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Abstract

Multi-criteria decision analysis presumes trade-off between different criteria. As a result, the

optimal solution is not unique and can be represented by the Pareto frontier in the objective space.

Each Pareto solution is a compromise between different objectives. Despite a limited number of

Pareto optimal solutions, the decision-maker eventually has to choose only one option. Such a

choice has to be made with the use of additional preferences not included in the original formula-

tion of the optimization problem. The paper represents a new approach to an automatic ranking

that can help the decision-maker. In contrast to the other methodologies, the proposed method

is based on the minimization of trade-off between different Pareto solutions. To be realized, the

approach presumes the existence of a well-distributed Pareto set representing the entire Pareto

frontier. In the paper, such a set is generated with the use of the directed search domain algorithm.

The method is applied to a number of test cases and compared against two existing alternative

approaches.
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1 INTRODUCTION

In the real-life design, it is required to improve different objectives

simultaneously. A trade-off between the objectives is usually unavoid-

able because of the constraints. As a result, the optimal solution is not

unique and corresponds to a so-called Pareto solution. In the objec-

tive space, all Pareto solutions create a Pareto frontier. For a practi-

cal decision-making analysis, the Pareto frontier is represented by a

Pareto set that contains a finite number of optimal solutions. Even-

tually, the decision-maker has to choose only one solution. This leads

to the problem of ranking because the formal definition of the Pareto

solution does not presume any preferences. An additional algorithm is

required to introduce the ranking.

In the multi-criteria decision analysis, the ranking problem has been

developed for the last 20 years. However, there are no universal

approaches. Each method stands on its own background and principles.

The most natural approach is to introduce individual preferences. One

of the basic and simplest multi-criteria decision analysis techniques is

the sum of weightage calculation model. In this technique, a weight is

assigned to each criterion to denote its importance. Each aggregate

function is then calculated as the sum of weightage criteria. A classic

work on the weight determination is by Eckenrode (1965). Eckenrode

worked with 24 expert judges, who were required to put a weightage on

six criteria in a specified experiment related to an air-defence system.

Another well-known decision-making method is the analytic hierar-

chy process (AHP). AHP was proposed by Saaty (1980). The essence

of this method is that human judgement is used in performing eval-

uations. AHP structures a decision problem into a hierarchy with the

goal, decision criteria, and alternatives. Then, it uses the pairwise

comparison and the expert judgement, where these judgements are

converted into a numerical evaluation. However, human can lack of

consistency in judging (influenced by emotional, experience, and so on),

and different people have different preferences. AHP works its best for

decision-making process in a group of people having consensus. Many

authors used AHP in the decision-making process (e.g., Kablan, (2004);

Herath, (2004); Randall et al., (2004); Bascetin, (2007); Brent, Rogers,

Ramabitsa-Siimane, & Rohwer, (2007); Iwanejko, (2007); Wu, Lin, &

Chen, (2007); Srdjevic, (2007); Contreras, Hanaki, Aramaki, & Connors,

(2008); Dabaghian, Hashemi, Ebadi, & Maknoon, (2008); Ercanoglu,

Kasmer, & Temiz, (2008); Thapa & Murayama, (2008); Chatzimouraddis

& Pilavachi, (2009); Chen, (2009)). Current work on AHP is by Zaidan

et al. (2015). They imposed the AHP method, integrated with other

MCDM techniques, to select the right software for open-source elec-

tronic medical record.
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The analytic network process (ANP) is an extension of AHP also

proposed by Saaty (1996). Apart of structuring the multi-objective

problem as a hierarchy, ANP treats it as a network. The decision cri-

teria in AHP assume to be independent from each another, while ANP

allows interdependence of those criteria. Several authors used ANP in

their research (e.g., Levy, (2005); Cheng & Li, (2007); Banar, Kose, Ozkan,

& Acar, (2007); Khan & Faisal, (2008); Tseng, Lin, Chiu, & Liao, (2008);

Gomez-Navarro, Garcia-Melon, Acuna-Dutra, & Diaz-Martin, (2009);

Boj, Rodriguez-Rodriguez, & Alfaro-Saiz, (2014)).

The multi-attribute utility theory (MAUT) by Keeney and Raiffa

(1976) is among the classical methods of multi-criteria decision anal-

ysis. It follows the utility axioms of von Neumann and Morgenstern.

MAUT is a structured methodology designed to handle the trade-off

among multiple objectives. MAUT assigns a utility value to each action

and its quantifying individual’s preferences. The result of using this

method is a set of choices that represents the decision-maker’s pref-

erences. MAUT was employed in the decision-making by Ananda and

Herath (2005).

The elimination and choice expressing reality (ELECTRE) was pro-

posed by Bernard Roy in 1960s. ELECTRE is an outranking method

that discards unacceptable alternatives and uses another multi-criteria

decision-making method to select the best one. A limited set of alterna-

tives that are obtained saves much of selecting time. Another outrank-

ing method is preference ranking organization method for enrichment

evaluations (PROMETHEE), which is a modified approach of ELECTRE

proposed by Brans and Vincke P (1985). PROMETHEE is a much sim-

pler version of the outranking technique that uses pairwise compar-

ison of alternatives via a preference index. PROMETHEE consists of

three tools: the PROMETHEE I (partial ranking), the PROMETHEE II

(complete ranking), and the PROMETHEE-GAIA (geometrical analy-

sis for interactive aid). Several authors applied the outranking method

to multi-criteria decision problems (e.g., Goumas & Lygerou, (2000);

De Leeneer & Pastijn, (2002); Soltanmohammadi, Osanloo, & Baz-

zazi, (2009); Oberschmidt, Geldermann, Ludwig, & Schmehl, (2010);

Petrović, Bojković, Anić, Stamenković, & Tarle, (2014)).

The genetic algorithm (GA) has also been used as a multi-criteria

decision-making method. Several authors employed GA for this pur-

pose (e.g., Fonseca & Fleming, (1993); Tanaka, Watanabe, Furukawa,

& Tanino, (1995); Feng et al., (1997); Hegazy, (1999); Zheng, Ng, &

Kumaraswamy, (2005)). The foundation of GA lies in the survival of fit-

ted generations that copies the process of the natural selection. Several

natural selection techniques such as mutation, selection, and crossover

are implemented. This approach proved to be efficient. However, in the

algorithm, the solutions can bias towards some regions, and the method

also produces non-Pareto solutions. The algorithm generates a large

number of solutions. Eventually, most of them appear to be redundant.

Massive number of solutions including redundant ones make problem-

atic the ranking procedure.

Wang and Yang (2009) used another natural behavior algorithm, the

particle swarm optimization (PSO), to determine a ranking order for

the multi-criteria decision problem. The PSO was inspired by the move-

ment of bird flock or fish school. Particle swarm improves the search

ability of GA for the best alternatives by having a better convergence to

the Pareto frontier. However, as shown by Wang and Yang, PSO requires

up to 30,000 numbers of iterations to solve the problem. Therefore, it

might be time-consuming.

The technique for order preference by similarity to the ideal solu-

tion (TOPSIS) was first proposed by Hwang and Yoon (1981). TOPSIS

method embeds the priori weights that are specified beforehand by

the decision-maker. The core of the ranking for this method lies in the

distance of alternatives to the ideal and anti-ideal solutions. An alterna-

tive that is “closer to ideal” and “farther from anti-ideal” holds a higher

ranking. However, TOPSIS produces an inconsistent ranking between

the “closer to ideal” and “farther from anti-ideal.” Many authors have

used TOPSIS as a decision-making method (e.g., Chen, (2000); Chu &

Lin, (2003); Jahanshahloo, Lotfi, & Izadikhah, (2006); Liu, Frazier, Kumar,

MacGregor, & Blake, (2006); Yong, (2006); Shih, Shyur, & Lee, (2007);

Wang & Chang, (2007); Gumus, (2009); Kilic, Zaim, & Delen, (2014)).

Kao (2010) addresses the disadvantages of inconsistency ranking in

TOPSIS and proposes a consistent ranking between the “closer to ideal”

and “farther from anti-ideal.” In contrast to TOPSIS, Kao suggests a rel-

ative distance ranking method and introduces the posteriori weights

obtained from the data. In both methods, the usage of the distance to

the ideal solution as the criterion is arguable. In fact, there is no justi-

fication to the statement that the coordinate system in the objective

space must be Cartesian. It is only supposed to be Cartesian for the sake

of convenience.

All the existing methods consider the value of each Pareto solution

separately without its position with respect to the others in the objec-

tive space. The ranking is obtained as the result of such individual eval-

uations. Meanwhile, any Pareto solution is a trade-off solution. It seems

natural to minimize the level of trade-off to identify “the best” design. In

the current paper, the ranking reflects the level of compromise between

different Pareto solutions. It is clear that it is not practical and even

unrealistic to consider the trade-off with all Pareto solutions. However,

it is quite realistic to minimize the level of compromise for a selected

Pareto set that represents the entire Pareto frontier well enough. It is

worth noting that this kind of ranking is non-local because the value of

each Pareto solution depends on its position with respect to the others

in the objective space. In this way, the task is reduced to two problems.

First, the Pareto set to be analyzed should represent the entire Pareto

frontier. Second, a ranking algorithm should be identified to rearrange

the Pareto set according to preferences that are beyond the original

formulation of the problem. The former problem can be resolved via

generating an evenly distributed Pareto set. It is well known that such

a task is far from trivial. However, there are a few techniques that

are able to tackle this problem such as the normal boundary inter-

section method (Das & Dennis, 1998), the normal constraint method

(Messac, Ismail-Yahaya, & Mattson, (2003); Messac & Mattson, (2004))

and the directed search domain (DSD) algorithm (Utyuzhnikov, Fantini,

& Guenov, (2005), (2009); Erfani & Utyuzhnikov, (2011); Erfani, Utyuzh-

nikov, & Kolo, (2013)). The DSD algorithm is capable of generating a well

distributed Pareto set on the entire Pareto frontier in a quite general

formulation. Eventually, it provides a set of limited optimal choices for

the decision-maker for handling trade-off between multiple criteria.

The paper is organized as follows. The next section represents a brief

introduction to the Pareto optimality. In Section 3, the main principles

of the TOPSIS and the relative distance ranking method are described.

The proposed algorithm of the trade-off ranking is given in Section 4.

In Section 5, different test cases are considered. The conclusions are

provided in the final section.
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2 PARETO OPTIMALITY

Let the design space be presented by X ⊂ Rn. Consider m objective func-

tions, forming an objective space Y ⊂ Rm. For each x ∈ X, there exists a

point in Y corresponding to mapping Rn →Rm.

Multi-objective optimization problem is formulated by

MinimizeY = {Y1(x),Y2(x), … ,Ym(x)},

subject tox ∈ X∗.
(1)

Here, X∗ ⊆ X is the feasible design space defined as the set of elements

x ∈ X* satisfying all the constraints. The feasible objective space Y* is

defined as the set {Y(x)|x ∈ X*}.

A design vector x∈X* is called a Pareto optimal if there does not exist

any a ∈ X* such that

Y(a) ⩽ Y(x)and existsk ⩽ m ∶ Yk(a) < Yk(x). (2)

3 RELATIVE DISTANCE RANKING
AND TOPSIS

In this section, the relative distance ranking and TOPSIS methods are

described briefly. Both methods are used for comparison with the new

proposed method as they all lead to automatic ranking that does not

presume an immediate selection based on subjective experts opinion.

Both methods imply the same idea of having the alternative “closer to

ideal” and “farther from anti-ideal” solution. One difference is in the cal-

culation of the distance. The TOPSIS uses the Euclidean distance from

an alternative to the ideal or anti-ideal solution that is the distance in L2.

In contrast, the relative distance ranking is based on the distance mea-

sure in L1. Another difference is in the calculation of the weights. TOP-

SIS uses the priori weights obtained beforehand by the decision-maker,

while the relative distance ranking exploiting the posteriori weights

obtained from the data.

For further consideration, assume that there are q alternatives.

Then, a multi-criteria decision analysis problem can be expressed via a

trade-off matrix form as

where the value of Yij denotes the performance of alternative i in terms

of criterion j.

3.1 Relative distance ranking

In the relative distance approach, the first task is to identify the ideal

solution I + , and the anti-ideal solution I− as follows:

I+ =
(

Y+
1
,Y+

2
, … ,Y+

m

)
, (3)

I− =
(

Y−
1 ,Y−

2 , … ,Y−
m

)
, (4)

where

Y+
j = min{Yij, i = 1, … , q},

Y−
j = max{Yij, i = 1, … , q}, (j = 1, … ,m).

(5)

In turn, for the maximization problem, the ideal and the anti-ideal solu-

tions are defined as follows:

I+ =
(

Y+
1
,Y+

2
, … ,Y+

m

)
, (6)

I− =
(

Y−
1 ,Y−

2 , … ,Y−
m

)
, (7)

where

Y+
j = max{Yij, i = 1, … , q},

Y−
j = min{Yij, i = 1, … , q}, (j = 1, … ,m).

(8)

The other task of the algorithm is to determine the weights for each

criterion. According to Kao (2010), the weightage is determined by

minimizing the quadratic problem:

Minimize
q∑

i=1

[
m∑

j=1

wj|Y+
j − Yij|

]2

subject to
m∑

j=1

wj|Y+
j − Y−

j | = 1

wj|Y+
j − Y−

j | ⩾ 𝜖, j = 1, … ,m,

𝜖 > 0.

(9)

where wj is the weight or importance of an j-th criterion. The small

quantity 𝜖 is suggested to avoid any criterion being neglected.

Using the weights obtained from (9), the distance of each alternative

to the ideal solution and the anti-ideal solution is then calculated in L1

by the formulae:

dR+
i =

m∑
j=1

wj|Y+
j − Yij|, i = 1, … , q (10)

dR−
i =

m∑
j=1

wj|Y−
j − Yij|, i = 1, … , q. (11)

The alternative with the shortest distance to the ideal and the longest

distance to the anti-ideal is ranked the highest. It is easy to prove that

these alternatives coincide.

3.2 TOPSIS

In TOPSIS, the first step is to standardize the data set. The step can be

skip if the data are already in the standard form. The data standardiza-

tion is done by the formula:

rij =
Yij√
m∑

j=1
Y2

ij

, i = 1, … , q, j = 1, … ,m. (12)
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The next task is the data weighting process using the formula:

vij = wjrij,where
m∑

j=1

wj = 1. (13)

As mentioned earlier, the weights for each criterion in TOPSIS method

might be determined by the decision-maker. However, in the cur-

rent paper, the decision-maker is not involved. Therefore, the same

approach to calculate the weights as in the relative distance ranking

method is imposed.

The ideal and the anti-ideal solutions in TOPSIS are then determined

by

I+ = (v+
1
, v+

2
, … , v+

m), (14)

I− = (v−
1 , v−

2 , … , v−
m), (15)

where

v+
j = min{vij, i = 1, … , q},

v−
j = max{vij, i = 1, … , q}, (j = 1, … ,m).

(16)

In a similar way with the relative distance approach, the ideal I + and the

anti-ideal I− solutions are defined as reverse from the above definitions

for maximization problem.

The distance from an alternative solution to the ideal solution is then

calculated using the Euclidean distance as follows:

dT+
i =

√√√√ m∑
j=1

w2
j
(v+

j
− vij)2, i = 1, … , q. (17)

In turn, the distance from an alternative solution to the anti-ideal solu-

tion is calculated by formula:

dT−
i =

√√√√ m∑
j=1

w2
j
(v−

j
− vij)2, i = 1, … , q. (18)

As noted by Kao (2010), the TOPSIS ranking with respect to the

ideal solution might be different from the ranking with respect to the

anti-ideal solution.

The full ranking in TOPSIS is then expressed by formula Hwang and

Yoon (1981):

D+
i =

dT−
i

dT+
i
+ dT−

i

(19)

The largest value of D+
i

is accepted as the best solution, while the

smallest value is regarded as the worst solution.

In the next section, the trade-off ranking approach is introduced.

The method is then compared against TOPSIS and the relative distance

ranking.

4 TRADE-OFF RANKING

In this section, the key steps of the proposed method are described. The

trade-off ranking is based on the property that the set of Pareto points

is a set of trade-off solutions.

To demonstrate some justifications to the approach, consider a sim-

ple example with two sets of Pareto solutions, as shown in Figure 1.

The first set consists of points F, G, and H, while the other set con-

tains points F, I, and J. The lines FH and FJ are two different Pareto

frontiers, but both contain the same point F as one of the three alter-

natives. Consider the minimization problem. Then, the ideal solution

for the example is I + = (0,0). The anti-ideal solution for the first set is

I− = (2,4), and for the second set is I− = (2,5). In the first Pareto fron-

tier, FH, point F is the closest to the ideal solution and farthest from the

anti-ideal solution. Hence, in the two ranking approaches considered

above, point F is the most preferable solution out of the alternatives

G and H. Consider now another Pareto frontier, FJ. Point F holds the

shortest distance to the ideal solution and the longest distance to the

anti-ideal solution. Thus, point F still holds the highest ranking versus

the other points I and J. As a consequence, the ranking captures the

same solution regardless the entire Pareto frontier.

The key principle of the trade-off ranking is to prefer the solu-

tions with less compromise with the others. The trade-off minimiza-

tion can be achieved by calculating the distance from one point to all

other points in the objective space. The distance reflects the degree of

trade-off between the solutions.

The general formula for the distance between point (alternative)

A1 = (A(1)
1
,A(1)

2
, … ,A(1)

m ) and point A2 = (A(2)
1
,A(2)

2
, … ,A(2)

m ) is

FIGURE 1 Two sets of Pareto solutions
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d(A1,A2) =

[
m∑

j=1

(
A(1)

j
− A(2)

j

)2
]1∕2

(20)

Then, the sum of distances from one point to the other points is consid-

ered as the degree of trade-off:

DTk =
q∑

i=1

[
d(Ak,Ai)

]
, k = 1,2, … , q (21)

The trade-off ranking of each solution is determined by the value of

DT with respect to the others. The least value of DT holds the highest

ranking.

For the trade-off analysis, it is efficient to have an evenly distributed

set representing the entire Pareto frontier. Thus, the first step in the

trade-off ranking is generating an evenly distributed Pareto set. Evenly

distributed solutions give the maximum information of the Pareto fron-

tier to the decision-maker.

As an example, consider Figure 1 again with two different sets of

evenly distributed Pareto solutions F(2,0), G(1,2), H(0,4), I(1,2.5), and

J(0,5). The results of the trade-off ranking are given in Tables 1 and 2.

In this simple example, solutions G and I seem more preferable because

they better represent the entire Pareto frontier. In addition, it is easy to

see that they correspond to the minimized trade-off among the other

Pareto solutions.

As a further justification of the methodology, consider the examples

shown in Figures 2 –4.

TABLE 1 Trade-off ranking for Pareto frontier FH

Distance

between each

Pareto points F G H DT Ranking

F 0
√

5
√

20 3
√

5 2

G
√

5 0
√

5 2
√

5 1

H
√

20
√

5 0 3
√

5 3

TABLE 2 Trade-off ranking for Pareto frontier FJ

Distance

between each

Pareto points F I J DT Ranking

F 0
√

29∕4
√

29
√

145∕4 2

G
√

29∕4 0
√

29∕4
√

29∕2 1

H
√

29
√

29∕4 0
√

145∕4 3

FIGURE 3 Results of the highest ranking for TNK

Figure 2 represents two different real-life trade-off problems: (a) risk

over return in a share investment and (b) price over quality in a car

purchase.

For a share investment, DM usually wants a low-risk investment that

generates a high return. However, such a situation seems almost unreal-

istic. As shown in Figure 2a, investments presume possibilities I and II as

the extreme options that correspond to a low risk with a low return and

a high risk with a high return, respectively. Apart from these extreme

solutions, there is a yellow area that gives acceptable solutions with a

return higher than in I and a risk lower than in II. The trade-off ranking

method interprets the best compromise solution III as the best choice.

The same situation occurs in problem (b). In case (b), it is almost

impossible to buy a high-quality car with a minimal price. On the mar-

ket, there is a choice in a wide range between cheap second-hand cars

I and expensive luxury cars II. Many buyers prefer intermediate solu-

tions that correspond to options in III that are cheaper than in II and of

higher quality than in I. The trade-off ranking method can ensure that

the optimal solution is in the yellow area III.

Now, to compare different approaches, in Figure 3, consider two arcs

A and B that represent two different Pareto frontiers. In both Pareto

frontiers, the top solutions for the trade-off ranking are situated in the

middle of each frontier. For TOPSIS and the relative distance method,

the top solutions in B are situated in the middle of the frontier as well,

as they are closer to the ideal solution. However, their top solutions in A

abruptly disperse between two extreme cases (areas I and II in Figure 2)

as the middle area is no longer closer to the ideal solution.

Next, consider another two different graphs (a) and (b) as shown

in Figure 4. In both graphs, the line C is supposed to be the original

Pareto frontier. In Figure 4a, as F1 changes from the original value

F1 = 4, the top solutions for TOPSIS and the relative distance approach

retain. In this example, the best choice in TOPSIS and relative distance

FIGURE 2 Examples for the trade-off ranking
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FIGURE 4 Results of the highest ranking for TNK

method might not reflect the other alternatives. For the trade-off rank-

ing method, the top solutions change together with the new Pareto

frontier while maintaining in the middle of the frontiers. In Figure 4b,

as the value of F2 changes from F2 = 2, the top solutions for TOPSIS

and the relative distance method change as well. However, the solutions

correspond to the extreme cases (areas I and II in Figure 2). These exam-

ples demonstrate that small variations of the Pareto frontier can lead

to a sharp replacement of the best choice in TOPSIS/relative distance

method. For the trade-off ranking method, the top solutions retain in

the middle of each frontier (area III in Figure 2).

In each example shown, the trade-off ranking method captures the

best compromise solution among all alternatives provided.

In general, the steps for the trade-off ranking are as follows:

1. Generate an evenly distributed Pareto set.

2. Calculate the distance from one alternative to the others.

3. Calculate the degree of trade-off, DT.

4. Repeat steps 1 and 2 for all other alternatives from the Pareto set.

5. An alternative with less value of DT holds a higher ranking.

5 TEST CASES

In this section, the trade-off ranking is applied to seven test cases. TOP-

SIS and the relative distance ranking approaches are also used for a

comparison. The trade-off ranking is applicable to n-dimensional prob-

lems. The DSD approach (Erfani & Utyuzhnikov, 2011) was used for

generation of an evenly distributed Pareto set.

5.1 General test cases

TNK problem: this test case is introduced by Tanaka et al. (1995).

The test case considers a discontinuous Pareto frontier with signifi-

cant gaps. Despite the discontinuity, DSD algorithm provides evenly

distributed Pareto solutions (Erfani & Utyuzhnikov, 2011).

Minimize(x1, x2)

s.t.g1(x) = x2
1 + x2

2 − 1 − 0.1 cos(16tan−1(x1∕x2)) ⩾ 0

g2(x) = (x1 − 0.5)2 + (x2 − 0.5)2 ⩽ 0.5

0 ⩽ xi ⩽ 𝜋(i = 1,2)

(22)

The results for the most preferable Pareto solutions identified by each

method are shown in Figure 5.

For this test case, the ideal solution is I + = (0, 0), and the anti-ideal

solution is I− = (1.1, 1.1). As can be seen in Figure 5, the trade-off

ranking approach gives preferable solutions in the middle range of both

criteria x1:[0.55, 0.60] and x2:[0.75, 0.80]. The other two methods, TOP-

SIS and the relative distance ranking, give the same level of ranking with

much higher values for criterion x2:[0.95, 1.00]. The weights obtained

in this test case are w1 = 0.71 and w2 = 0.29. Ten top ranked solutions

for each approach are given in the Appendix.

FIGURE 5 Results of the highest ranking for TNK
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ZDT1 problem: this test case is introduced by Shukla and Deb (2007).

The test case has a convex Pareto optimal frontier.

Minimize(F1(x), F2(x))

s.t.0 ⩽ xi ⩽ 1(i = 1,2, … , n)

where

F1(x) = x1,

F2(x) = g(x)
(

1 −
√

x1∕g(x)
)
,

g(x) = 1 + 9∕(n − 1)
n∑

i=2

x2
i

(23)

The results of each ranking method for ZDT1 problem are shown in

Figure 6.

The ideal solution for ZDT1 is I + = (0, 0), and the anti-ideal solution is

I− = (1, 1). In Figure 6, the preferable alternatives in the trade-off rank-

ing are in the range of F1:[0.3, 0.4] and F2:[0.4, 0.45]. TOPSIS provides

the ranking most closed to the trade-off ranking method such that high-

est ranking solutions are ranging from F1:[0.2, 0.3] and F2:[0.45, 0.5]. It is

worth noting that the highest ranked solution in the trade-off approach

is only ranked the 13th in TOPSIS method. On the contrary, the first

choice in TOPSIS is ranked the 10th in the trade-off ranking. A similar

situation occurs between TOPSIS and the relative distance method. The

most preferable alternative in the relative distance method is ranked

the 11th in TOPSIS. The weights obtained for the ranking calculation in

the relative distance method and TOPSIS are w1 = 0.54 and w2 = 0.46.

ZDT2 problem: this test case is introduced by Shukla and Deb (2007).

The test case has a non-convex Pareto optimal frontier.

Minimize(F1(x), F2(x))

s.t.0 ⩽ xi ⩽ 1(i = 1,2, … , n)

where

F1(x) = x1

F2(x) = g(x)
(

1 − (x1∕g(x))2)
g(x) = 1 + 9∕(n − 1)

n∑
i=2

x2
i

(24)

The results for the best solutions for each ranking approach are shown

in Figure 7.

The ideal solution for the test case is I + = (0, 0), and the anti-ideal

solution is I− = (1, 1). As shown in Figure 7, higher-ranking alterna-

tives in the trade-off ranking algorithm are situated in the middle of the

Pareto set within the range of F1:[0.5, 0.6] and F2:[0.7, 0.8]. TOPSIS and

the relative distance approach have the same ranking alternatives at

the top rank. Both methods have the most preferable solutions in the

range of F1:[0, 0.1] and F2:[0.9, 1]. The weights obtained for ZDT2 are

w1 = 0.69 and w2 = 0.31.

FIGURE 6 Results of the highest ranking for ZDT1

FIGURE 7 Results of the highest ranking for ZDT2
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ZDT6 problem: this test case is introduced by Shukla and Deb (2007).

The test case has non-uniform density solutions on a non-convex Pareto

frontier.

Minimize(F1(x), F2(x))

s.t.0 ⩽ xi ⩽ 1(i = 1,2, … ,10)

where

F1(x) = 1 − exp−4x1sin64𝜋x1,

F2(x) = g(x)
(

1 − (F1(x)∕g(x))2
)
,

g(x) = 1 + 9

(
10∑
i=2

x2
i ∕9

)1∕4

(25)

The results for the most preferable alternatives for each ranking

approach are shown in Figure 8.

The ideal solution for ZDT6 is I + = (0, 0), and the anti-ideal solu-

tion is I− = (1, 0.88). In Figure 8, it can be seen that the top ranked

alternatives in the trade-off ranking are in the range between F1:[0.7,

0.75] and F2:[0.4, 0.5]. In this test case, similar to TNK and ZDT2, the

preferable alternatives in TOPSIS and the relative distance method

coincide. Both methods give the alternatives with greater values for

criterion F1:[0.95, 1] and smaller values for criterion F2:[0, 0.1]. The

weights for this test case are w1 = 0.1 and w2 = 0.9.

DTLZ5 problem: this three-dimensional test case is introduced by

Deb et al. (2005). The test case has only two anchor points despite there

are three-objective functions (Erfani & Utyuzhnikov, 2011).

Minimize (F1(x), F2(x), F3(x))

s.t0 ⩽ xi ⩽ 1 (i = 1,2,3)

where

F1(x) = (1 + g(x3)) cos(𝜃1) cos(𝜃2),

F2(x) = (1 + g(x3)) cos(𝜃1) sin(𝜃2),

F3(x) = 3 (1 + g(x3)) sin(𝜃1),

g(x) = (x3 − 0.5)2

𝜃1 = 𝜋

2
(x1)

𝜃2 = 𝜋

4 (1 + g(x2))
(1 + 3g(x3)x2)

(26)

The best alternatives for each ranking method are shown in Figure 9.

For this problem, the ideal solution is I + = (0, 0, 0), and the anti-ideal

solution is I− = (0.71, 0.71, 1). As shown in Figure 9, the highest-ranking

alternative in the trade-off ranking is in the middle of the set of Pareto

points. TOPSIS and the relative distance method have close ranking

results with greater values in the criterion F3. The weights obtained

for ranking of the relative distance method and TOPSIS are w1 = 0.59,

w2 = 0.39, and w3 = 0.02.

Comet problem: this three-dimensional test case is introduced by

Deb, Thiele, Laumanns, and Zitzler (2005). The test case has a sharply

shrinking Pareto optimal frontier.

FIGURE 8 Results of the highest ranking for ZDT6

FIGURE 9 Results of the highest ranking for DTLZ5
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Minimize (F1(x), F2(x), F3(x))

s.t1 ⩽ x1 ⩽ 3.5

−2 ⩽ x2 ⩽ 2

0 ⩽ x3 ⩽ 1

where

F1(x) = (1 + g(x3))
(

x3
1x2

2 − 10x1 − 4x2

)
,

F2(x) = (1 + g(x3))
(

x3
1x2

2 − 10x1 + 4x2

)
,

F3(x) = 3 (1 + g(x3)) x2
1,

g(x) = x3.

(27)

The results for top solutions in the comet problem are shown in

Figure 10.

The ideal solution for the comet problem is I + = ( − 37, − 36, 3), and

the anti-ideal solution is I− = (2, 2, 35). In Figure 10, the highest rank-

ing alternative in the trade-off ranking is situated in the middle of the

Pareto set. As can be seen, TOPSIS and the relative distance method

have the same level of ranking. The weights obtained for this test case

are w1 = 0.0003, w2 = 0.0003, and w3 = 0.9994.

5.2 Application test case

Consider an example from Jacquet-Lagreze and Siskos (1982) as given

in Table 3. The data correspond to 10 cars evaluated via six criteria: max-

imum speed, horse power, space of the car, gas consumption in town,

gas consumption at 120 km/hr, and the price.

FIGURE 10 Results of the highest ranking for comet

TABLE 3 Input data for car selection example and the results of ranking

Maximum speed Horse power Space Gas consumption in Gas consumption at Price Trade-off Relative

No. (km/hr) (CV) (m2) town (lt/100 km) 120 km/hr (lt/100 km) (1000 francs) ranking distance ranking

1 173 10 7.88 11.4 10.01 49.5 1 2

2 176 11 7.96 12.3 10.48 46.7 2 1

3 161 7 5.11 8.6 8.42 35.2 3 3

4 148 7 6.15 10.5 9.61 39.15 4 7

5 178 13 8.06 14.5 11.05 64.7 5 5

6 145 11 8.38 14.3 12.95 55 6 9

7 182 11 7.81 12.7 12.26 68.593 7 4

8 142 5 5.65 8.2 7.3 32.1 8 8

9 180 13 8.47 13.6 10.4 75.7 9 6

10 117 3 5.81 7.2 6.75 24.8 10 10
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TABLE 4 Preference ranking for each criterion in the car example

Car no. 1 2 3 4 5 6 7 8 9 10

Maximum speed 5 4 6 7 3 8 1 9 2 10

Horse power 6 3 7 7 1 3 3 9 1 10

Space 5 4 10 7 3 2 6 9 1 8

Gas consumption in town 5 6 3 4 10 9 7 2 8 1

Gas consumption at 120 km/hr 5 7 3 4 8 10 9 2 6 1

Price 6 5 3 4 8 7 9 2 10 1

In this example, the first three criteria (maximum speed, horse power,

and space) are maximized, while the last three criteria (gas consump-

tion in town, gas consumption at 120 km/hr, and price) are minimized.

Clearly, the problem has conflicting criteria. The solutions given are the

general Pareto solutions. Based on Equations (3)–(7), the ideal solution

for the problem is I + = (182, 13, 8.47, 7.2, 7.3, 24.8), while in turn, the

anti-ideal solution is I− = (117, 3, 5.11, 14.5, 12.95, 75.7). The weights

0.6346, 0.01, 0.01, 0.01, 0.01, and 0.3254 are used for each criterion

(Kao, 2010). The cars are ranked with the trade-off ranking and the rel-

ative distance ranking method. The results are shown in the last two

columns in Table 3.

The rankings obtained by the relative distance method are different

from those in the proposed method. The trade-off method ranks car no.

1 as the best choice, while the relative distance method ranks it as the

second one. In turn, the best choice in the relative distance approach

is the second in the trade-off ranking. To justify the best solution of the

trade-off ranking approach in this application problem, consider Table 4.

Notice that each criterion is ranked according to its value from the

input data (Table 3). The first three criteria are ranked from the high-

est value to the lowest value because they are the benefits criteria. It is

vice versa for the last three criteria, which are ranked from the small-

est value to the largest one. As can be seen in Table 4, car no.1 holds

the most balanced ranking in all criteria out of the 10 cars. It is evident

that the trade-off ranking approach gives the less compromise solution

in comparison to the others in the general Pareto set of solutions.

6 CONCLUSION

A trade-off ranking approach has been proposed in this paper. The

method minimizes compromise between the alternatives. The key

property of the proposed approach is that in contrast to the other meth-

ods, the ranking algorithm is non-local. This means the ranking takes

into account the other alternatives. It has been demonstrated that the

alternative approaches can be too sensitive to small variations of the

Pareto frontier. They also strongly depend on the choice of the metrics.

The proposed algorithm has been tested on seven different test cases.

The obtained results are compared against the rankings provided by

TOPSIS and the relative distance ranking method. The trade-off rank-

ing method selects less compromise solutions in comparison to the

other techniques considered. Meanwhile, it requires the presence of a

well-distributed Pareto set.
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APPENDIX

Solution for TNK problem.

TABLE A1 Ranking for the trade-off method

Ranking x1 x2

1 0.5798 0.7739

2 0.5826 0.7737

3 0.5704 0.7747

4 0.5692 0.7748

5 0.5947 0.7732

6 0.5584 0.7765

7 0.5580 0.7766

8 0.6065 0.7731

9 0.6182 0.7730

10 0.5474 0.7793

TABLE A2 Ranking for the TOPSIS method

Ranking x1 x2

1 0.0417 1.0384

2 0.0467 1.0358

3 0.0480 1.0351

4 0.0580 1.0289

5 0.0613 1.0267

6 0.0638 1.0249

7 0.0678 1.0219

8 0.0754 1.0158

9 0.0786 1.0131

10 0.0796 1.0123

TOPSIS = technique for order preference by similarity to the ideal solution.

TABLE A3 Ranking for the relative distance method

Ranking x1 x2

1 0.0417 1.0384

2 0.0467 1.0358

3 0.0480 1.0351

4 0.0580 1.0289

5 0.0613 1.0267

6 0.0638 1.0249

7 0.0678 1.0219

8 0.0754 1.0158

9 0.0786 1.0131

10 0.0796 1.0123

http://dx.doi.org/10.1002/mcda.1600
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