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A Probabilistic proof of some integral formulas
involving the Meijer G-function

Robert E. Gaunt∗

September 2016

Abstract

New integral formulas involving the Meijer G-function are derived using recent
results concerning distributional characterisations and distributional transforma-
tions in probability theory.

Keywords: MeijerG-function, integration, distributional transformation, Stein’s method
AMS 2010 Subject Classification: Primary 33C60; secondary 60E10

1 Introduction and main results

The Meijer G-function is a very general function which includes many simpler special
functions as special cases. The Meijer G-function is defined by the contour integral:

Gm,n
p,q

(
z

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
=

1

2πi

∫ c+i∞

c−i∞
z−s

∏m
j=1 Γ(s+ bj)

∏n
j=1 Γ(1− aj − s)∏p

j=n+1 Γ(s+ aj)
∏q

j=m+1 Γ(1− bj − s)
ds,

where c is a real constant defining a Bromwich path separating the poles of F (s + bj)
from those of F (1− aj − s) and where we use the convention that the empty product is
1. A more detailed discussion of the Meijer G-function and examples are given in [4], pp.
206–222; see also [12] and references therein.

In this paper, we derive new integral formulas involving the Meijer G-function. We
prove these results using a probabilistic approach, using recent results from the theory of
distributional characterisations and distributional transformations in probability theory
that are given [7]. Our main result is as follows.

Theorem 1.1. Let n be a positive integer and suppose that a1, . . . , an > −1. Then, for
all x > 0,

Gn,0
0,n(x | a1, . . . , an) =

∫ ∞
x

Gn,0
n,n

(
x

t

∣∣∣∣ a1 + 1, . . . , an + 1
a1, . . . , an

)
Gn,0

0,n(t | a1, . . . , an) dt. (1.1)
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If a1, . . . , an are distinct, then (1.1) simplifies to

Gn,0
0,n(x | a1, . . . , an) =

n∑
k=1

( n∏
j=k

1

aj − ak

)∫ ∞
x

(
x

t

)ak
Gn,0

0,n(t | a1, . . . , an) dt,

and if a1 = · · · = an = a, then (1.1) simplifies to

Gn,0
0,n(x | a, . . . , a) =

1

(n− 1)!

∫ ∞
x

(
x

t

)a[
log

(
t

x

)]n−1

Gn,0
0,n(t | a, . . . , a) dt. (1.2)

The result that the product of two arbitrary Meijer G-functions integrated over the
positive real line can itself be represented as a Meijer G-function (the convolution theorem;
see [11], Section 5.6) is of fundamental importance. As noted by [2], this result lies at the
heart of most comprehensive tables of integrals in print [13]. Theorem 1.1 complements
this result by giving a class of integral formulas for the product of two Meijer G-functions
integrated over a positive half line in which the integral is itself a Meijer G-function.

The rest of this article is organised as follows. In Section 2, we present some prelimi-
nary results from probability theory that we will use to prove Theorem 1.1. In particular,
we state a useful characterising equation for the product of n independent gamma ran-
dom variables and introduce an associated distributional transformation. In Section 3, we
establish some properties of this distributional transformation. In Section 4, we use these
properties to prove Theorem 1.1. We conclude by noting that the approach used in this
paper to prove Theorem 1.1 could in principle be used to prove other integral formulas
involving special functions.

2 Preliminary results from probability theory

In this section, we introduce the results from probability theory that are required in our
proof of Theorem 1.1.

2.1 Products of random variables

One of the ways the Meijer G-function enters probability theory is through the study of
products of independent random variables. It was shown by [15] that probability density
functions of products of independent beta, gamma and central normal random variables
are Meijer G-functions. The density function of the product of n independent standard
normal random variables with density 1√

2π
e−x

2/2, x ∈ R, is given by

p(x) =
1

(2π)n/2
Gn,0

0,n

(
x2

2n

∣∣∣∣ 0, . . . , 0

)
, x ∈ R. (2.3)

A random variable with density (2.3) has product normal distribution with variance 1, de-
noted by PN(n, 1). The density of the product of n independent gamma random variables
with density λri

Γ(ri)
xri−1e−λx, x > 0, λ > 0, ri > 0, i = 1, . . . , n, (denoted by Gamma(ri, λ))

is given by

p(x) =
λn∏n

j=1 Γ(rj)
Gn,0

0,n(λnx | r1 − 1, . . . , rn − 1), x > 0, (2.4)
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and a random variable with density (2.4) is said to have a product gamma distribution,
which we denote by PG(r1, . . . , rn, λ). In this paper, for simplicity, we take λ = 1.
Finally, the density of the product of n independent beta Beta(ai, bi) random variables

with density Γ(ai+bi)
Γ(ai)Γ(bi)

xai−1(1 − x)bi−1, 0 < x < 1, ai, bi > 0, i = 1, . . . , n, (denoted by

Beta(ai, bi)) is given by

p(x) =

( m∏
i=1

Γ(ai + bi)

Γ(ai)

)
Gn,0
n,n

(
x

∣∣∣∣ a1 + b1 − 1, . . . , an + bn − 1
a1 − 1, . . . , an − 1

)
, 0 < x < 1. (2.5)

2.2 Stein characterisations

Recently, the products of independent beta, gamma and central normal random variables
have received attention [8, 7] in the context of the probabilistic technique Stein’s method,
introduced in 1972 by Stein [16]. In the works [8] and [7], so-called Stein characterisations
were obtained for products of independent beta, gamma and central normal random
variables, and the Stein characterisations of products of gammas and normals will be of
particular interest to us in this paper.

Before presenting these characterising equations, we introduce some notation. For
r ∈ R, we define the operator Tr by Trf(x) = xf ′(x) + rf(x) and we let D denote the
usual differential operator. Also, let Br1,...,rn denote the iterated operator Tr1 · · ·Trn . Then
we have the following characterising equations of the product normal (see [8], Proposition
2.3) and product gamma distributions (see [7], Proposition 2.3):

Proposition 2.1. Suppose Z ∼ PN(n, σ2). Let f ∈ Cn(R) be such that E|Zf(Z)| < ∞
and E|Zk−1f (k)(Z)| <∞, k = 1, . . . , n. Then

E[AZf(Z)] = 0, (2.6)

where AZf(x) = DT n−1
0 f(x)− xf(x) and we set T 0

0 f(x) = f(x).
Suppose now that Y ∼ PG(r1, . . . , rn, 1). Let f ∈ Cn(R+) be such that E|Y f(Y )| <∞

and E|Y kf (k)(Y )| <∞, k = 0, . . . , n, where f (0) ≡ f . Then

E[AY f(Y )] = 0, (2.7)

where AY f(x) = Br1,...,rnf(x)− xf(x).

Similar characterisations have been obtained for many standard probability distribu-
tions (see [10] for an overview of the current literature), and lie at the heart of Stein’s
method, by characterising distributions in a convenient manner for the purpose of deriving
approximation theorems in probability theory. For a detailed account of Stein’s method
for normal approximation see [3], and for a simple, general introduction see [14]. Whilst
Stein characterisations are typically used as part of Stein’s method, they have utility in
other areas, such as obtaining formulas for moments of probability distributions [6] and
deriving formulas for probability density functions and characteristic functions [8, 7]. In
this paper, we shall see consider a rather curious application of the product gamma Stein
characterisation (2.7) to establishing new integral formulas for the Meijer G-function.
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2.3 Distributional transformations

The characterising equation (2.6) motivates a distributional transformation ([8], Definition
1.2) which generalises the zero bias transformation (see [9]). For W a mean zero random
variable with variance 1, the random variable W ∗(n) is said to have the W -zero biased
distribution of order n if, for all f ∈ Cn(R) such that the relevant expectations exist,

E[Wf(W )] = E[DT n−1
1 f(W ∗(n))]. (2.8)

This distributional transformation was introduced in [8], and a number of interesting
properties were obtained, which, in conjugation with the characterisation (2.6), allows
one to prove product normal approximation theorems (see [8], Section 4). An analogous
distributional transformation is motivated by the characterising equation (2.7):

Definition 2.2. Let W be a non-negative random variable with 0 < EW < ∞. We
say that WG(n) has the W -gamma biased distribution of order n with shape parameters
r1, . . . , rn > 0 if, for all f ∈ Cn(R+) such that the relevant expectations exist,

E[Wf(W )] = E[Br1,...,rnf(WG(n))], (2.9)

where r1, . . . , rn are such that
∏n

k=1 rk = EW .

In Lemma 3.2, we establish that for any such W there exists a unique random variable
WG(n) that has the W -gamma biased distribution of order n. In the next section, we shall
collect some useful properties of this distributional transformation. These properties
may, in future works, prove useful in deriving product gamma approximation theorems,
although in this paper we will exploit its properties to prove Theorem 1.1.

3 Properties of the gamma bias transformation

In this section, we establish some properties of the gamma bias transformation of order
n from which we shall deduce Theorem 1.1. Firstly, we present a lemma, which gives an
inverse operator for the iterated operator Br1,...,rn = Tr1 · · ·Trn .

Lemma 3.1. Let Û1, . . . , Ûn be independent Beta(rj, 1) random variables with rj > 0, and

define V̂n =
∏n

j=1 Ûj. Define the operator Hr1,...,rn by Hr1,...,rnf(x) = (
∏n

k=1 rk)
−1Ef(xV̂n).

Then, for bounded f : R+ → R, we have
(i) Hr1,...,rnf(x) = Hr1 · · ·Hrnf(x).
(ii) TrHsf(x) = f(x) + (r − s)Hsf(x).
(iii) Hr1,...,rn is the right-inverse of the operator Br1,...,rn in the sense that

Br1,...,rnHr1,...,rnf(x) = f(x).

(iv) Suppose now that f ∈ Cn(R+). Then, for any n ≥ 1,

Hr1,...,rnBr1,...,rnf(x) = f(x). (3.10)
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Proof. (i) We begin by obtaining a useful formula for Hr1,...,rnf(x) = (
∏n

k=1 rk)
−1Ef(xV̂n).

We have that

Hr1,...,rnf(x) =

∫
(0,1)n

f(xu1 · · ·un)ur1−1
1 · · ·urn−1

n du1 · · · dun.

By a change of variables un = tn
x

and uj =
tj
tj+1

for 1 ≤ j ≤ n− 1, this can be written as

Hr1f(x) = x−r1
∫ x

0

tr1−1
1 f(t1) dt1, (3.11)

and, for n ≥ 2,

Hr1,...,rnf(x) = x−rn
∫ x

0

∫ tn

0

· · ·
∫ t2

0

f(t1)tr1−1
1 tr2−r1−1

2 · · · trn−rn−1−1
n dt1dt2 · · · dtn.

From these representations of Hr1,...,rnf(x), it is clear that Hr1,...,rnf(x) = Hr1 · · ·Hrnf(x).
(ii) We now use the integral representation (3.11) of Hsf(x) to obtain

TrHsf(x) = x
d

dx

(
x−s

∫ x

0

ts−1f(t) dt

)
+ rx−s

∫ x

0

ts−1f(t) dt

= −sx−s
∫ x

0

ts−1f(t) dt+ x1−s · xs−1f(x) + rx−s
∫ x

0

ts−1f(t) dt

= f(x) + (r − s)Hsf(x).

(iii) From part (ii), TrHrf(x) = f(x). But since Br1,...,rnf(x) = Trn · · ·Tr1f(x) and
Hr1,...,rnf(x) = Hr1 · · ·Hrnf(x), it follows that Br1,...,rnHr1,...,rnf(x) = f(x).

(iv) We have

HrTrf(x) = x−r
∫ x

0

tr−1(tf ′(t) + rf(t)) dt = x−r
∫ x

0

(trf(t))′ dt = x−r
[
trf(t)

]x
0

= f(x),

and on using a similar argument to part (iii) it follows that Hr1,...,rnBr1,...,rnf(x) = f(x).

We now make use of Lemma 3.1 to establish the existence and uniqueness of the
gamma bias transformation of order n. The proof of the following lemma uses a similar
argument to the ones used by [9] and [8] to prove the existence and uniqueness of the zero
bias transformation and zero bias transformation of order n, respectively.

Lemma 3.2. Let W be a non-negative random variable with 0 < EW < ∞. Then there
exists a unique random variable WG(n) such that, for all f ∈ Cn(R+) for which the relevant
expectations exist,

EWf(W ) = EBr1,...,rnf(WG(n)),

where r1, . . . , rn are positive constants such that
∏n

k=1 rk = EW .
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Proof. We define a linear functional Q by

Qf = EWHr1,...,rnf(W ),

where Hr1,...,rn is defined as in Lemma 3.1. As EW < ∞, it follows that Qf exists for
all continuous f with compact support. To see that Q is positive, take f ≥ 0. Then
Hr1,...,rnf(x) ≥ 0. Hence EWHr1,...,rnf(W ) ≥ 0, and Q is positive. By the Riesz repre-
sentation theorem (see, for example, [5]) we have Qf =

∫
f dν, for some unique Radon

measure ν, which is a probability measure as Q1 = EWHr1,...,rn1 =
(∏n

k=1 rk
)−1EW = 1.

We now take f(x) = Br1,...,rng(x), where g ∈ Cn(R+), with derivatives up to n-th
order being continuous with compact support. Then, from (3.10),

EWHr1,...,rnBr1,...,rng(W ) = EWg(W ),

which completes the proof.

Combining Lemma 3.2 with the characterising equation (2.7) for the PG(r1, . . . , rn, 1)
distribution immediately gives the following lemma.

Lemma 3.3. Let W be a non-negative random variable with 0 < EW < ∞, and let
WG(n) have the W -gamma biased distribution of order n with shape parameters r1, . . . , rn,
in accordance with Definition 2.2. Then the PG(r1, . . . , rn, 1) distribution is the unique
fixed point of the W -gamma biased distribution of order n with shape parameters r1, . . . , rn.

With the aid of Lemma 3.1, we can obtain a useful relationship between the gamma
bias distribution of order n in terms of the size bias distribution, which is analogous to
the relationship (see [8]) between the zero bias distribution of order n in terms of the
square bias distribution (defined in [3]). If W ≥ 0 has mean µ > 0, we say W s has the
W -size biased distribution if, for all f such that EWf(W ) exists,

EWf(W ) = µEf(W s).

The size bias coupling is commonly used in Stein’s method; for an application of this
coupling to normal approximation see [1].

Proposition 3.4. Let W be a non-negative random variable with 0 < EW <∞, and let
W s have the W -size bias distribution. Let W s and {Uk}1≤k≤n be mutually independent,
with Uk ∼ Beta(rk, 1), where r1, . . . , rn > 0 are such that

∏n
k=1 rk = EW . Define Vn =∏n

k=1 Uk. Then, the random variable

WG(n) D= VnW
s (3.12)

has the W -gamma bias distribution of order n with shape parameters r1, . . . , rn.

Proof. Let f ∈ Cc, the set of continuous functions on R+ with compact support. Recall
from Lemma 3.1 that Br1,...,rnHr1,...,rng(x) = g(x) for any g. Thus,

Ef(WG(n)) = EBr1,...,rnHr1,...,rnf(WG(n)) = EWHr1,...,rnf(W )

=
n∏
k=1

(1/rk)EWf(VnW ) =
n∏
k=1

(1/rk)EWEf(VnW
s) = Ef(VnW

s).

Since the expectation of f(WG(n)) and f(VnW
s) are equal for all f ∈ Cc, the random

variables WG(n) and VnW
s must be equal in distribution.
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We now note some formulas for the probability density function of the product of n
independent beta random variables, that we will use in the proof of Proposition 3.6.

Lemma 3.5. Let {Uk}1≤k≤n be mutually independent Beta(rk, 1) random variables with
r1, . . . , rn > 0. Then, the density function of Vn =

∏n
k=1 Uk is given by

pVn(x) =

( n∏
i=1

ri

)
Gn,0
n,n

(
x

∣∣∣∣ r1, . . . , rn
r1 − 1, . . . , rn − 1

)
, 0 < x < 1. (3.13)

When the rk are distinct the density of Vn can be written as

pVn(x) =

( n∏
i=1

ri

) n∑
k=1

xrk−1∏n
j 6=k(rj − rk)

, 0 < x < 1, (3.14)

and the distribution function of Vn is given by

FVn(x) =
n∑
k=1

( n∏
j 6=k

rj
rj − rk

)
xrk , 0 < x < 1. (3.15)

Proof. Formula (3.13) follows immediately from (2.5). We prove that formula (3.14) holds
by induction on n. The result holds for n = 1, so suppose that for some n ≥ 1,

pVn(v) =

( n∏
i=1

ri

) n∑
k=1

vrk−1∏n
j 6=k(rj − rk)

, 0 < v < 1.

By the inductive hypothesis, the joint density of Vn and an independent Beta(rn+1, 1)
random variable Un+1 is given by

pUn+1,Vn(u, v) =

( n+1∏
i=1

ri

)
urn+1−1

n∑
k=1

vrk−1∏n
j 6=k(rj − rk)

, 0 < u, v < 1.

Making the change of variables X = Un+1Vn, we have

pX,Vn(x, v) =

( n+1∏
i=1

ri

)
xrn+1−1

n∑
k=1

vrk−rn+1−1∏n
j 6=k(rj − rk)

, 0 < x < v < 1,

and the marginal distribution of X is given by

pX(x) =

( n+1∏
i=1

ri

)
xrn+1−1

n∑
k=1

∫ 1

x

vrk−rn+1−1∏n
j 6=k(rj − rk)

dv

=

( n+1∏
i=1

ri

) n∑
k=1

(
xrk−1∏n+1

j 6=k (rj − rk)
− xrn+1−1∏n+1

j 6=k (rj − rk)

)

=

( n+1∏
i=1

ri

)[ n∑
k=1

xrk−1∏n+1
j 6=k (rj − rk)

+
xrn+1−1∏n

j=1(rj − rn+1)

]

=

( n+1∏
i=1

ri

) n+1∑
k=1

xrk−1∏n+1
j 6=k (rj − rk)

,
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which completes the inductive proof. Formula (3.15) for the distribution function of Vn
now follows immediately on integrating the formula for the density function of Vn over
the interval (0, x).

We are now in a position to prove the main result of this section: a formula for the
distribution function and the density of the gamma bias transformation of order n. The
formula simplifies for certain values of the shape parameters r1, . . . , rn.

Proposition 3.6. Let W be a random variable with EW =
∏n

k=1 rk, and let WG(n) have
the W -gamma biased distribution of order n with shape parameters r1, . . . , rn > 0.

(i) Let Vn be distributed as the product of the mutually independent random variables
Uk ∼ Beta(rk, 1), k = 1, . . . , n. Then, the distribution function of WG(n) is given by

FWG(n)(w) = 1−
n∏
k=1

(1/rk)E
[
W

(
1− FVn

(
w

W

))
1(W ≥ w)

]
. (3.16)

In particular, if the rk are all distinct, we have

FWG(n)(w) = E
[
W

[
1−

n∑
k=1

1

rk

( n∏
j 6=k

1

rj − rk

)(
w

W

)rk]
1(W ≥ w)

]
. (3.17)

If r1 = · · · = rn = r the distribution function of WG(n) can be written as

FWG(n)(w) = 1− 1

(n− 1)!rn
E
[
Wγ

(
n, r log

(
W

w

))
1(W ≥ w)

]
, (3.18)

where γ(a, x) =
∫ x

0
ta−1e−t dt.

(ii) The density function of WG(n) is given by

pWG(n)(w) = E
[
Gn,0
n,n

(
w

W

∣∣∣∣ r1, . . . , rn
r1 − 1, . . . , rn − 1

)
1(W ≥ w)

]
. (3.19)

If the rk are distinct, we have

pWG(n)(w) = E
[ n∑
k=1

( n∏
j 6=k

1

rj − rk

)(
w

W

)rk−1

1(W ≥ w)

]
. (3.20)

If r1 = · · · = rn = r the density function of WG(n) is given by

pWG(n)(w) =
1

(n− 1)!
E
[(

w

W

)r−1(
log

(
W

w

))n−1

1(W ≥ w)

]
. (3.21)

Proof. (i) In the proof of Proposition 3.4 we showed that Ef(WG(n)) =
∏n

k=1(1/rk)EWf(VnW )
for all bounded functions f . By taking f(x) = 1(x ≤ w) we have

FWG(n)(w) =
n∏
k=1

(1/rk)E[W1(VnW ≤ w)] = 1−
n∏
k=1

(1/rk)E[W1(VnW ≥ w)], (3.22)

8



as EW =
∏n

k=1 rk. Formula (3.16) now follows. If the rk are distinct, then, from formula
(3.15) for the distribution function of Vn and (3.16), we deduce formula (3.17).

Suppose now that r1 = · · · rn = r. It is straightforward to verify that − log(Uk) follows
the Exp(r) distribution. Hence, − log(Vr) follows the Gamma(n, r) distribution, and thus

FWG(n)(w) =
1

rn
E
[
W

∫ − log( w
W

)

0

rn

(n− 1)!
tn−1e−rt dt1(W ≥ w)

]
.

Making the change of variables u = rt gives∫ − log( w
W

)

0

tn−1e−rt dt =
1

rn

∫ −r log( w
W

)

0

un−1e−u du =
1

rn
γ

(
n, r log

(
W

w

))
,

and formula (3.18) now follows.
(ii) The general formula follows from differentiating the right-hand side of (3.16) with

respect to w, and then applying formula (3.13) for the density of Vn. Formula (3.20)
follows from substituting the formula (3.14) for the density of Vn into (3.19). Finally,
we consider the case r1 = · · · = rn = r. For a > 0, the function γ(n, r log(a/w)) is
differentiable on (0, a), with derivative

d

dw

[
γ

(
n, r log

(
a

w

))]
= −r

n

w

(
log

(
a

w

))n−1(
w

a

)r
. (3.23)

Using (3.23) and dominated convergence now yields formula (3.21).

4 Proof of Theorem 1.1 and concluding remarks

4.1 Proof of Theorem 1.1

Let us first consider the general case a1, . . . , an > −1. For ease of notation, let rj = aj + 1
for j = 1, . . . , n. Let W ∼ PG(r1, . . . , rn, 1), which has density

p(x) = KGn,0
0,n(x | r1 − 1, . . . , rn − 1), x > 0, (4.24)

where K =
∏n

k=1(1/rk). From formula (3.19), we have that the density of W -gamma
biased distribution of order n with shape parameters r1, . . . , rn is given by

pWG(n)(x) = K

∫ ∞
x

Gn,0
n,n

(
x

t

∣∣∣∣ r1, . . . , rn
r1 − 1, . . . , rn − 1

)
Gn,0

0,n(x | r1 − 1, . . . , rn − 1) dt, x > 0.

(4.25)
But, by Lemma 3.3, the PG(r1, . . . , rn, 1) distribution is the unique fixed point of the
W -gamma biased distribution of order n with shape parameters r1, . . . , rn. Thus, (4.24)
and (4.25) are equal for all x > 0, from which we deduce formula (1.1). The formulas for
the special cases of distinct a1, . . . , an and a1 = · · · = an = a following similarly, with the
difference being that we apply formulas (3.20) and (3.21) instead of (3.19). 2
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4.2 Discussion

The approach used in this paper to obtain the integral formulas of Theorem 1.1 could
also be used to arrive at integral formulas for other special functions. The first step
would be to obtain an appropriate Stein characterisation of a probability distribution P ,
whose probability density function is given in terms of special functions. An associated
distributional transformation would then have to be obtained that contains P as a fixed
point. Finally, a formula for the density of the distributional transformation of P would
then need to be obtained, from which we would deduce an integral formula involving
special functions.

For example, the PN(n, 1) characterisation (2.6) and the zero bias transformation of
order n could be used together to obtain integral formulas involving the Meijer G-function.
However, doing this just leads to a formula that is equivalent to (1.2) with a = 0, and
reduces to it after a simple change of variables. This is essentially due to the fact that
the Γ(1

2
, 1

2
) distribution, the chi-square distribution with one degree of freedom, has the

same distribution as the square of a standard normal random variable.
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