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We report the results of an experimental and

numerical investigation into the buckling of thin

elastic rings confined within containers of circular or

regular polygonal cross section. The rings float on the

surface of water held in the container and controlled

removal of the fluid increases the confinement of

the ring. The increased compressive forces can cause

the ring to buckle into a variety of shapes. For the

circular container finite perturbations are required to

induce buckling, whereas in polygonal containers the

buckling occurs through a linear instability that is

closely related to the canonical Euler column buckling.

A model based on Kirchhoff–Love beam theory is

developed and solved numerically, showing good

agreement with the experiments and revealing that in

polygons increasing the number of sides means that

buckling occurs at reduced levels of confinement.

1. Introduction

It is well known that thin-walled elastic rings, beams

and tubes are prone to buckling instabilities when under

compressive loads [1,2]. Elastic buckling was classically

explored by Euler [3] for beams and explicit expressions

for the critical compressive conditions are given in the

textbook by Timoshenko and Gere [4]. The instability is

a consequence of it being energetically more favourable

for the structure to bend (change its curvature) so that

the applied load can be balanced without increasing the

in-plane stresses. The phenomenon is commonplace and

has a wide range of applications in civil engineering and

the safety of large-scale man-made structures [5].

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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confinement of polymer rings [11] to stability of underground pipelines [9] and the formation of

spiral patterns in Nature by compression of elastic structures, see [12]. It is well-established that

the situation is qualitatively different from the case of the free ring.

A very important result first shown by Chan & McMinn [13] is that the axisymmetric state

remains stable for all values of compression. This result was confirmed in a combined numerical

and analytical study using compression by point loads [14]. Specifically, the external constraint

prevents decomposition of the deformation into standard Fourier modes (even an infinitesimal

outward radial deformation is prevented by the presence of the ring), which means that equation

(1.1) does not apply. Chan & McMinn [13,15] also highlighted the importance of imperfections

in promoting the instability, which was later confirmed by numerical investigations [16]. The

work was motivated by the buckling of steel rings inside pre-stressed concrete pressure vessels

with applications in nuclear reactors. In this situation the compressive forces arise from the

different coefficients of expansion of the two materials. It is now known that the stability of

the axisymmetric solution is a robust phenomenon and is also present in rings of visco-elastic

material [17].

Despite the theoretical predictions of stability of the unbuckled state, deformed states are

frequently observed and a modified two-lobed mode can occur as a solution to the model

equations. However, a finite perturbation is required to achieve it as shown in the finite element

calculations [18] and complementary experiments [19], which included the effects of friction. In

contrast to the unconstrained ring, the buckled state in the constrained problem does not arise at

a pitchfork bifurcation from the circular state. Instead the branch corresponding to the buckled

state is disconnected from the trivial branch and it is bounded by a saddle-node bifurcation i.e. a

stable and unstable pair of branches meet at the saddle-node near the undeformed value of the

radius.

This relatively simple system is a didactic example in which the base state is linearly stable,

but there exists an alternative state that is observed in experiments under finite perturbation. In

fact, Chan & McMinn showed that the buckled state becomes exponentially close to the base state

as the radius of the confining ring decreases. Thus, eventually the imperfections in the system

are enough to force the buckled state. The situation is not the same as the classic imperfection-

sensitivity of thin-walled shells under pressure loading [20]. In this case, there are bifurcations

from the trivial state, but the bifurcations are subcritical, which means that small imperfections

can induce buckled states at much lower loads than in the perfect system. Despite these theoretical

differences, however, the practical consequences will be the same and it would not be possible to

identify the difference between the two solution structures from experiments alone.

In this paper we consider a series of novel constrained buckling problems in which the

symmetry of the external confiner is modified from a continuous to discrete group. We replace the

circle by a regular n-gon with n> 2. In this case we find that generically the system undergoes

a buckling bifurcation at a critical level of confinement quantified by the radius of inscribed

circle of the polygon. The instability has its origins in the classic column buckling of Euler [3]

and the preferred mode is one in which the discrete symmetry of the polygon is retained after

buckling. The critical radius for buckling increases with n and the polygon becomes more circular.

Numerous alternative buckling modes can arise including a state analogous to the confined

two-lobed mode in the circular system.

In addition, we conduct experimental investigation using a novel setup in which the elastic

ring was steadily confined as water was removed in small drops from specially constructed

funnels. The experimental results are in reasonable quantitative agreement with the theoretical

model and demonstrate that the full-symmetry buckling mode occurs spontaneously but that

other buckling modes require finite perturbation.

2. Methods
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(a) Experiments

The experiments were conducted using latex rings of 1mm cross-section and internal radii of

36mm, giving h/R= 1/36. The latex rings were made by injecting a solution of the hyperelastic

material extra hard Sid AD Special (Feguramed GmbH) into machined stainless steel moulds. The

latex material was initially formed by mixing a degassed polyvinyl base and siloxane catalyst in

the ratio of 1:1. While in the liquid state, the uniform mixture was injected into the stainless steel

moulds and left to set for 30 minutes. The density of the rings was slightly greater than water

at ρ≈ 1, 100kgm−3, but the rings were kept afloat by surface tension. Preliminary experiments

were also performed using rings of internal radii 18mm that were manufactured by injecting the

latex material into a glass tube, breaking the tube and gluing the ends together. The resulting

rings were tapered and had a visible bump at the join. The results from the 18mm rings, although

qualitatively similar to those obtained using the 36mm rings, are quantitatively unreliable and for

this reason we present data from experiments using the 36mm rings only.

The specially constructed funnels which contained the water were accurately fabricated from

aluminium sheets. The water was removed from the funnel in millilitre drops using a calibrated

pipette. The sheets forming the sides of the funnels were machined to size and silver soldered

together while held on a machined former. The inner surfaces of the funnel were coated with

Teflon to minimise frictional effects. The experimental setup is shown in Figure 2. As the water

Figure 2. Schematic of the experimental setup: an elastic ring floats on the surface of water confined within a funnel of

given cross-section.

was removed from the funnel, the water level dropped and the ring was constrained by the

boundary. Images were taken by a top view camera and we used standard edge detection and

image processing within Matlab to extract the surface area of the water enclosed by the ring for

comparison with the numerical results. Typical overhead views are shown in Figure 3 for three

different funnel shapes.

(b) Theoretical model

We are interested only in equilibrium configurations in which the fluid is at rest so we shall

assume that the role of the fluid is purely passive in the sense that its presence ensures that

a vertical force balance on the elastic ring is always maintained and that the ring remains

planar. Thus, our model reduces to a problem in solid mechanics; however, the dynamic shape

evolution during water drainage from the funnel presents a novel and challenging fluid-structure

interaction.

The ring is assumed to an elastic beam of thickness h and undeformed radius R. Its

deformation is described using geometrically non-linear beam theory [21]. Material lines normal

to the undeformed centreline are assumed to remain unstretched and normal to the centreline

during the deformation; hence, the position of the centreline is sufficient to describe the

deformation of the beam. In a global Cartesian coordinate system, with origin at the centre of
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the ring, the undeformed centreline is located at R= (R1, R2) = (R cos ξ,R sin ξ), parametrised

by a single Lagrangian coordinate ξ that is equivalent to the polar angle. We assume that the

strains induced by the deformation are sufficiently small to justify the use of an incrementally

linear constitutive equation. Thus, the dimensionless second Piola–Kirchhoff stress is given by

σ= σ∗/E = ǫ, where E is the Young’s modulus and ǫ is the Green–Lagrange centreline strain, see

equation (2.2).

The principle of virtual displacements states that external work generated by the virtual

displacement of an elastic body must be equal to the virtual change in its strain energy. Under

the above assumptions the variational principle for ring takes the form

∫
2π

0

[

ǫδǫ+
1

12

(

h

R

)2

κδκ

]

dξ =
R

h

∫
2π

0

f · δR

√

(

R1,ξ

)2
+
(

R2,ξ

)2
dξ, (2.1)

after analytic integration through the thickness of the beam. In the above, R1,ξ ≡ ∂R1/∂ξ and

R2,ξ ≡ ∂R2/∂ξ; the quantity ǫ is the Green–Lagrange centreline strain

ǫ=
1

2

(

∣

∣

∣

∣

∂R

∂ξ

∣

∣

∣

∣

2

− 1

)

=
1

2

[

(

R1,ξ

)2
+
(

R2,ξ

)2
− 1
]

; (2.2)

κ is the dimensionless change of curvature of the centreline

κ=
R2,ξξR1,ξ −R1,ξξR2,ξ
√

(

R1,ξ

)2
+
(

R2,ξ

)2

; (2.3)

and f = f∗/E is the non-dimensional traction acting on the wall. Here, the first two terms

in equation (2.1) represent the change in internal strain energy due to stretching and bending

respectively and the final term is the work done by the external load acting on the deformed ring.

If we neglect gravitational and inertial effects, justified by an assumed small value of h/R (we

used the experimental value of h/R= 1/36), then the load on the ring consists of the contribution

from the presence of the funnel which in most cases is simulated by applying a large penalty

pressure in the direction normal to the funnel wall:

f =Kwall
Nwall

|Nwall|

(

1

d

)4

, d=
|Nwall|

dcrit
. (2.4)

In the above, Nwall is a vector from a given point on the ring to the nearest point on the wall in the

normal direction of the wall but directed toward the ring and |N | denotes its length. Note that for

polygonal funnels points on the ring may be equidistant from different straight-line sections of the

wall, so contributions from all such sections of the wall are included. The parameters Kwall = 0.1

and dcrit = 0.001 were found to give contact regions that were within graphical accuracy, see the

lower images in Figure 3. If these parameters are poorly chosen the ring will either penetrate

the wall (penalty pressure too small) or be significantly displaced inwards (penalty pressure too

large).

In order to assess the validity of this approach, however, we also imposed the solid contact

exactly by introducing a contact pressure field pcontact such that

f = pcontact Nwall.

The contact pressure is determined by using the constraint:

If |Nwall|> 0, pcontact = 0.

If |Nwall| ≤ 0, |Nwall|= 0.
(2.5)

In other words, the contact pressure is zero if the ring has not penetrated the wall, but if

penetration has occurred then the ring is constrained to be exactly located on the wall and

the associated contact pressure will be found to satisfy this constraint. The results for the two

formulations are indistinguishable apart from near bifurcation points where the penalty method

can act as an imperfection.
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The variational principle is discretised using Hermite beam elements in which the positions

are approximated by cubic polynomials within each element and continuity of position and its

azimuthal gradient between elements is enforced. The contact pressure is discretised by linear

shape functions and the contact constraint (2.5) is enforced by collation at each node. The discrete

set of equations is assembled and solved using the finite element library oomph-lib [22]. The

non-linear algebraic equations are solved using a globally convergent Newton method where

each linear system is solved using a direct solver (SuperLU). Typically 300 elements are used to

discretise the entire ring. If the entire ring is discretised then no particular symmetry is enforced,

but the horizontal position of one degree of freedom is pinned to avoid translational degeneracy

for large rings. In order to speed up calculations, we have also used alternative formulations in

which specific symmetries are enforced to reduce the number of alternative conjugate solution

branches. When examining the two-lobed buckling mode, we solve over half the ring enforcing

a single reflection symmetry, but when examining the initial buckling instability we solve over
1

2n -th of the ring with reflection symmetries imposed on two straight lines from the centre of the

inscribed circle separated by an angle π/n. In these formulations the number of elements can be

reduced.

Determining the stability of the confined rings is not straightforward owing to the presence of

the unilateral contact constraints. This problem is obviated by using the penalty approach (2.4) in

which the constraint is not applied exactly. However, if using a standard linear stability analysis

eigenfunctions that violate the confinement must be rejected [23]. Pocheau & Roman [24] discuss

the problem of multiplicity of solutions for an elastic strip contained within a box by developing

non-local methods to find bifurcations. They find uniqueness of the solution until the regions

of flat contact buckle in a classic Euler mode. More recently, an energy method was developed

for stability analysis of such systems, which again relies on rejection of modes that violate the

constraints [25].

In the following, we use a standard linear stability analysis and discard invalid modes,

but used computational group theory to assess whether our methods for determining whether

symmetry-breaking had occurred were robust [26]. The computer algebra system magma [27]

was used to determine projection operators that could be applied to the full Jacobian matrix to

extract reduced eigenvalue problems corresponding to whether a specific symmetry is broken.

The method relies on knowing the symmetry group of the external container. In principle, the

method can be used to reduce the computation time for stability calculations, but for the present

problem the reductions in computation time were minimal and it was not used. Nevertheless, the

method did confirm that the discrete system reproduced the appropriate symmetries and that the

results of the stability analysis were identical when solving the full system or the set of reduced

systems.

3. Results

Snapshots of typical experimental and simulation results for triangular, square and pentagonal

containers are shown in Figure 4. It can be seen that the shapes obtained in the experiments

and numerical simulations are qualitatively similar. The non-trivial (buckled) states all have the

full symmetries of the bounding polygon. We can make a quantitative connection between the

experiments and theoretical calculations by using the area enclosed by the ring to parametrise

its shape and plot this against the area of the bounding shape. The results for the conical funnel

(circular bounding shape) are shown in Figure 4. The trivial branch is shown as a dotted line

and because the ring adopts the same shape as the funnel boundary (ignoring any meniscus

effects) the branch is given by equality between both areas. The simulated disconnected buckled

solution is shown as a solid line and the unstable region is almost indistinguishable from the

circular state in the chosen measure. The stable buckled region is in good agreement with the

experimental data, shown as black markers. The differences at higher compression arise because

in the experiment the ring self-contacts and distorts into the third dimension. Typical unstable and

stable buckled ring shapes are shown to demonstrate that the buckled region is extremely small
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N = 3 N = 4 N = 5

Figure 3. Overhead images from experiments and computations (using the penalty pressure formulation) in triangular,

square and pentagonal containers for buckled shapes that maintain the discrete symmetry of the polygon. Note that the

symmetry is approximate in the experimental images.

for the unstable buckled solution and more extensive for the corresponding stable solution. We

also present additional computations using the Euler–Bernoulli beam model derived by Chann

& McMinn [13] for the disconnected buckled branch, see the Appendix for details, which is in

good agreement with the Kirchhoff–Love beam simulations and experimental data. Note that the

larger enclosed area for the Chan & McMinn solution is due to the use of exact contact rather than

a penalty pressure formulation. These results demonstrate that the novel experimental approach

and theoretical model are both in line with the classical theory. Moreover, we confirm the finding

that there is no bifurcation from the trivial axisymmetric solution.

For the funnels with polygonal cross-section, the solution structure is qualitatively different

from the circular case. In these geometries, the trivial solution undergoes a buckling instability at

a critical level of confinement. A comparison between experimental and theoretical results for the

square funnel is shown in Figure 5. The comparison on the main branch (solid line and markers),

which has the full symmetries of the square, is good except at large cross-sections, which may

be due to meniscus effects forcing the ring to lie out of plane and therefore giving a smaller

projected area. The buckling instability occurs at a surface area of approximately 3500 mm2 and

is indicated by the sharp change in gradient of the solution. Although linear stability analysis

indicates that the main branch is unstable after buckling, inspection of the unstable modes reveals

that they violate the confinement constraints and so must be discarded. Hence, we conclude that

the branch is stable, as observed in the experiments. The agreement for the branch after finite

perturbation is in less good quantitative agreement, but lies below the main branch in both cases.

The experimental perturbation is imposed by displacing one of the sides and then releasing.

Provided that the external compression is sufficient to induce buckling, then the chosen form

of perturbation will cause the ring to “jump” into a post-buckled configuration similar to the one

shown in Figure 5(f). Comparison with the closest simulation result, Figure 5(c), indicates that

the experimental configuration is not perfectly symmetric and does not penetrate as far into the

upper corners of the square cross-section, leading to a smaller enclosed area. We attribute this

latter difference to the presence of the fluid meniscus which will rise more in the corners of the
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the neighbouring boundary of the polygon: a line defined by

y= tan(2π/n)x− r [1 + tan(2π/n) tan(π/n)] . (3.3)

We discretise and solve the equations (3.1) using quadratic finite elements via the library

oomph-lib and report the critical buckling radii of the inscribed circles in Figure 6 as black

markers. The Figure also shows red dots corresponding to the critical loads computed by

numerical linear stability analysis of the Kirchhoff–Love beam model (2.1) discretised over

1/(2n)-th of the full domain. A greater confinement (smaller radius) is required to induce

buckling in the Kirchhoff–Love beam because it is not inextensible and will initially compress

before buckling to accommodate the elevated tension. The deviation between the two models

increases with increasing n because the tension in the ring (and hence the level of compression)

increases with n. Figure 6 further demonstrates that less confinement is required to induce

buckling as n increases. In other words for polygons with increasing number of sides the buckling

instability occurs when the radius of the inscribed circle is greater. The same general trend is

found in the experiments, but the critical buckling radius cannot be determined to sufficient

accuracy to provide a reliable quantitative comparison with the theoretical data. An analytic

prediction for the critical buckling radius of the Euler–Bernoulli beam is also shown on Figure

6 and is consistent with the computations.

This analytic prediction is possible because the equation for θ can be simplified by using the

symmetry requirement that P = F cos(π/n) and Q= F sin(π/n) for some scalar F , which ensures

that the tension is normal to the symmetry line between the two sides of the polygon. Hence the

equation for θ becomes

∂2θ

∂s2
=−F̂ cos(π/n) sin θ + F̂ sin(π/n) cos θ= F sin (π/n− θ) , (3.4)

where F̂ = 12F/(Eh4). We know that θ takes values between 0 and 2π/n and hence for

sufficiently large n, θ will remain small and we can linearise (3.4) to obtain

∂2θ

∂s2
= F̂

[π

n
− θ
]

.

We use the boundary conditions for θ and ∂θ/∂s to obtain the solution

θ=
π

n
(1− cosπŝ) , (3.5)

where ŝ= s/L is a scaled arclength coordinate. Note that the value of F̂ is an eigenvalue and

we have chosen the mode with the least bending, in which case F̂L2 = π2. Comparison with the

finite element solution shows that this is actually a very good approximation for all n> 2.

We proceed by integrating the equations

∂x

∂ŝ
=L cos θ≈L

(

1−
θ2

2

)

and
∂y

∂ŝ
=L sin θ≈Lθ,

to obtain

x=L

[(

1−
3π2

4n2

)

ŝ+
π

n2
sinπŝ−

π

2n2
sin 2πŝ

]

+ Lc,

y=
L

n
(πŝ− sinπŝ)− r,

after using the boundary conditions for x and y at ŝ= 0.

We still have two unknown lengths L and Lc, but we have two constraints to enforce: (i) at

ŝ= 1 the beam must lie on the line defined by equation (3.3); and (ii) the total length of the beam

is known from inextensibility, 2Lc + L= 2πR/n. Note that the left-hand side of this constraint

does not take into account the error in length due to the approximations for cos θ and sin θ used

to find x and y, which are, in fact, the largest sources of error in this approximation. These two

Page 12 of 18

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

12

rs
ta

.ro
y
a
ls

o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

h
il.

T
ra

n
s
.

R
.
S

o
c
0
0
0
0
0
0
0

..................................................................
constraints can be used to determine Lc and L and we find that

L=

(

πR
n − r tan(π/n)

)

tan(2π/n)

π
n − 1

2

(

1− 3π2

2n2

)

tan(2π/n)
, and Lc =

πR

n
−

L

2
.

In the limit n→∞ we find that L→ 4n(R− r)/3, which only makes sense if the allowed

solutions for increasing n have (R− r)→ 0 faster than n→∞. We use this approximation to

determine the critical buckling radius as a function of n. An Euler–Bernoulli beam of length 2Lc

will buckle when the applied load (scaled by Eh4/12) exceeds π2

L2
c

. Hence, F̂ cos(π/n)>π2/L2
c ,

but F̂ = π2/L2 from above and so at the critical level of confinement, assuming that cos(π/n)≈ 1,

L2 ≈L2
c , which means that L≈Lc and so from the inextensibility constraint L≈ 2πR

3n . Thus as

n→∞,

4n(R− rcrit)

3
≈

2πR

3n
⇒

rcrit
R

≈ 1−
π

2n2
. (3.6)

Note that a more accurate formula could be derived by relaxing the approximations made when

determining x and y, but our main purpose in this analysis is to demonstrate that rcrit/R→ 1

as n→∞, indicating that the critical radius of the inscribed circle approaches the undeformed

radius of the ring.

4. Conclusions

In this paper we have demonstrated that there is a qualitative difference between constrained

buckling of an elastic ring when the confining geometry changes from circular to polygonal.

In the former, the (axisymmetric) solution with full symmetry of the system is always linearly

stable and the buckled solutions are all disconnected from the main branch. Consequently a finite

perturbation is required to induce buckling. In the latter, the ring cannot remain axisymmetric

and regions of point and then line contact develop along the polygonal walls. The line contact

regions are effectively Euler columns and will buckle when the tension in the ring is sufficiently

high. Thus, in polygonal geometries the buckled solutions are connected to the main branch via a

bifurcation and buckling can occur under infinitesimal perturbations. Indeed, different buckling

modes are possible all arising from the same bifurcation point because each individual line-

contact region may or may not buckle. Experimentally, the post-buckled solution in which the full

discrete symmetry of the system is preserved is favoured and finite perturbations are required to

reach the other modes.

As the number of sides of the polygon increases, the critical radius of the inscribed circle within

the polygon required to induce buckling tends towards the undeformed radius of the elastic ring,

but it will always be present. Thus, the polygonal boundary is always fundamentally different

from the circle. However, the mechanism identified in the present paper could occur in circular

containers with localised geometric imperfections that lead to flattening of the boundary. If the

ring can be placed into flat line contact along a region of the boundary (no matter how small) then

it will eventually buckle there. Indeed, such localised geometric imperfections could provide the

required finite perturbation to induce the well-known disconnected buckling modes.

5. Appendix

In order to determine the post-buckled solutions for the circular container we follow [13]

and solve the Euler–Bernoulli equations (3.1) between two contact points assumed to lie

symmetrically about the lowest point of the circle. The angles corresponding to these points in

a polar coordinate system with origin at the centre of the circle are ±α. We therefore solve a
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rescaled version of the equations in one half of the domain

∂2θ(ŝ)

∂ŝ2
=L2

[

−P̂ (s) sin θ + Q̂(s) cos θ
]

,
∂x

∂ŝ
=L cos θ,

∂y

∂ŝ
=L sin θ, (5.1)

where L is the unknown (half-)length of the buckled region, ŝ∈ [0, 1] is a scaled arclength

coordinate, and P̂ = P/((Eh4)/12)) and Q̂=Q/((Eh4)/12)) are dimensionless components of

the tension. We choose a global Cartesian coordinate system with origin at the centre of the circle.

The boundary conditions are that on the symmetry line (s= 0) θ= 0 and x= 0; whereas at

the contact point (s= 1) θ= α and y=−r cosα, where r is the radius of the bounding circle. The

values P̂ and Q̂ are constant from the equilibrium of forces, but their values are unknown, as

is the length L. In order to determine the unknown tension components we use the facts that

the curvature of the beam must match the curvature at the contact point: ∂θ/∂ŝ=L/r at s= 1;

and that the symmetry condition at s= 0 means that the vertical component of the tension must

be zero. (Note that it is easier to locate the buckled solution branch numerically if the vertical

position of the beam at s= 0 is treated as an additional unknown Y with the associated equation

that Q= 0.) The unknown length L is found from the constraint that at s= 1, x= r sinα. Solving

this set of equations and constraints using quadratic finite elements via oomph-lib we find a

post-buckled solution for given α if we insist that Y >−r.

In order to link this constructed solution to the undeformed ring we treat α as an unknown

with the constraint that the length change due to axial strain induced by the tension (assuming

a linear constitutive law) is consistent with the actual length of the buckled solution. Under the

assumption that the region in contact with the outer circle is uniformly strained we obtain:

2πR− P̂
h2

12R2
[2(π − α) cosα− 2 sinα]R= 2r(π − α) + 2L, (5.2)

where the left-hand side is the length that follows from the imposed tension Pex and the

right-hand side is the total length of the solution. The final term on the left-hand side follows

on integrating the axial tension over the buckled region, which yields the difference in x-

coordinates of the end points multiplied by the component P̂ . The complete solution branch is

then determined by using arclength continuation. Note that equation (5.2) is the only point in

the calculation when h/R enters explicitly, as one might expect because it is the only equation

in which axial strain and bending are related. In our calculations we used the value h/R= 1/36,

but we note that as h/R→ 0 and the ring tends towards the inextensible limit, the location of

the saddle-node bifurcation approaches the undeformed radius (rsaddle-node →R), suggesting a

potential connection with the polygonal limit n→∞ found above.

Data Accessibility. All supporting data is provided within the manuscript.

Authors’ Contributions. TM performed the experiments and data analysis. AH developed the theory and

performed the numerical simulations. The study was conceived and designed by both authors. The paper was

drafted by both authors.

Acknowledgements. This work was initiated while TM was visiting ESPCI (Paris). We would like to thank

Jose Bico for help at the start of the project. The computational group theory work was performed by John

Ballantyne and Peter Rowley at The University of Manchester and supported by funds from EPSRC via the

MAPLE Platform grant EP/I01912X/1. We would also like to thank Matthias Heil, Anne Juel, Chris Johnson,

Nico Bergemann and Edgar Häner for helpful discussions.

References

1. Flaherty JE, Keller JB, Rubinow SI. 1971 Post buckling behavior of elastic tubes and rings with
opposite sides in contact.
SIAM J. Appl. Math. 23, 446–455.

2. Vasilikis D, AKaramanos S. 2014 Mechanics of confined thin-walled cylinders subjected to
external pressure.
App. Mech. Revs. 66, 010801.

Page 14 of 18

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

14

rs
ta

.ro
y
a
ls

o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

h
il.

T
ra

n
s
.

R
.
S

o
c
0
0
0
0
0
0
0

..................................................................
3. Euler L. 1778 Die altitudine colomnarum sub proprio pondere corruentium.

Acta Acad. Sci. Imp. Pet. 1, 163–193.
4. Timoshenko SP, Gere JM. 1961 Theory of Elastic Stability. Second Edition.

McGraw-Hill.
5. Mouthuy PO, Coulombier M, Pardoen T, Raskin JP, Jones AM. 2012 Overcurvature describes

the buckling and folding of rings from curved origami to foldable tents.
Nature Comm. 231, 1290.

6. Gibson LJ. 2005 Biomechanics of cellular solids.
Journal of Biomechanics 38, 377–399.

7. M Heil M, Hazel AL. 2011 Fluid-structure interaction in internal physiological flows.
Ann. Rev. Fluid Mechs. 43, 141–62.

8. Lauga E. 2016 Bacterial hydrodynamics.
Ann. Rev. Fluid Mech. 48, 105–130.

9. Omara AM, Guice LK, Straughan WT, Akl FA. 1997 Buckling models of thin circular pipes
encased in rigid cavity.
J. Eng. Mech. 123, 1294–1301.

10. Putelat T, Triantafyllidis N. 2014 Dynamic stability of externally pressurized elastic rings
subjected to high rates of loading.
Int. J. of Solids and Struct. 51, 1–12.

11. Ostermeir K, Alim K, Frey I. 2010 Buckling of stiff polymer rings in weak spherical
confinement.
Phys. Rev. E 81, 061802.

12. Boué L, Adda-Bedia M, Boudaoud A, Cassani D, Couder Y, Eddi A, Trejo M. 2006 Spiral
patterns in the packing of flexible structures.
Phys. Rev. Lett. 97, 166104.

13. Chan HC, McMinn SJ. 1966 The stability of a uniformly compressed ring surrounded by a
rigid surface.
Int. J. Mech. Sci. 8, 433–442.

14. Bottega WJ. 1988 On the constrained elastic ring.
J. Eng. Math. 22, 43–51.

15. Chan HC, McMinn SJ. 1966 The stabilisation of the steel liner of a prestressed concrete
pressure vessel.
Nuc. Eng. and Des. 3, 66–73.

16. Kyriakides S, Youn SK. 1984 On the collapse of circular confined rings unde external pressure.
Int. J. Sol. Struct. 26, 699–713.

17. Yang M, Xiao SF. 2011 Confined buckling analyis of a viscoelastic ring subjected to constant
temperature difference.
Adv. Mat. Res. 295, 1804–1810.

18. Sun C, Swan WDJ, Vinogradov AM. 1995 Instability of confined rings: An experimental
approach.
Exp. Mech. 35, 97–103.

19. Sun C, Swan WDJ, Vinogradov AM. 1995 Discrete-element model for buckling analysis of thin
ring confined within rigid boundary.
J. Eng. Mech. 121, 71–79.

20. Hutchinson JW. 1967 Imperfection sensitivity of externally pressurized spherical shells.
J. Appl. Mech. 34, 49–55.

21. Wempner GA. 1973 Mechanics of solids.
New York: McGraw–Hill.

22. Heil M, Hazel AL. 2006 oomph-lib – an object-oriented multi-physics finite-element library.
In Fluid-Structure Interaction (ed. M Schäfer, HJ Bungartz), pp. 19–49. Springer.
oomph-lib is available as open-source software at http://www.oomph-lib.org

23. Ro WC, Chen JS, Hong SY. 2010 Vibration and stability of a constrained elastica with variable
length.
Int. J. of Solids and Struct. 47, 2143–2154.

24. Pocheau A, Roman B. 2004 Uniqueness of solutions for constrained elastica.
Physica D 192, 161–186.

25. Chen JS, Lu CJ, Lee CY. 2015 On the use of energy method with element splitting to determine
the stability of constrained elastica.
Int. J. of Non-Linear Mechanics 76.

Page 15 of 18

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

15

rs
ta

.ro
y
a
ls

o
c
ie

ty
p
u
b
lis

h
in

g
.o

rg
P

h
il.

T
ra

n
s
.

R
.
S

o
c
0
0
0
0
0
0
0

..................................................................
26. Matthews P. 2004 Automating symmetry-breaking calculations.

LMS Journal of Computation and Mathematics 7, 101–119.
27. Bosma W, Cannon J, Playoust C. 1997 The Magma algebra system. I. The user language.

J. Symbolic Comput. 24, 235–265.
(doi:{10.1006/jsco.1996.0125}.\newblockComputationalalgebraandnumbertheory(London,
1993

28. Plaut RH, Suherman S, Dillard DA, Williams BE, Watson LT. 1999 Deflections and buckling of
a bent elastica in contact with a flat surface.
Int. J. Solids & Structures 36, 1209–1229.

29. Golubitsky M, Stewart IN, Schaeffer DG. 1988 Singularities and Groups in Bifurcation Theory.
Springer-Verlag (Berlin).

30. Howell P, Kozyreff G, Ockendon J. 2009 Applied Solid Mechanics.
Cambridge University Press.

Page 16 of 18

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For R
eview

 O
nly

Page 17 of 18

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

Page 18 of 18

http://mc.manuscriptcentral.com/issue-ptrsa

Submitted to Phil. Trans. R. Soc. A - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


