1 xj ⇐⇒
(∑

rl, i, rm, . . . , r1

)
≤
(∑

r′l, j, r
′
m, . . . , r

′
1

)
in the lexicographical order. According to this ranking, we enumerate the algebraic
indeterminates by θx̄ = (θ1x̄, θ2x̄, . . . ). Therefore, if f ∈ R{x̄} there is a unique

f̂ ∈ R[t1, t2, . . . ] such that f(x̄) = f̂(θx̄).
We will be interested in adding an extra derivation on R.

Definition 2.1. Let S be a ∆-ring extension of R. A ∆-derivation from R to S is
a derivation D : R→ S such that Dδ = δD for all δ ∈ ∆.

Fix a ∆-ring extension S of R and a ∆-derivation D : R→ S. We are interested
in the extensions of D to ∆-derivations from finitely generated ∆-ring extensions
of R to S. This subject was studied by Kolchin in ([5], Chapter 0, §4). We will
need the following terminology to present the main results. If f ∈ R{x̄}, by fD

we mean the ∆-polynomial in S{x̄} obtained by applying D to the coefficients of
f . Note that the map f 7→ fD is itself a ∆-derivation from R{x̄} to S{x̄}. By the
Jacobian of f we will mean

df(x̄) :=

(
∂f̂

∂ti
(θx̄)

)
i∈N

viewed as an element of (R{x̄})N. Note that df is finitely supported, in the sense
that all but finitely many coordinates are zero.

Remark 2.2. Suppose ā is a tuple of S and D′ : R{ā} → S is a ∆-derivation
extending D. If f ∈ R{x̄}, then an easy computation shows that

D′f(ā) = df(ā) · θD′ā+ fD(ā).

Here if ā = (a1, . . . , an) thenD′ā = (D′a1, . . . , D
′an) and θD′ā = (θ1D

′ā, θ2D
′ā, . . . ).

Note that the dot product is well defined since df has finite support.

Definition 2.3. Let f ∈ R{x̄}. We define the ∆-polynomial τD/∆f ∈ S{x̄, ȳ} by

τD/∆f(x̄, ȳ) := df(x̄) · θȳ + fD(x̄).

When ∆ and D are understood we simply write τf . If ā ∈ S, we write τ(f)ā(ȳ)
for τf(ā, ȳ) ∈ S{ȳ}. Note that τθx̄ = θȳ and if c ∈ R then τc = Dc.

Note that, under the assumptions of Remark 2.2, for all f in the prime ∆-ideal
I(ā/R) := {f ∈ R{x̄} : f(ā) = 0} we get

τ(f)ā(D′ā) = D′f(ā) = 0.

Thus any ∆-derivation D′ from R{ā} to S extending D gives a tuple D′ā of S at
which τ(f)ā vanishes for all f ∈ I(ā/R). The following proposition is the converse
of this implication and gives a criterion for when a ∆-derivation can be extended to
a finitely generated ∆-ring extension. The case when ∆ = ∅ can be found in ([8],
Chap. 7, §5), and is the main point in the Pierce-Pillay geometric axiomatization
of ordinary differentially closed fields.
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Proposition 2.4 ([5], Chap. 0, §4). Let D : R → S be a ∆-derivation and ā a
tuple of S. Suppose there is a tuple b̄ of S such that

(2.1) τ(f)ā(b̄) = 0, for all f ∈ I(ā/R).

Then there is a unique ∆-derivation D′ : R{ā} → S extending D such that D′ā = b̄.

Thus if we want to extend D to a ∆-derivation from R{ā} to S, we need to find
a solution of the system of ∆-equations {τ(f)ā(ȳ) = 0 : f ∈ I(ā/R)}. In the case
when S is a field, Kolchin showed that this system does have a solution in some
∆-field extension of S. Indeed he shows ([5], Chap. 0, §4, Proposition 5) that the
ideal generated by {τ(f)ā(ȳ) : f ∈ I(ā/R)} in S{ȳ} is a prime ∆-ideal. From this
and Proposition 2.4 one obtains:

Corollary 2.5 ([5], Chap. 0, §4). Suppose (K,∆) is a differentially closed field
extending R and D : R → K a ∆-derivation. Then there is a ∆-derivation D′ :
K → K extending D.

We will require an improvement on Proposition 2.4. We would like to only have
to check condition (2.1) for a set of ∆-polynomials A ⊂ R{x̄} such that {A} =
I(ā/R), where {A} denotes the radical ∆-ideal generated by A. As the reader may
expect this will be useful when dealing with issues of first-order axiomatizability
(see Proposition 3.2 below).

First we need a lemma. For each i = 1, 2, . . . , let x̄i be an n-tuple of differential
indeterminates. Suppose D : R → R is a ∆-derivation. Then τ : R{x̄1} →
R{x̄1, x̄2}. Thus we can compose τ with itself, for each k ≥ 1 and f ∈ R{x̄1},
τkf = τ · · · τf ∈ R{x̄1, x̄2, . . . , x̄2k}. Define ∇x̄ := (x̄, Dx̄) and note that, for each
k ≥ 1, the composition ∇kx̄ = ∇ · · ·∇x̄ is a tuple of length n2k.

Lemma 2.6. Suppose D : R→ R is a ∆-derivation and f ∈ R{x̄1}.
(1) If ā is a tuple of R, then for each k ≥ 1,

τkf(∇kā) = Dkf(ā)

In particular, if f(ā) = 0 then τkf(∇kā) = 0.
(2) For each k ≥ 1, we have

τkfk = k!(τf)k + f p

for some p ∈ R{x̄1, x̄2, . . . , x̄2k}.

Proof. (1) By induction on k. Remark 2.2 gives us

τf(∇ā) = df(ā) · θDā+ fD(ā) = Df(ā).

The induction step follows easily:

τk+1f(∇k+1ā) = τ(τkf)(∇(∇kā)) = Dτkf(∇kā) = DDkf(ā) = Dk+1f(ā).

(2) We prove that for each l = 1, . . . , k we have

(2.2) τ l(fk) =
k!

(k − l)!
fk−l(τf)l + fk−l+1 pl

for some pl ∈ K{x̄1, x̄2, . . . , x̄2l}. From which the results follows when l = k. Since
τfk = kfk−1τf , we get (2.2) holds for l = 1 with p1 = 0. Assume it holds for
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1 ≤ l < k, then

τ l+1fk = ττ lfk = τ

(
k!

(k − l)!
fk−l(τf)l + fk−l+1pl

)
=

k!

(k − l)!
(
(k − l)fk−l−1(τf)l+1 + lfk−l(τf)l−1τ2f

)
+ (k − l + 1)fk−l(τf) pl + fk−l+1τpl

=
k!

(k − l − 1)!
fk−l−1(τf)l+1 + fk−l pl+1

where

pl+1 =
k! l

(k − l)!
(τf)l−1τ2f + (k − l + 1)(τf) pl + fτpl.

�

Proposition 2.7. Suppose R is a reduced Q-algebra and D : R → R is a ∆-
derivation. Let ā a tuple of R and A ⊆ I(ā/R). Suppose there is a tuple b̄ of R
such that

(2.3) τ(f)ā(b̄) = 0, for all f ∈ A.

Then τ(f)ā(b̄) = 0 for all f ∈ {A}.

Proof. First we show equation (2.3) holds for all f in [A], where [A] is the ∆-ideal
generated by A. For each ∂ ∈ Θ, f ∈ A and h ∈ R{x̄}, we have

(2.4) τ(h∂f)ā(b̄) = τ(h)ā(b̄)∂f(ā) + h(ā)∂(τ(f)ā(b̄)).

Here we used the fact that τ(∂f)ā(b̄) = ∂(τ(f)ā(b̄)) (see [5], Chap. 0, §4, pp.9). By
assumption τ(f)ā(b̄) = 0 and since f ∈ A ⊆ I(ā/R) we get ∂f(ā) = 0. Thus (2.4)
yields τ(h∂f)ā(b̄) = 0. It follows that for each f ∈ [A], τ(f)ā(b̄) = 0.

Now let f ∈ {A}, since R{x̄} is also a Q-algebra {A} =
√

[A], and so there is

k ≥ 1 such that fk ∈ [A] and hence τfk(ā, b̄) = 0. By part (1) of Lemma 2.6,

τkfk(∇k−1(ā, b̄)) = τk−1(τfk)(∇k−1(ā, b̄)) = Dk−1τfk(ā, b̄) = 0.

Thus, by part (2) of Lemma 2.6, we have

k!(τf(ā, b̄))k + f(ā)p(∇k−1(ā, b̄)) = 0,

for some p ∈ R{x̄1, x̄2, . . . , x̄2k}. Since f(ā) = 0, we get k!(τf(ā, b̄))k = 0. Thus,
since R is a reduced Q-algebra, τ(f)ā(b̄) = τf(ā, b̄) = 0. �

Corollary 2.8. If S is a field, then Proposition 2.4 holds even if we replace I(ā/R)
for any A ⊂ R{x̄} such that {A} = I(ā/R).

Proof. Suppose {A} = I(ā/R) and τD/∆(f)ā(b̄) = 0 for all f ∈ A. We need to

show that τD/∆(f)ā(b̄) = 0 for all f ∈ I(ā/R). Let (K,∆) be a differentially closed
field extending S. By Corollary 2.5, we can extend D to a derivation D′ : K → K.
Now, by Proposition 2.7, τD′/∆(f)ā(b̄) = 0 holds for all f ∈ {A}K , where {A}K
denotes the radical ∆-ideal in K{x̄} generated by A. But {A} ⊆ {A}K , so that
τD/∆(f)ā(b̄) = 0 for all f ∈ I(ā/R), as desired. �
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3. Relative prolongations and a characterization of DCF0,m+1

Let us recall the notion of prolongation for ordinary differential fields. Given a
δ-field K and V a Zariski-closed set of Kn, the prolongation of V , τV , is the Zariski-
closed subset of K2n defined by the equations f(x̄) = 0 and

∑n
i=1

∂f
∂xi

(x̄)yi+f
δ(x̄) =

0, for each polynomial f ∈ K[x̄] vanishing on V . Note that, in terms of our notation
from Definition 2.3, the last equation is just τδ/∅f(x̄, ȳ) = 0.

Now we fix a differential field (K,∆∪{D}) with ∆ = {δ1, . . . , δm}. We introduce
a prolongation for ∆-closed sets with respect to D.

Definition 3.1. Suppose V ⊆ Kn is a ∆-closed set. The D/∆-prolongation of V ,
τD/∆V ⊆ K2n, is the ∆-closed set defined by

f = 0 and τD/∆f = 0, for all f ∈ I(V/K).

Here I(V/K) = {f ∈ K{x̄} : f vanishes on V }. When ∆ and D are understood,
we just write τf and τV . For ā ∈ V , τ(V )ā denotes the fibre of τV at ā. Note that
when m = 0 this is consistent with the ordinary case discussed above.

By Remark 2.2, if ā is in V then (ā, Dā) ∈ τV . This implies that the projection
π : τV → V given by π(x̄, ȳ) = x̄ is surjective and that x̄ 7→ (x̄, Dx̄) is a section.

Using this relative prolongation we will extend the Pierce-Pillay axioms of ordi-
nary differentially closed fields ([13], §2), to the case of several commuting deriva-
tions. In the language of differential rings Lm = {0, 1,+,−,×, δ1, . . . , δm}, we
denote by DF0,m the theory of differential fields of characteristic zero with m com-
muting derivations, and by DCF0,m its model-completion, the theory of differen-
tially closed fields.

The following consequence of Proposition 2.7 implies that the D/∆-prolongation
varies uniformly with V .

Proposition 3.2. Suppose (K,∆) |= DCF0,m. If V = V(f1, . . . , fs) := {ā ∈ Kn :
fi(ā) = 0, i = 1, . . . , s}, then τV = V(fi, τfi : i = 1, . . . , s).

Proof. Clearly τV ⊆ V(fi, τfi : i = 1, . . . , s). Let (ā, b̄) ∈ V(fi, τfi : i = 1, . . . , s).
By Proposition 2.7, τf(ā, b̄) = 0 for all f ∈ {f1, . . . , fs}. Since (K,∆) |= DCF0,m,
we have {f1, . . . , fs} = I(V(f1, . . . , fs)) = I(V ). Hence, (ā, b̄) ∈ τV . �

Remark 3.3.

(1) Suppose (K,∆) |= DCF0,m. If V is defined over the D-constants, that is,
V = V(f1, . . . , fs) where fi ∈ CD{x̄}, then τV is just Kolchin’s ∆-tangent
bundle of V . Indeed, by Proposition 3.2, the equations defining τV become
fi(x̄) = 0 and τfi(x̄, ȳ) = dfi(x̄) · θȳ = 0, i = 1, . . . , s. These are exactly
the equations for Kolchin’s ∆-tangent bundle T∆V ([5], Chap.VIII, §2).

(2) In general, τV is a torsor under T∆V . Indeed, from the equations one sees
that τ(V )ā is a translate of T∆(V )ā, and so the map T∆V ×V τV → τV
given by ((ā, b̄), (ā, c̄)) 7→ (ā, b̄+ c̄) is a regular action of T∆V on τV over V .

Note that in case ∆ = ∅, part (2) of Remark 3.3 reduces to the fact that the
prolongation of a Zariski-closed set is a torsor under its tangent bundle.

The following characterization of DCF0,m+1 will be used in the next section to
obtain a geometric first-order axiomatization.

Theorem 3.4. Suppose (K,∆∪{D}) |= DF0,m+1. Then (K,∆∪{D}) |= DCF0,m+1

if and only if
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(1) (K,∆) |= DCF0,m

(2) For each pair of irreducible ∆-closed sets V ⊆ Kn, W ⊆ τV such that W
projects ∆-dominantly onto V . If OV and OW are nonempty ∆-open sub-
sets of V and W respectively, then there exists ā ∈ OV such that (ā, Dā) ∈
OW .

As we will see in the proof, it would have been equivalent in condition (2) to
take OV = V and OW = W . Also note that, under the convention that DCF0,0 is
the theory of algebraically closed fields of characteristic zero ACF0, when m = 0
this is exactly the Pierce-Pillay axioms.

Proof. Suppose (K,∆ ∪ {D}) |= DCF0,m+1, and V , W , OV and OW are as in
condition (2). Let (U,∆) be a large differentially closed field; i.e., a universal
domain for ∆-algebraic geometry. If X is an (Lm-)definable subset of Kn, by X(U)
we mean the interpretation of X in Un. Let (ā, b̄) ∈ U2n be a ∆-generic point
of W over K; that is, I(ā, b̄/K) = I(W (U)/K). Then (ā, b̄) ∈ OW (U). Since
(ā, b̄) ∈ τV (U) we have that τ(f)ā(b̄) = 0 for all f ∈ I(V (U)/K). The fact that W
projects ∆-dominantly onto V implies that ā is a ∆-generic point of V over K, so
ā ∈ OV (U) and I(ā/K) = I(V (U)/K). Hence, τ(f)ā(b̄) = 0 for all f ∈ I(ā/K).
By Proposition 2.4, there is a unique ∆-derivation D′ : K{ā} → U extending D
such that D′ā = b̄. By Corollary 2.5, we can extend D′ to all of U, call it D′′.
Hence, U becomes a ∆ ∪ {D′′}-field extending the ∆ ∪ {D}-closed field K. Since
ā ∈ OV (U), (ā, b̄) ∈ OW (U) and D′′ā = b̄, we get a point (ā′, b̄′) in K such that
ā′ ∈ OV , (ā′, b̄′) ∈ OW and Dā′ = b̄′.

The converse is essentially as in [13]. For the sake of completeness we give the
details. Let φ(x̄) be a conjunction of atomic Lm+1-formulas over K. Suppose φ has
a realisation ā in some (F,∆ ∪ {D}) |= DF0,m+1 extending of (K,∆ ∪ {D}). Let

φ(x̄) = ψ(x̄, δm+1x̄, . . . , δ
r
m+1x̄)

where ψ is a conjunction of atomic Lm-formulas over K and r > 0. Let c̄ =
(ā, Dā, . . . ,Dr−1ā) and X ⊆ Fnr be the ∆-locus of c̄ over K. Let Y ⊆ F 2nr be the
∆-locus of (c̄, Dc̄) over K. Let

χ(x̄0, . . . , x̄r−1, ȳ0, . . . , ȳr−1) := ψ(x̄0, . . . , x̄r−1, ȳr−1) ∧
(
∧r−1
i=1 x̄i = ȳi−1

)
then χ is realised by (c̄, Dc̄). Since (c̄, Dc̄) is a ∆-generic point of Y over K and
its projection c̄ is a ∆-generic point of X over K, we have that Y projects ∆-
dominantly onto X over K. Thus, since (K,∆) |= DCF0,m, Y (K) projects ∆-
dominantly onto X(K). Also, since (c̄, Dc̄) ∈ τX, we have Y (K) ⊆ τ(X(K)).
Applying (2) with V = OV = X(K) and W = OW = Y (K), there is d̄ in V
such that (d̄, Dd̄) ∈W . Let d̄ = (d̄0, . . . , d̄r−1) then (d̄0, . . . , d̄r−1, Dd̄0, . . . , Dd̄r−1)
realises χ. Thus, (d̄0, Dd̄0, . . . , D

rd̄0) realises ψ. Hence, d̄0 is a tuple of K realising
φ. This proves that (K,∆ ∪ {D}) |= DCF0,m+1. �

4. Geometric first-order axioms

The Pierce-Pillay characterization of DCF0, that is Theorem 3.4 when m = 0,
is indeed first-order. Expressing irreducibility of a Zariski-closed set as a defin-
able condition on the parameters uses the existence of bounds to check primality
of ideals in polynomial rings in finitely many variables [16]. Also, if the field is
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algebraically closed, one can find a first-order formula, in the language of rings,
describing for which parameters a Zariski-closed set projects dominantly onto some
fixed irreducible Zariski-closed set.

It is not known to the author if condition (2) of Theorem 3.4 can be expressed in
a first-order way for m > 0. One issue is to express irreducibility of ∆-closed sets as
a definable condition. This seems to be an open problem related to the generalized
Ritt problem [11]. The other issue is how to express when a ∆-closed set projects
∆-dominantly onto another ∆-closed set as a definable condition.

We resolve this problem by modifying the characterization of Theorem 3.4 so
that it no longer mentions irreducibility or dominance. The first of these can be
handled rather easily by the following lemma.

Lemma 4.1. Let K be a ∆ ∪ {D}-field. Let V ⊆ Kn be a ∆-closed set with
K-irreducible components {V1, . . . , Vs}. If ā ∈ Vi\

⋃
j 6=i Vj, then τ(V )ā = τ(Vi)ā.

Proof. Clearly τ(Vi)ā ⊆ τ(V )ā. Let b̄ ∈ τ(V )ā and f ∈ I(Vi/K). Since ā is not in
Vj , for j 6= i, we can pick a gj ∈ I(Vj/K) such that gj(ā) 6= 0. Then, if g =

∏
j gj ,

we get fg ∈ I(V/K) and so

0 = τ(fg)ā(b̄) = τ(f)ā(b̄)g(ā) + f(ā)τ(g)ā(b̄) = τ(f)ā(b̄)g(ā)

where the third equality holds because ā ∈ Vi. Since g(ā) 6= 0, we have τ(f)ā(b̄) = 0,
and so b̄ ∈ τ(Vi)ā. �

It follows that if W ⊆ τV projects ∆-dominantly onto V and Vi is a K-irreducible
component of V , then a K-irreducible component of W∩τVi projects ∆-dominantly
onto Vi.

The second issue, that of ∆-dominant projections, is more difficult to deal with.
Let us note here that when ∆ = ∅, that is, in the case of DCF0, one can just replace
dominant projections by surjective projections in the Pierce-Pillay axiomatization.
Indeed this reformulation is stated in [14]. We will not give a proof here as it will
follow from Theorem 4.3 below. However, what makes this work, in the case of
a single derivation D, is the fact that if a is D-algebraic over K, then Dk+1a ∈
K(a,Da, . . . ,Dka) for some k. In several derivations it is not necessarily the case
that if a is ∆ ∪ {D}-algebraic over K, then Dk+1a is in the ∆-field generated by
a,Da, . . . ,Dka over K, for some k. However, by a theorem of Kolchin (Proposition
4.2 below), this can always be achieved if we allow Z-linear transformations of the
derivations. Our modification of Theorem 3.4 will therefore need to refer to such
transformations.

For every M = (ci,j) ∈ SLm+1(Z), let ∆′ = {δ′1, . . . , δ′m} and D′ be the deriva-
tions on K defined by δ′i = ci,1δ1 + · · · + ci,mδm + ci,m+1D and D′ = cm+1,1δ1 +
· · ·+ cm+1,mδm + cm+1,m+1D. In this case we write (∆′, D′) = M(∆, D). Clearly,
the elements of ∆′ ∪ {D′} are also commuting derivations on K.

Proposition 4.2 ([4], Chap. II, §11). Let (K,∆ ∪ {D}) |= DF0,m+1. Let ā =
(a1, . . . , an) be a tuple of a ∆ ∪ {D}-field extension of K. Suppose all the ai’s are
∆∪{D}-algebraic over K, then there exists k > 0 and a matrix M ∈ SLm+1(Z) such
that, writing (∆′, D′) = M(∆, D), we have that D`ā is in the ∆′-field generated by
ā, D′ā . . . , D′kā over K, for all ` > k.

Theorem 3.4 characterizes DCF0,m+1 in terms of the geometry of DCF0,m.
The idea, of course, was that DCF0,m has a similar characterization relative to
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DCF0,m−1, and so on. In Theorem 4.3 we will implement this recursion and give
a geometric first-order axiomatization of DCF0,m+1 for all m ≥ 0, that refers only
to the base theory ACF0.

Theorem 4.3. Suppose (K,∆∪{D}) |= DF0,m+1. Then (K,∆∪{D}) |= DCF0,m+1

if and only if

(1) K |= ACF0

(2) Suppose M ∈ SLm+1(Z), (∆′, D′) := M(∆, D), V = V(f1, . . . , fs) ⊆ Kn is
a nonempty ∆′-closed set, and

W ⊆ V(f1, . . . , fs, τD′/∆′f1, . . . , τD′/∆′fs) ⊆ K2n

is a ∆′-closed set that projects onto V . Then there is ā ∈ V such that
(ā, D′ā) ∈W .

Proof. Suppose (K,∆ ∪ {D}) |= DCF0,m+1. Clearly K |= ACF0. Suppose M ,
∆′, V and W are as in condition (2). Clearly (K,∆′ ∪ {D′}) |= DCF0,m+1, so by
Proposition 3.2 we have that V(fi, τD′/∆′fi : i = 1, . . . , s) = τD′/∆′V . Let Vi be an
irreducible component of V and W ′ = W ∩ τD′/∆′Vi. By Lemma 4.1, we can find
an irreducible component of W ′ projecting ∆′-dominantly onto Vi. Now just apply
Theorem 3.4 (with ∆′ ∪ {D′} rather than ∆ ∪ {D}) to get the desired point.

For the converse, we assume conditions (1) and (2) and prove that (K,∆∪{D}) |=
DCF0,m+1. Given r = 1, . . . ,m+1 and N ∈ SLm+1(Z), let Kr,N = (K, ∆̄r−1∪{D̄})
where (∆̄, D̄) = N(∆, D) and ∆̄r−1 = {δ̄1, . . . , δ̄r−1}. Set K0,N to be the pure
algebraic field K. We show by induction that for each r = 0, . . . ,m + 1, Kr,N |=
DCF0,r for all N ∈ SLm+1(Z). The result will then follow by setting r = m + 1
and N = Id. The case of r = 0 is just assumption (1). We assume 0 ≤ r ≤ m, N ∈
SLm+1(Z), and we show that Kr+1,N = (K, ∆̄r ∪ {D̄}) |= DCF0,r+1.

Suppose φ(x̄) is a conjunction of atomic Lr+1-formulas over K, with a realisation
ā = (a1, . . . , an) in some ∆̄r ∪ {D̄}-field F extending Kr+1,N . We need to find a
realisation of φ in Kr+1,N . We may assume that each ai is ∆̄r ∪{D̄}-algebraic over
K (this can be seen algebraically or one can use the existence of prime models of
DCF0,r+1 over K, see §3.2 of [10]).

Let M ′ ∈ SLr+1(Z) and k > 0 be the matrix and natural number given by
Proposition 4.2. Let M ∈ SLm+1(Z) be

M = E

(
M ′ 0
0 I

)
EN

where E is the elementary matrix of size (m + 1) that interchanges row (r + 1)
with row (m + 1) and I is the identity matrix of size (m − r). Then, setting
(∆′, D′) = M(∆, D), we get

(4.1) D′k+1ā =
f(ā, D′ā, . . . , D′kā)

g(ā, D′ā . . . , D′kā)

for some f, g ∈ (K{x̄0, . . . , x̄k}∆′
r
)n. Here ∆′r = {δ′1, . . . , δ′r} and K{x̄}∆′

r
denotes

the ∆′r-ring of ∆′r-polynomials over K. Let

c̄ =

(
ā, D′ā, . . . , D′kā,

1

g(ā, D′ā . . . , D′kā)

)
.

Let X ⊆ Fn(k+2) be the ∆′r-locus of c̄ over K and Y ⊆ F 2n(k+2) the ∆′r-locus of
(c̄, D′c̄) over K.
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Claim. Y projects onto X.
Consider the ∆′r-polynomial map s(x̄0, . . . , x̄k+1) : X → Fn(k+2) given by

s = (x̄1, . . . , x̄k, f x̄k+1,−x̄2
k+1τD′/∆′

r
g(x̄0, . . . , x̄k, x̄1, . . . , x̄k, f x̄k+1))

where any product between tuples is computed coordinatewise. Using (4.1), an easy
computation shows s(c̄) = D′c̄. Given b̄ ∈ X, we note that (b̄, s(b̄)) ∈ Y . Indeed,
if h is a ∆′r-polynomial over K vanishing at (c̄, D′c̄), then h(·, s(·)) vanishes at c̄
and hence on all of X. So (b̄, s(b̄)) is in the ∆′r-locus of (c̄, D′c̄) over K. That is,
(b̄, s(b̄)) ∈ Y . As this point projects onto b̄ we have proven the claim.

Now, by induction, (K,∆′r) |= DCF0,r. Indeed, (K,∆′r) = Kr,N ′ where N ′ is
obtained from M by interchanging rows r and (m + 1). Hence, the claim implies
that Y (K) projects onto X(K). Also, if X(K) = V(f1, . . . , fs) where each fi is
a ∆′r-polynomial, then clearly Y (K) ⊆ V(fi, τD′/∆′

r
fi : i = 1, . . . , s). Hence, by

condition (2), there is d̄ ∈ X(K) such that (d̄, D′d̄) ∈ Y (K).
Now, let ρ(x̄) be the Lr+1-formula over K obtained from φ by replacing each

δ1, . . . , δr+1 for di,1δ1 + · · · + di,r+1δr+1, where (di,j) ∈ SLr+1(Z) is the inverse

matrix of M ′. By construction, φ(K,∆̄r∪{D̄}) = ρ(K,∆′
r∪{D

′}). Thus it suffices to
find a realisation of ρ in (K,∆′r∪{D′}). We may assume that the k of (4.1) is large
enough so that we can write

ρ(x̄) = ψ(x̄, δr+1x̄, . . . , δ
k
r+1x̄)

where ψ is a conjunction of atomic Lr-formulas over K. Let

χ(x̄0, . . . , x̄k+1, ȳ0, . . . , ȳk+1) := ψ(x̄0, . . . , x̄k) ∧
(
∧ki=1xi = yi−1

)
.

Then (F,∆′r) |= χ(c̄, D′c̄), and so, as (d̄, D′d̄) is in the ∆′r-locus of (c̄, D′c̄) over
K, we have that (F,∆′r) |= χ(d̄, D′d̄). But since d̄ is a K-point, we get (K,∆′r) |=
χ(d̄, D′d̄). Writing the tuple d̄ as (d̄0, . . . , d̄r+1), we see that d̄0 is a realisation of ρ
in (K,∆′r ∪ {D′}). This completes the proof. �

Remark 4.4.

(1) Condition (2) of Theorem 4.3 is indeed first-order; expressible by an infinite
collection of Lm+1-sentences, one for each fixed choice of M , f1, . . . , fs and
“shape” of W .

(2) In condition (2) we can strengthen the conclusion to ask for {ā ∈ V :
(ā, D′ā) ∈W} to be ∆′-dense in V .
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