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Near-wall Turbulence Modelling
Non-overlapping Domain Decomposition

Near-wall Turbulence

©Fluent

near-wall sublayer significantly
affects mean flow

resolution of near-wall area
requires up to 90% of CPU
time

it is a multiscale problem

domain decomposition should
be efficient

standard approach: domain
decomposition based on wall
functions + HRN
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Near-wall Turbulence Modelling
Non-overlapping Domain Decomposition

Near-wall Turbulence

Low Reynolds Number models (LRN):
governing equations include all terms of the Reynolds Averaged
Navier-Stokes Equations (RANS)

High Reynolds Number models (HRN):
governing equations ignore all near-wall damping terms

Wall functions:
Dirichlet boundary conditions are set for HRN at the nearest to
the wall cell
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Near-wall Turbulence

©Fluent

non-overlapping domain
decomposition:

the b.c can be transferred
from the wall to y = y ∗

the interface near-wall b.c.
(INBC) is nonlocal

general formulation of b.c.

∂u

∂n |y∗
= u(y ∗)Sy∗(1) + f ∗y ,

Sy∗ is the Steklov-Poincaré operator
Utyuzhnikov, 2009
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Near-wall Turbulence Modelling
Non-overlapping Domain Decomposition

Near-wall domain decomposition. Sketch (linear problem)

Original BVP (possible statement)

Transfer of b.c. to an interface boundary

R.b.c. does not depend on the outer region!
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Solution of BVP in the outer region

Solution of BVP in the inner region (if needed)
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Test cases

The near-wall domain decomposition
Interface Near-wall Boundary Condition

The near-wall domain decomposition (NDD)

Consider equation
(µuy )y = R(y)

in D = [0 ye ] with boundary condition at y = 0:

u(0) = 0.

INBC is set at y ∗

0 < y ∗ < ye , D
− := [0 y ∗].

Sergei Utyuzhnikov DOMAIN DECOMPOSITION



Introduction to Near-wall Turbulence
Near-wall Domain Decomposition

Test cases

The near-wall domain decomposition
Interface Near-wall Boundary Condition

Interface Near-wall Boundary Condition (Utyuzhnikov, 2005)

Consider

(µuy )y = R(y),

u(0) = 0.

INBC at y = y ∗:

u(y ∗) = u′(y ∗)

∫ y∗

0

µ(y ∗)

µ(y)
dy− 1

µ(y ∗)y ∗

∫ y∗

0

(
µ(y ∗)

µ(y)

∫ y∗

y

R(y ′)dy ′)dy .
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Near-wall Domain Decomposition

Test cases

The near-wall domain decomposition
Interface Near-wall Boundary Condition

1D Equation. Wall flux

The wall flux can be obtained without resolution of the inner layer

Cf = (µuy )|y=y∗ −
∫ y∗

0

R(y)dy ,

where Cf = (µuy )|y=0 .

Sergei Utyuzhnikov DOMAIN DECOMPOSITION



Introduction to Near-wall Turbulence
Near-wall Domain Decomposition

Test cases

The near-wall domain decomposition
Interface Near-wall Boundary Condition

Near-wall non-overlapping domain decomposition
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The near-wall domain decomposition
Interface Near-wall Boundary Condition

Interface boundary conditions (IBCs)

The interface boundary condition is exact even in non-linear case

The IBCs are mesh independent

The IBCs completely replace the inner region for the outer region

Treatment of all functions is basically the same

Can be used for both LRN and HRN models

Sergei Utyuzhnikov DOMAIN DECOMPOSITION



Introduction to Near-wall Turbulence
Near-wall Domain Decomposition

Test cases

The near-wall domain decomposition
Interface Near-wall Boundary Condition

Interface boundary conditions (IBCs)

The interface boundary condition is exact even in non-linear case

The IBCs are mesh independent

The IBCs completely replace the inner region for the outer region

Treatment of all functions is basically the same

Can be used for both LRN and HRN models

Sergei Utyuzhnikov DOMAIN DECOMPOSITION



Introduction to Near-wall Turbulence
Near-wall Domain Decomposition

Test cases

The near-wall domain decomposition
Interface Near-wall Boundary Condition

Interface boundary conditions (IBCs)

The interface boundary condition is exact even in non-linear case

The IBCs are mesh independent

The IBCs completely replace the inner region for the outer region

Treatment of all functions is basically the same

Can be used for both LRN and HRN models

Sergei Utyuzhnikov DOMAIN DECOMPOSITION



Introduction to Near-wall Turbulence
Near-wall Domain Decomposition

Test cases

The near-wall domain decomposition
Interface Near-wall Boundary Condition

Interface boundary conditions (IBCs)

The interface boundary condition is exact even in non-linear case

The IBCs are mesh independent

The IBCs completely replace the inner region for the outer region

Treatment of all functions is basically the same

Can be used for both LRN and HRN models

Sergei Utyuzhnikov DOMAIN DECOMPOSITION



Introduction to Near-wall Turbulence
Near-wall Domain Decomposition

Test cases

The near-wall domain decomposition
Interface Near-wall Boundary Condition

Interface boundary conditions (IBCs)

The interface boundary condition is exact even in non-linear case

The IBCs are mesh independent

The IBCs completely replace the inner region for the outer region

Treatment of all functions is basically the same

Can be used for both LRN and HRN models

Sergei Utyuzhnikov DOMAIN DECOMPOSITION



Introduction to Near-wall Turbulence
Near-wall Domain Decomposition

Test cases

The near-wall domain decomposition
Interface Near-wall Boundary Condition

Interface boundary conditions (IBCs)

The interface boundary condition is exact even in non-linear case

The IBCs are mesh independent

The IBCs completely replace the inner region for the outer region

Treatment of all functions is basically the same

Can be used for both LRN and HRN models

Sergei Utyuzhnikov DOMAIN DECOMPOSITION



Introduction to Near-wall Turbulence
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Test cases

The near-wall domain decomposition
Interface Near-wall Boundary Condition

Advantages of NDD

Interface boundary y ∗ provides a clear trade-off between
accuracy and time consumption

The LRN solution is recovered as y ∗ → 0

Meshes in the inner and outer regions completely independent

No free parameters

Implementation into industrial codes easy since IBCs computed
with external subroutine

Robin boundary condition is robust, converges fast since
both Φ and ∂yΦ taken at the same iteration:

Φ|y∗ = f1
∂Φ

∂y

∣∣∣∣
y∗

+ f2
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Test cases

Channel Flow. k − ε (Chien) model
Turbulent asymmetric diffuser
Ribbed channel flow

Low-Re Velocity Profile. Re = 3950

y+∗ = uτ y∗/ν = 1
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Test cases

Channel Flow. k − ε (Chien) model
Turbulent asymmetric diffuser
Ribbed channel flow

Low-Re Velocity Profile. Re = 3950

y+∗ = uτ y∗/ν = 100
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Introduction to Near-wall Turbulence
Near-wall Domain Decomposition

Test cases

Channel Flow. k − ε (Chien) model
Turbulent asymmetric diffuser
Ribbed channel flow

Turbulent asymmetric diffuser, Re = 1.8 ∗ 104

Compute inlet conditions with a separate LRN calculation

Cut boundary layers off both walls

Compute Cf along the inclined wall (Jones, Utyuzhnikov, 2015)
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Test cases

Channel Flow. k − ε (Chien) model
Turbulent asymmetric diffuser
Ribbed channel flow

Turbulent asymmetric diffuser, Re = 1.8 ∗ 104. Different y ∗/H
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k − ε model (HRN)
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Spalart-Almaras model

Clear convergence to LRN solution as y∗ → 0 for SA model

DD produces recirculation region with both models
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Near-wall Domain Decomposition

Test cases

Channel Flow. k − ε (Chien) model
Turbulent asymmetric diffuser
Ribbed channel flow

Turbulent asymmetric diffuser, Re = 1.8 ∗ 104. y ∗/h = 0.03

k − ε model (HRN)

Only Robin boundary condition for k predicts the separation
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Near-wall Domain Decomposition

Test cases

Channel Flow. k − ε (Chien) model
Turbulent asymmetric diffuser
Ribbed channel flow

Turbulent asymmetric diffuser, Re = 1.8 ∗ 104. Velocity profile

Spalart-Almaras model. 10U/Ub
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Comparison of simulation time for SST model
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Max error compared to LRN solution is shown

e =
max

∣∣∣CLRN
f (x)− C

NDD / HRN
f (x)

∣∣∣
Cf 0
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Plane ribbed channel flow (2D). SA model
(Jones, Utyuzhnikov, 2015)

Periodic flow, both walls heated
with constant heat flux

h/H = 0.1

Remove same amount from upper
and lower walls

Interesting limit is y ∗/h = 1

For y ∗/h < 1, some of rib tops is
included in mesh
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Friction factor for different y∗, the rib height is fixed

For SA, error is less than 2.5% until y∗/h = 0.9
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Plane ribbed channel flow (2D). f for different h
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Varying the rib height is trivial since only one parameter needs adjusting:

h = hresolved + y∗
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Varying the rib height is trivial since only one parameter needs adjusting:

h = hresolved + y∗
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Conclusions

NDD proved to be an efficient and quite accurate method for
simulating near-wall regions in turbulent flows

NDD represents a clear trade-off between accuracy and
computational resources that is easily managed

Heat fluxes and friction factor show little sensitivity to y ∗

For ribbed channels a large portion of a rib can be effectively
removed

Changing the rib height is simple and the results are reasonably
accurate

NDD can be especially efficient in optimal engineering design
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