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ABSTRACT
Heterogeneous face recognition aims to identify or verify person
identity by matching facial images of different modalities. In
practice, it is known that its performance is highly influenced by
modality inconsistency, appearance occlusions, illumination
variations and expressions. In this paper, a new method named as
ensemble of sparse cross-modal metrics is proposed for tackling
these challenging issues. In particular, a weak sparse cross-modal
metric learning method is firstly developed to measure distances
between samples of two modalities. It learns to adjust rank-one
cross-modal metrics to satisfy two sets of triplet based
cross-modal distance constraints in a compact form. Meanwhile, a
group based feature selection is performed to enforce that features
in the same position of two modalities are selected simultaneously.
By neglecting features that attribute to "noise" in the face regions
(eye glasses, expressions and so on), the performance of learned
weak metrics can be markedly improved. Finally, an ensemble
framework is incorporated to combine the results of differently
learned sparse metrics into a strong one. Extensive experiments on
various face datasets demonstrate the benefit of such feature
selection especially when heavy occlusions exist. The proposed
ensemble metric learning has been shown superiority over several
state-of-the-art methods in heterogeneous face recognition.

Keywords
Multi-modal learning; metric learning; feature selection; ensemble
learning; heterogeneous face recognition

1. INTRODUCTION
Face recognition has been extensively researched over the past

few decades and satisfactory performances have been achieved
mostly under controlled environments. In practical situations, the
problem often becomes heterogeneous where faces are of different
modalities and performance degrades considerably. This is mainly
caused by drastic appearance variations between face images of
different modalities. There are several studies in heterogeneous
face recognition in the literature such as matching sketches to
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photos, low resolution images to high resolution videos, visible
light to near infrared images. Such situations are commonly
encountered in multimedia applications. A general face
recognition process often has two stages. The first is feature
extraction and the second is learning a similarity measurement to
measure similarities between the face features. Therefore, there
are mainly two ways to alleviate modality variations for robust
cross-modal face matching. One is to extract modality invariant
face features and the other is to design cross-modal similarity
measurements. This work focuses on the second one.

For learning a similarity measurement, metric learning is widely
used [3]. However the currently widely used metric learning
methods are Mahalanobis distance based. The main disadvantage
when applied to cross-modal face recognition is that it is not able
to remove modality variations, which influence recognition
performance the most. Although there exist cross-modal metric
learning methods [26], there are still serious issues to be
addressed. One is that not all the face features are informative
when faces are occluded or influenced by expressions or
illumination variations. Thus it is beneficial to perform feature
selection. The existing sparse Mahalanobis metric learning
methods [35] are able to do feature selection, but it is hard to
interpret which features are more important from the parameters
learned. Besides, for face recognition, as features are extracted on
local patches, it is beneficial to take the implicit spatial
information of features into consideration with feature selection.

We therefore propose to learn a cross-modal metric that is able
to remove modality variations and persist the ability of informa-
tive feature selection. Different with most sparse metric learning
methods, the proposed method also has good interpretability. A
simple cross-modal metric is firstly defined with two sets of
parameters. They can be interpreted as two projection vectors to
project face features of two different modalities into a common
subspace and the distance is measured in the new subspace.
Learning such a cross-modal metric is efficient as it has much
fewer parameters compared with metrics parameterized by
matrices. The goal of metric learning is to adjust the metric to
satisfy two sets of triplet based cross-modal distance constraints.
Each triplet includes a sample of one modality and a pair of
samples from the other modality with one being the same label
and the other of different label. From the triplet, one same labeled
and one differently labeled cross-modal sample pairs can be
constructed. The goal is to make the distances of the same labeled
pairs smaller than that of the differently labeled pairs. Besides,
another characteristic of the cross-modal metric is that it is learned
by incorporating group based feature selection. Two kinds of
groups are defined. One is single feature based group that takes
two elements respectively from two projection vectors in the same



position. The other is patch based group and is defined as two sets
of elements from the two projection vectors corresponding to
features extracted from patches of the same position. By using
group based feature selection, relations of features of two
modalities are incorporated. Such a learned metric is named as
sparse cross-modal metric (SPAC). Once learned, a SPAC selects a
set of features to measure the distances between samples.

Since one SPAC has few parameters, it may not fit well for
samples of all kinds of variations. A simple idea is to learn groups
of SPACs that are able to deal with different kinds of variations
and are complementary. Therefore, an ensemble scheme is further
applied. A set of SPACs are learned on differently weighted
triplets with different variations. Once a SPAC is learned, the
weights of triplets are reassigned according to whether the
constraint encoded in a triplet is met by the previously learned
SPACs. The learned SPACs are therefore complementary. Each
SPAC is also assigned a weight when the outputs of all the SPACs
are combined to make the final decision. The reweighting and
combining scheme of the Adaboost framework [28] is used to
learn SPACs and combine them into a strong metric. The
ensemble framework of SPACs is termed as ESPAC.

2. RELATED WORK
Three related topics are reviewed, heterogeneous face

recognition, single-modal metric learning and cross-modal metric
learning.

2.1 Heterogeneous Face Recognition
Methods for solving heterogeneous face recognition problems

can be categorized into three categories. The first category is the
synthesis based methods which map data of one modality into
another by synthetic methods. Related work includes synthesizing
sketches from photos and then comparing synthesized images with
sketches drawn by artists [31, 36]. One drawback of this kind of
methods is that different synthetic methods have to be used if the
modalities change.

The second category is modality invariant feature extraction
based methods. In [34], Gabor features together with restricted
boltzmann machines were used to learn shared representations. Jin
et al. [12] proposed to learn a set of image filters to reduce the
appearance differences of cross-modality images by maximizing
inter-class variations and minimizing intra-class variations.

The last is the common subspace based methods [20, 22, 13]
and the proposed method belong to this kind. Data of different
modalities are mapped into a new, common subspace, so that data
of different modalities become comparable. In [22], a common
discriminant feature extraction (CDFE) was proposed to learn a
common subspace for samples of two modalities to attain both
intra-class compactness and the inter-class dispersion. In [20], Lei
et al. proposed a spectral regression based method (CSR) to learn
a discriminative subspace. The objective is similar to linear
discriminant analysis (LDA) [2]. These methods all learn common
subspaces to remove modality variations. However, none of them
have considered the cases where there are also occlusions,
expressions and illumination changes, which widely exist in
real-world heterogeneous face data.

2.2 Single-modal Metric Learning
Metric learning for single modal data has been extensively

studied over the past decade. The existing approaches can be
mainly grouped into two categories; Mahalanobis metric and
bilinear metric based. A comprehensive review can be found in
[3]. We herein mainly review related work regarding ensemble

based metric learning and sparse metric learning. For ensemble
based methods, Shen et al. proposed a PSDBoost method [30] to
learn a positive semidefinite (PSD) matrix by column generation
for Mahalanobis metrics. The method was later extended into a
more efficient version in [29]. The main idea of the method is that
a PSD matrix, the parameter of Mahalanobis based metric, can be
decomposed into a linear combination of trace-one rank-one
matrices. Therefore, rank-one PSD matrices parameterized weak
metrics are learned sequentially. In [4], Bi et al. proposed to learn
Mahalanobis metrics in an Adaboost manner. The same
decomposition property of PSD matrix [30] was used and weak
metrics were also parameterized by rank-one PSD matrices.
Another boosting framework was proposed in [33] for combining
weak metrics with binary outputs. These existing ensemble based
metric learning methods are designed for single modal data.

For sparse metric learning, there have been several attempts to
learn sparse low-rank metric matrices [35]. Such settings are
related to finding low dimensional subspaces instead of finding
informative features. For finding informative features and feature
relationships, Liu et al. [23] proposed to learn a sparse bilinear
similarity function by decomposing the PSD matrix as a
combination of rank-one sparse PSD matrices. The rank-one
sparse PSD matrices were defined with certain structures with
only four non-zero elements related to a pair of features. Such
rank-one matrices were greedily added to the final similarity
function during learning. In [1], a PSD matrix was decomposed
into a diagonal matrix and a set of all-zeros diagonal matrices with
only one row and one column have non-zero elements. The
learning procedure lead to many of the all-zeros diagonal matrices
to zeros and the final combined matrix is thus sparse. Our
proposed feature selection scheme differs from these methods in
that sparsity is forced not on the metric matrix but on projection
vectors. As the projection vectors directly relate to the weights of
features, the proposed feature selection scheme thus has better
interpretability on which features being more important. Besides,
the proposed feature selection scheme differs from these methods
in that feature selection is done jointly with the modality relations
of features and the structures of face features considered.

2.3 Cross-modal Metric Learning
With the development of multi-modal data, there has been an

increase in the study of cross-modal metric learning. Mignon et al.
[26] proposed a common subspace based cross-modal metric
learning method to satisfy both the pairwise similar/dissimilar
cross-modal distance constraints. In [38], Zhou et al. proposed to
incorporate both homogeneous local information and heteroge-
neous constraints into a whole framework to learn a cross-modal
metric by using an extension of locally linear embedding (LLE). A
low-rank bilinear cross-modal similarity method is proposed in
[14]. Our method differs with these methods in several aspects.
One is the distance constraints used. These methods use pairwise
cross-modal distance constraints, while triplet based distance con-
straints are used in our proposed methods. The second is that the
proposed metric is learned in a boosting manner with each weak
metric focusing on different groups of features thus eliminating
noise features for different groups of inseparable triplets.

3. FRAMEWORK OF ESPAC
Fig. 1 shows the framework of the proposed method. In the

training stage, face alignment and face feature extraction are firstly
performed on the training face images. Local feature extraction
method is adopted. For faces of different modalities, same feature
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Figure 1: Framework of ESPAC. Local based feature extraction is firstly performed on given training data. Then a set of SPACs
together with their weights are learned using an ensemble learning framework with each focusing on different features to measure
cross-modal distances. The final output of ESPAC is the sum of weighted outputs of all the learned SPACs.

extraction process is applied. The extracted face features can be
highly influenced by modality differences.

Then a set of weak sparse cross-modal metrics (SPACs) are
learned. There are several properties of the learned SPACs. 1) The
cross-modal metric is able to remove modality variations in the
extracted features. 2) Each SPAC is learned with the weights of
triplet based constraints differently so that the cross-modal metrics
are complementary. The reweighting scheme of the Adaboost
framework is used to assign different weights to different triplets.
Bisection method is used to find the weight of a SPAC (or the
contribution of a SPAC) to the final strong metric by minimizing
the training error of the final strong metric. 3) For different
appearance variations existing in different triplets, a group based
feature selection scheme is used while learning SPACs. Two kinds
of group based feature selection methods are proposed. In the first
setting, two features of two modalities at the same position are
simultaneously selected. In the second setting, features extracted
in the patches of same position of two modalities are forced to be
selected together. We prove that the two feature selection schemes
achieve better results compared with no feature selection based
one. Specifically, the second one can highly improve recognition
performances in high occlusion cases.

In the testing stage, the same feature extraction process is
applied. The outputs of all the learned sparse cross-modal metrics
are weighted and combined to make the final prediction.

4. LOCAL FACE FEATURE EXTRACTION
For face normalization, faces are firstly rotated so that two eyes

are located on a horizontal line, and then resized to make the
distances between two pupils of 75 pixels. A face region of
160 × 160 is cropped out, with the eye central to the region’s
upper edge by 35 pixels and to the region’s left edge by 80 pixels.

The second step adopted is image filtering techniques (difference
of gaussian, DoG) to help compensate illumination variations and
also to reduce the variations caused by modality difference [16].

The last step is to extract features of these filtered face images.
Each face image is firstly partitioned into patches. As is shown in
Fig. 2, the face image is partitioned into 5 × 5 patches, with each
patch of size 32 × 32. In the experiments, different partition
configurations are tested. The 160 × 160 face images are also
partitioned into 3 × 3, 4 × 4, 5 × 5, 6 × 6 and 7 × 7. For some
partition settings, patches may be of different size, but the
difference is only one pixel in row size or column size. In the final
experiments, we used the setting of partition images into 6 × 6
which produces relative good performance. After partition, local

feature extraction methods are then used to extract features on
each patch, in our case, scale-invariant feature transform (SIFT)
[9] is adopted following an empirical comparison with other
features. By concatenating all the local features into a whole
vector, the final face feature is obtained. In the final feature vector,
the features therefore have implicit spatial positions and
patch-based structures.

5. PROBLEM FORMULATION OF SPAC

5.1 Notations
Suppose the training face image sets of two modalities are

denoted as X = {(xi, l
x
i )|i = 1, 2, ..., Nx} and

Y = {(yi, l
y
i )|i = 1, 2, ..., Ny}, where xi ∈ Rdx is the ith

training sample of the first modality of dimension dx and
yi ∈ Rdy is the ith training sample of the second modality of
dimension dy . In our case, as same feature extraction process is
applied to both modalities, dx = dy . Suppose there are n different
persons within the training set. lxi ∈ {1, 2, ..., n} is the label of the
sample xi and lyi ∈ {1, 2, ..., n} is the label of the sample yi. Nx

and Ny are sample sizes of two modalities respectively.
To learn a metric on the given training datasets, a set of distance

constraints should be constructed. Relative distance constraints
encoded in triplets are used in the proposed method. Different
with metric learning for single modality dataset, there are two
kinds of triples for datasets of two modalities. One is of the form
(xi,yj ,yk), with lxi = lyj and lxi ̸= lyk . The constraint is to force
d(xi,yj) < d(xi,yk). It can be constructed by setting every
sample of the first modality as a focal sample. Then the second
sample and the third sample are selected from samples of the
second modality with the second one of the same label and the
third one of different label. Another type of triplet is of the form
(yi,xj ,xk) with lyi = lxj and lyi ̸= lxk . And it can be constructed
similarly by setting the focal sample of the second modality.
Suppose two sets of triplets T1 = {(xi,yj ,yk)|lxi = lyj , l

x
i ̸= lyk}

and T2 = {(yi,xj ,xk)|lyi = lxj , l
y
i ̸= lxk} are constructed. The

goal is to learn a cross-modal metric which meets the constraints
defined in the two sets of triplets.

5.2 Sparse Cross-Modal Metric Learning
Suppose x ∈ Rdx and y ∈ Rdy are two face features of two

modalities. The cross-modal metric is defined as:

d(x,y) = [f(x)− g(y)]2. (1)



In case both f(x) and g(y) are linear functions, they can be
defined as f(x) = w⊤

x x and g(y) = w⊤
y y. wx ∈ Rdx and

wy ∈ Rdy are parameters. Such a metric can be seen as projecting
samples into a one dimensional common subspace and then
measure their Euclidean distance. As the parameter number is
small, such metric is weak. The ultimate goal of the proposed
method is to combine a set of these weak metrics into a strong one
D(x,y) =

∑T
t=1 αtdt(x,y). The ensemble scheme will be

illustrated later. We firstly present how to learn a weak sparse
metric.

As has been mentioned previously, the goal is to learn week
metrics which satisfy the two sets of triplet based constraints. For
the first set of triplets, the goal is to maximize the value of
d(xi,yk)− d(xi,yj), which can be represented as:

ρr = d(xi,yk)− d(xi,yj) = (w⊤zdr)
2 − (w⊤zsr)

2, (2)

where w = [wx;wy] ∈ Rdx+dy is the concatenation of the two
parameters and r is the index of the triplet in T1. zsr = [xi;−yj ] ∈
Rdx+dy is formed by concatenating the same labeled sample pair
of the rth triplet into one. zdr = [xi;−yk] ∈ Rdx+dy is formed
using the differently labeled sample pair. Similarly, for triplets in
the second set, d(xk,yi)−d(xj ,yi) = (w⊤zdr)

2 − (w⊤zsr)
2 can

be represented in the same form, with zsr = [xj ;−yi] and zdr =
[xk;−yi]. By using the above formulation and combining the two
sets into one, the loss of a weak metric on the defined triplets can
be represented as:

J =

|T1|+|T2|∑
r=1

ℓ(ρr), (3)

where ℓ(a) is a convex loss function which is selected as exponen-
tial loss exp(−a).

In weak cross-modal metric learning, merely minimizing the
loss defined in Eq. (3) will suffer from server overfitting problem
and regularization terms need to be added. In practice, the final
objective of the no feature selection based weak cross-modal
metric learning is defined as minimizing the following function:

min
w

|T1|+|T2|∑
r=1

ℓ(ρr) + τ

|S|∑
k=1

δk +
η

2
w⊤Lw +

λ

2
∥w∥2, (4)

where τ , η and λ are regularization parameters. w is constrained
to be unit vector. The first term is to minimize the loss defined in
Eq. (3). The second term is a regularization term to control the
distances of same labeled cross-modal pairs to be small, with
S = {(xi,yj)|lxi = lyj } the set of same labeled cross-modal
sample pairs. δk = (w⊤zk)

2 is the distance of the kth same
labeled cross-modal sample pair, zk = [xi;−yj ] ∈ Rdx+dy is the
concatenation of the kth same labeled cross-modal pair in set S.
Thus

∑|S|
k=1 δk is the sum of all the same labeled cross-modal

sample distances. This regularization term is used because during
the learning to force the distances of differently labeled pairs to be
larger than the distances of the same labeled pairs, the distances of
both the same labeled pairs and the differently labeled pairs may
increase together, leading to poor generalization ability. The third
term in Eq. (4) is also a regularization term. L = D − S is a

Laplacian matrix, with S =

[
0 I
I 0

]
, 0 ∈ Rd×d is a zero matrix

and I ∈ Rd×d is an identity matrix, where d equals to dx or dy . D
is a diagonal matrix whose elements are column sums of S. This
term is equivalent to ∥wx −wy∥22 and the objective is to penalize

wx and wy from differing too much. This is based on the prior
knowledge that face features at the same position of two
modalities are correlated, so the parameters of wx and wy at the
same position should also be correlated. The last regularization
term is related to control the l2 norm of w to avoid overfitting.

Group based Feature Selection. By using non-sparse
projection vectors wx and wy , all the extracted face features of
two modalities are used for measuring distances. However, due to
expression differences, high occlusions and face images captured
under different illumination environments, not all patches of face
images are useful for identifying the identities of face images. For
cross modal face matching, once a feature in the first modality is
selected, the corresponding feature of the same position of the
second modality should also be selected. Therefore, group based
feature selection is incorporated to select face features that are
useful for distinguishing persons’ identities. As the values in wx

and wy indicate the importance of face features, group sparsity is
forced on wx and wy to perform feature selection. Two kinds of
group based feature selection schemes are proposed. An illustra-
tion is shown in Fig. 2. The first one uses single feature based
groups. In this case, a group contains two elements of w with one
element corresponds to wx and the other corresponds to wy . Use
Gi = {Gx

i , G
y
i }, i = 1, 2, ..., d to denote the set of indices within

w which correspond to the ith features of two modalities.
Therefore, there is a total number of d single feature based groups.
In the second case, as for faces of heavy occlusions or with ex-
pression changes, some patches of the face images are completely
useless. We therefore propose patch based groups. The ith group
is defined as the elements of both wx and wy corresponding to the
features of the ith patch. Gi = {Gx

i , G
y
i }, i = 1, 2, ..., p is used

interchangeably to denote the set of indices within w which
correspond to features of ith patches of two modalities. p is the
total number of patches. With such a definition, the learned
cross-modal metric uses features selected from either the same
positions or the same face regions of two cross-modal face images,
leading to the following final objective function to learn a SPAC:

min
w

|T1|+|T2|∑
r=1

ℓ(ρr) + γ

NG∑
i=1

∥wGi∥
2

+ τ

|S|∑
k=1

δk +
η

2
w⊤Lw +

λ

2
∥w∥2,

(5)

where γ is a balance parameter and NG is the number of groups
which equals to either d or p. The objective function defined in Eq.
(5) balances satisfying distance constraints and group based feature
selection. Once a SPAC is learned, it selects a few face features or
face regions for measuring cross-modal distances.

5.3 Optimization
As there is a group sparsity term in Eq. (5), alternating direction

method of multipliers (ADMM) [5] is used to efficiently minimize
the objective function. We firstly transform the minimization prob-
lem of Eq. (5) into an equivalent form:

min
w,v

F (w) +H(v) s.t. w = v, (6)
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Figure 2: Illustration of two kinds of groups. A single feature
based group contains two elements with one from wx and one
from wy which are of the same position. Patch based group is
defined as two groups of elements of wx and wy correspond-
ing to features of two modalities extracted in patches of same
position.

where

F (w) =

|T1|+|T2|∑
r=1

ℓ(ρr) + τ

|S|∑
k=1

δk +
η

2
w⊤Lw +

λ

2
∥w∥2

H(v) = γ

p∑
i=1

∥vGi∥
2.

The augmented Lagrangian for Eq. (6) is:

Lϱ = F (w) +H(v) + ν⊤(w − v) +
ϱ

2
∥w − v∥2, (7)

where ϱ is a scale parameter and ν is the lagrange multiplier. The
ADMM optimization procedure for the above problem is therefore
as follows:

wk+1 := argmin
w

F (w) +
ϱ

2
∥w − vk + uk∥2

vk+1
Gi

:= S γ
ϱ
(wk+1

Gi
+ uk

Gi
)

uk+1 := uk +wk+1 − vk+1,

(8)

where u = 1
ϱ
ν. Sκ is a vector soft thresholding operator which

can be found in [5]. For the first minimization problem to find
optimal w, a solution is to use gradient descent. However, as the
gradient calculation of the term

∑|T1|+|T2|
r=1 ℓ(ρr) with respect to

w is very time consuming. A modification of the scheme proposed
in [25] is adopted. By adopting the scheme, the gradient term is

of the form
[

XAXT XBYT

YBTXT YCYT

]
w, where X ∈ Rdx×Nx and

Y ∈ Rdy×Ny are matrices of samples of two modalities. By first
calculating A, B and C, the gradient can be efficiently updated. A
summary of the algorithm is given in Algorithm 1.

Algorithm 1 ADMM for Learning Sparse Cross-Modal Metric (S-
PAC)
1: Two sets of constructed triplets T1 and T2

2: Initialize w1, v1 and u1

3: Initialize k = 1
4: while not converged do
5: wk+1 := argminw F (w) + ϱ

2
∥w − vk + uk∥2

6: vk+1
Gi

:= S γ
ϱ
(wk+1

Gi
+ uk

Gi
)

7: uk+1 := uk +wk+1 − vk+1

8: k = k + 1
9: end while

10: Output w

6. ENSEMBLE OF SPACS
An ensemble framework is used to further combine a set of

weak SPACs into a strong one. Suppose the final strong metric is
represented as D(x,y) =

∑T
t=1 αtdt(x,y), where αt is the

coefficient of the tth SPAC. Then the subtraction of the distances
of a same labeled pair and a differently labeled pair measured by
the strong metric is D(xi,yk)−D(xi,yj) =

∑T
t=1 αtρ

t
r , where

ρtr = dt(xi,yk)− dt(xi,yj). Therefore the objective of the final
strong metric is to minimize the following loss:

J =

|T1|+|T2|∑
r=1

[
srℓ

(
T∑

t=1

αtρ
t
r

)]
(9)

where s is a distribution over the two sets of triplets. sr is the
weight of the rth triplet and is initialized as 1/(|T1| + |T2|). By
using Algorithm 2, the following equation holds.

Theorem 1. With Zt defined in step 7 of Algorithm 2, the
following equation holds for the initial distribution s:

J =

|T1|+|T2|∑
r=1

[
sr exp

(
−

T∑
t=1

αtρ
t
r

)]
=

T∏
t=1

Zt.

Proof: According to the definition of distribution:

sT+1
r =

sr exp(−
∑T

t=1 αtρ
t
r)∏T

t=1 Zt

.

Therefore

J =

|T1|+|T2|∑
r=1

[
sr exp

(
−

T∑
t=1

αtρ
t
r

)]

=

|T1|+|T2|∑
r=1

sT+1
r

T∏
t=1

Zt

=

T∏
t=1

Zt.

Therefore, minimizing J is equivalent to minimizing Zt at each
iteration. The step 5 in Algorithm 2 for learning a SPAC is therefore
changed a bit in the ESPAC framework. The first term in SPAC’s
objective function Eq. (5) is changed to Zt which is a weighted
loss so as to meet the objective of ESPAC. This leads to the F (w)
in Eq. (6) of the following form:

F (w) =

|T1|+|T2|∑
r=1

srℓ(ρr)+τ

|S|∑
k=1

δk+
η

2
w⊤Lw+

λ

2
∥w∥2. (10)

However the optimization procedure of Algorithm 1 remains
unchanged. The only change is the F (w) in step 5 of Algorithm 1
is changed to Eq. (10) and it can be optimized in the same way.

The weight of a weak metric αt (step 6 of Algorithm 2) is
calculated by taking the derivative of Zt with respect to αt and use
bisection to search for the value that meets the equation ∂Zt

∂αt
= 0.

7. EXPERIMENTAL RESULTS
Experimental results on four face recognition datasets are

presented. The AR dataset [24] was used for an illustration of the
effect of patch-based feature selection. As AR is a single modal
dataset, comparisons of recognition performance with two
single-modal boosting based metric learning methods are also
given. The other three datasets are cross-modal based. The first is



Algorithm 2 Ensemble of Sparse Cross-Modal Metrics (ESPAC)
1: Construct two sets of triplets T1 and T2

2: Initialize s1r = 1/(|T1|+ |T2|), r = 1, 2, ..., |T1|+ |T2|
3: Initialize t = 1
4: while not converged do
5: Train a weak metric dt(x,y) using distribution st by Algo-

rithm 1.
6: Choose the weight of the weak metric αt using bisection.
7: Update the distribution using:

st+1
r =

str exp
(
−αtρ

t
r

)
Zt

where Zt =
∑|T1|+|T2|

r=1 str exp
(
−αtρ

t
r

)
is a normalization

factor such that st+1 is a distribution.
8: t = t+ 1
9: end while

10: Output D(x,y) =
∑

t αtdt(x,y)

a newly collected Chinese resident identity card face dataset
(NJU-ID) which was used for evaluating the performance of
matching high resolution faces to low resolution faces. CUHK
face sketch FERET (CUFSF) dataset [31, 37] was also used to
evaluate the performance of recognizing sketches from photos.
Whilst the CASIA NIR-VIS 2.0 dataset [21] was evaluated for
matching visible light images (VIS) to near infrared images (NIR).

7.1 Datasets and Evaluation Protocols
AR Dataset: The AR dataset consists of over 4000 facial

images with different variations, including facial expressions,
illumination and occlusion by sunglasses or scarf. Two subsets of
the dataset with occlusion variations of sunglasses and scarf were
used in experiments, denoted as AR-Sunglasses and AR-Scarf in
the following experiments. In total, the two subsets are from 111
subjects with each having 4 images, two are frontal images with
no other variations and the two images are from two sessions. The
other two are face images with occlusions of sunglasses or scarf.
Example images are given in Fig. 3. For result reporting, both
AR-Scarf and AR-Sunglasses were randomly divided into four
parts for ten times. Each time, three parts were used for training
and the remaining part for testing.

NJU-ID Dataset: The NJU-ID dataset contains images of 256
persons. For each person, there are one low resolution NJU-ID
card image and fifty images collected from a high resolution
digital camera. Only randomly chosen one of the fifty high
resolution images was used in the experiment (Available from:
http://cs.nju.edu.cn/rl/Data.html). The resident identity card image
is of resolution 102 × 126 and the high resolution image is of
resolution 640 × 480. Exemplar pairs from the dataset are shown
in Fig. 7. To report results on this dataset, we randomly divided
the dataset into 10 folds according to identity information and
10-fold cross-validation was used.

CUHK Face Sketch FERET Dataset (CUFSF): The CUFSF
dataset was used for photo to sketch face recognition. It includes
1194 persons from the FERET dataset [27]. Samples are shown in
Fig. 8. For each person, there are one photo and one sketch drawn
by an artist after viewing the photo. To evaluate on this dataset, we
randomly split the dataset into two parts for ten times and each time
the first part was used for training and the other part was used for
testing.

The CASIA NIR-VIS 2.0 Dataset: The CASIA NIR-VIS 2.0

Figure 3: Examples of aligned face images of AR-Sunglasses
and AR-Scarf. The first row are face images of AR-Sunglasses
of two persons with each having four images. The second row
are from AR-Scarf.

dataset was used for evaluating the VIS-NIR face recognition.
Example images in Fig. 9. It contains 725 subjects. We followed
the same evaluation protocol on this dataset by [21]. The dataset
was divided into two views. View 1 was used for parameter tuning
and view 2 for reporting results.

On all the four datasets, the feature extraction method described
in Section 4 was applied. To maintain a processable number of
features for our method and the compared methods, all the
extracted local features were applied with principal component
analysis (PCA) [2] locally with the features of a patch of
dimension 15. When applying PCA locally, the first three
components of PCA were removed.

Verification rates with equal error rates (EER) denoted as
(VR-EER) and verification rates with false positive rates (FPR)
equal to 0.1% denoted as (VR-FPR0.1%) are reported and we also
provide the value of area under the receiver operating
characteristic (AUC). Rank-1 recognition rates on NJU-ID,
CUFSF and CASIA NIR-VIS 2.0 are also reported. To report
rank-1 on NJU-ID dataset, high resolution face images in the test
folds are registered as gallery images and low resolution images as
probe images. On CUFSF dataset, photos are gallery images and
sketches are probe images. On CASIA NIR-VIS 2.0, visible light
images are registered as gallery images and near-infrared images
are used as probe images.

7.2 Parameter Settings
There are a few parameters to tune in the proposed methods.

The parameters of τ and η were tuned by setting γ and ϱ to zero
without the sparse feature selection term. They were tuned
separately; when tuning τ , η was set to zero and vise versa. After
tuning τ and η, γ and ϱ were tuned together, with τ and η setting
to the best parameters on each dataset. For tuning parameters, on
AR and CUFSF, a separate split of data was used different from
the ten partitions for results reporting. On NJU-ID dataset, a
separate cross validation was used. On CASIA, the parameters
were tuned on View 1 as required by the evaluation protocol.

Other parameters include the numbers of triplets used for
training. In all the experiments, triplets were constructed by
finding focal samples’ intra-personal and inter-personal k-nearest
neighbors. AR is a single modal dataset. On AR, intra-personal
nearest neighbors denoted as K1 was set to 3 as there are four
images per person. Inter-personal nearest neighbors denoted as
K2, set to 100. On both NJU-ID and CUFSF, K1 was set to 1.
K2 was set to 100 for NJU-ID dataset and 150 for CUFSF dataset.
The setting of K2 on these three datasets were tuned. On CASIA
NIR-VIS 2.0 dataset, both K1 and K2 were set to 10. Generally,
larger K1 and K2 can lead to better results but it is not always the
case as the results may become saturated. The settings on CASIA
NIR-VIR 2.0 dataset need to balance between the performance
and training time.



Figure 4: The first row shows example training images. In the
second row, black patches on images correlate to zeros in the
parameters of wx and wy of the weak learners. The two weak
metrics successfully identify the occluded structures of faces.

Figure 5: Results of patch based feature selection of the first
two weak metrics on CUFSF dataset.

7.3 Visualization of Sparse Structures of
Learned Weak Metrics

Fig. 4 shows the visualization results of the sparse structures
of the patch-based weak metrics on AR-Sunglasses and AR-Scarf.
The first row shows example training images. In the second row,
the black patches correspond to zero values of the first learned weak
metrics on two datasets. From the left four images in Fig. 4, the first
weak metric on AR-Scarf does not use the lower parts of the face
images for measuring distances as the lower parts are occluded.
Same results are observed on AR-Sunglasses.

In Fig. 5, sparse structures of the first two weak metrics on
CUFSF dataset are given. In the first row, the first three face pairs
are those with the largest distances by using the first weak metric.
In the second row, corresponding sparse structure of the first weak
metric is given. The first weak metric does not use the features
corresponding to eyes and jaws. By carefully observing the faces
of this dataset, eye regions are less informative in distinguish
person identities possibly because humans’ eyes are hard to
capture in sketches (Note that we have manually remove all the
samples with eyeglasses in this experiment). For the jaws, as can
be seen in the first three face pairs, since our alignment procedure
is done by setting eyes in the same position, due to the error
estimation of the ratio of faces’ heights and widths, the faces in the
sketches are shorter than their corresponding faces in photos,
leading to misalignment in the jaw part. The third row also shows
three face pairs with the largest distances by using the second
weak metric. The forth row shows the structure of the second
weak metric. The second weak metric does not use most of the
jaw part. This is because the first weak learner is not sufficient to
handle those images that have misalignment problems. The first
and second weak learners are complementary as they use different
face regions for measuring distances and the resulting same
labeled pairs with large distances are different.

7.4 Influences of Different Number of Weak
Metrics

Fig. 6 shows the influences of different number of weak metrics
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(d) ESPAC-PS

Figure 6: Influence of different number of weak metrics on AR-
Scarf.

Table 1: Comparison with other boosting based metric learning
methods on AR-Sunglasses dataset.

Methods VR-EER(%) VR-FPR0.1%(%) AUC
BoostMetric 79.9± 1.7 18.0± 3.5 0.885
AdaboostMetric 80.2± 1.7 18.2± 3.4 0.884
ESPAC-NS 81.7± 2.0 18.0± 6.5 0.896
ESPAC-S 81.5± 2.2 18.1± 5.4 0.898
ESPAC-PS 85.2± 1.6 29.2± 5.9 0.926

on AR-Scarf and also comparative convergence results with
BoostMetric [29] and AdaboostMetric [4]. In the following,
ESPAC-NS denotes the proposed method with no feature
selection. ESPAC-S is the proposed method with single-feature
based group selection and ESPAC-PS uses the patch-based feature
selection. As can be seen, the proposed methods, ESPAC-S and
ESPAC-PS can obtain similar convergence results compared with
BoostMetric and AdaboostMetric while achieving better results.
Both ESPAC-S and ESPAC-PS converged with about 100 weak
metrics. In the following, for reporting results, on all the four
datasets, we used 150 weak metrics.

Table 2: Comparison with other boosting based metric learning
methods on AR-Scarf dataset.

Methods VR-EER(%) VR-FPR0.1%(%) AUC
MetricBoost 89.1± 1.3 34.8± 3.8 0.961
AdaboostMetric 89.2± 1.1 32.4± 3.6 0.960
ESPAC-NS 90.7± 1.2 40.6± 4.3 0.969
ESPAC-S 92.0± 0.9 45.3± 5.0 0.974
ESPAC-PS 93.8± 1.6 64.1± 6.0 0.982

7.5 Results on AR Dataset
Table 1 and Table 2 present results on AR-Sunglasses and

AR-Scarf. The proposed methods have been compared with two
boosting based metric learning methods. The code of BoostMetric
[29] was provided by the authors. AdaboostMetric [4] was
implemented by ourselves. The parameters of the two methods
were tuned to their optimal. The best results were achieved by
ESPAC-PS, followed by ESPAC-S. All three versions of the
proposed method performed better than BoostMetric and



AdaboostMetric, except for VR-FPR0.1% on AR-Sunglasses,
with the results of ESPAC-NS and ESPAC-S similar to those of
BoostMetric and AdaboostMetric. ESPAC-PS improves the results
to a large extent. This is mainly because that the face data of this
dataset is under heavy occlusion and ESPAC-PS can successfully
identify such occluded sparse structures.

7.6 Results on NJU-ID Dataset
Table 3 presents results on NJU-ID dataset. The proposed

method has been compared with a set of state-of-the-art methods
for face recognition. The parameters of the compared methods
were adjusted to their optimal. In the table, the first six compared
methods are single-modal based, including PCA [2], LDA [2],
kernel principal component analysis (KPCA) [15], kernel
discriminant analysis (KDA) [6], neighbourhood components
analysis (NCA) [10] and large margin nearest neighbor (LMNN)
[32]. Among them, PCA, LDA and KPCA are relatively worse
than the other three. This is mainly that because PCA and KPCA
are unsupervised. The performance of LDA is also unsatisfactory,
as there are only two images per person. This leads to the
within-class scatter matrix of LDA becomes singular and the
performance degrades. The following six methods are
multi-modal based, including CSR [20], kernel coupled spectral
regression (KCSR) [20], canonical correlation analysis (CCA)
[11], kernel canonical correlation analysis (KCCA) [18], CDFE
[22] and multi-view discriminant analysis(MvDA) [13]. CSR,
KCSR, CDFE and MvDA are widely used for multi-modal face
recognition. Among all the compared methods, ESPAC-PS is the
best with respect to all the evaluation protocols. Among the
proposed three versions of our methods, ESPCA-NS is the worst.
On NJU-ID dataset, as the face data has many other variations
besides modality variation, this proves that by using feature
selection together with the proposed boosting based cross-modal
metric learning, the performances can be improved. The proposed
methods are able to capture the variations in the extracted face
features and neglect these noisy features.

Figure 7: Examples of aligned face images. The first row are
samples of high resolution and the second row are correspond-
ing samples of low resolution.

7.7 Results on CUFSF Dataset
Table 4 presents the recognition results on CUFSF dataset. The

six single-modal methods and six multi-modal methods are also
compared. Compared with these state-of-the-art methods, the
proposed ESPAC-PS is the best among three of all the evaluation

Figure 8: Examples of aligned face images. The first row are
samples of photos and the second row are corresponding s-
ketches.

Table 3: Comparison with other methods on NJU-ID dataset.
Methods VR-EER(%) VR-FPR0.1%(%) Rank-1(%) AUC
PCA 63.6± 5.2 8.2± 7.3 13.3± 6.5 0.688
LDA 59.7± 5.3 8.1± 8.7 10.9± 8.1 0.637
KPCA 64.0± 4.8 8.2± 6.8 14.0± 5.8 0.687
KDA 67.6± 4.7 11.7± 8.8 18.3± 8.4 0.723
LMNN 69.9± 3.9 13.4± 11.2 20.3± 6.4 0.737
NCA 65.6± 3.3 9.4± 6.8 15.6± 6.2 0.715
CSR 67.2± 3.9 11.2± 11.1 18.6± 8.2 0.730
KCSR 68.3± 4.2 16.5± 11.1 19.4± 9.4 0.727
CCA 62.5± 4.5 5.1± 5.8 10.5± 5.8 0.638
KCCA 62.1± 3.6 7.0± 8.6 10.6± 5.0 0.632
CDFE 58.2± 5.1 2.3± 2.6 6.2± 3.6 0.588
MvDA 62.1± 4.3 4.3± 5.6 10.2± 4.3 0.628
ESPAC-NS 65.0± 7.5 14.8± 6.0 19.7± 5.1 0.738
ESPAC-S 69.2± 6.9 16.6± 8.6 20.4± 5.5 0.747
ESPAC-PS 70.1± 7.3 16.8± 7.8 20.8± 6.2 0.748

Table 4: Comparison with other methods on CUFSF dataset.
Methods VR-EER(%) VR-FPR0.1%(%) Rank-1(%) AUC
PCA 85.6± 5.2 23.9± 7.3 37.9± 6.5 0.937
LDA 79.0± 5.3 20.2± 8.7 21.4± 8.1 0.874
KPCA 85.6± 4.8 23.8± 6.8 37.9± 5.8 0.937
KDA 93.9± 4.7 41.1± 8.8 53.2± 8.4 0.985
LMNN 93.2± 3.9 35.4± 11.2 49.2± 6.4 0.982
NCA 92.8± 3.3 31.8± 6.8 42.5± 6.2 0.979
CSR 92.8± 3.9 44.9± 11.1 53.8± 8.2 0.980
KCSR 93.7± 4.2 16.4± 11.1 45.1± 9.4 0.983
CCA 91.6± 4.5 17.5± 5.8 35.5± 5.8 0.973
KCCA 93.1± 3.6 14.0± 8.6 35.6± 5.0 0.980
CDFE 89.7± 5.1 17.6± 2.6 24.4± 3.6 0.960
MvDA 80.2± 4.3 7.3± 5.6 9.7± 4.3 0.884
ESPAC-NS 94.0± 3.8 43.4± 2.8 52.2± 5.5 0.987
ESPAC-S 94.2± 3.4 44.6± 3.8 53.3± 2.0 0.987
ESPAC-PS 94.5± 4.0 45.1± 3.1 53.7± 2.2 0.989

protocols (though for rank-1, CSR achieved similar performance).
Among the six single-modal methods, the best results were
achieved by KDA. The results of KDA are comparable with our
methods. As KDA is a non-linear method, this may illustrate that
the data distribution has non-linear properties, while the proposed
method is linear-based. It is likely that extending our method to
non-linear based by design non-linear weak metrics can further
improve the recognition results.

7.8 Results on CASIA NIR-VIS 2.0 Dataset
On CASIA NIR-VIS 2.0 dataset, results of the proposed

methods and state-of-the-art methods are given in Table 5. Note
that results of NCA is not given as the computational cost of NCA
is too heavy on this dataset. The compared methods were all
adjusted to their optimal. On this dataset, ESPAC-S and
ESPAC-PS achieved the best AUC result. ESPAC-PS is best for
the VR-EER performance measure. Among the three versions of
the proposed methods, the improvement of ESPAC-S and
ESPAC-PS over ESPAC-NS is relatively small. As this dataset is
collected under near controlled environment, the only variations
are eyeglasses and a few expression changes which are of a small
portion. Another observation is that our methods are worse than
LDA and CSR with respect to VR-FPR0.1% and Rank-1. This is
due to that our methods use part of all the triplets constructed on
this dataset. For low rank-1 rate, it means for some samples, their
intra-personal distances are still larger than one of their
inter-personal distances. As in ESPAC, triplets are all
pre-constructed and kept fixed during optimization. Although



Figure 9: Examples of aligned faces in CASIA NIR-VIS 2.0
dataset.

Table 5: Comparison with other methods on CASIA NIR-VIS
2.0 dataset.

Methods VR-EER(%) VR-FPR0.1%(%) Rank-1(%) AUC
PCA 83.1± 0.5 20.8± 1.7 38.6± 1.0 0.909
LDA 88.6± 0.6 46.8± 1.5 56.4± 1.1 0.954
KPCA 82.2± 0.5 17.6± 1.5 34.0± 1.1 0.902
KDA 90.2± 0.4 31.6± 3.1 50.7± 1.6 0.963
LMNN 87.3± 0.6 27.1± 1.8 41.7± 0.8 0.946
CSR 89.3± 0.6 44.2± 1.4 55.6± 0.7 0.957
KCSR 90.1± 0.5 27.2± 3.3 49.6± 0.9 0.962
CCA 84.0± 0.5 23.7± 1.1 30.2± 1.0 0.917
KCCA 82.5± 0.4 20.6± 1.3 25.8± 1.1 0.905
CDFE 76.7± 0.3 1.9± 0.2 19.4± 1.2 0.832
MvDA 84.1± 0.4 16.2± 1.7 29.5± 1.4 0.918
ESPAC-NS 90.3± 0.5 33.6± 1.3 45.1± 1.6 0.972
ESPAC-S 90.8± 0.5 35.0± 1.4 46.6± 1.7 0.974
ESPAC-PS 90.9± 0.5 34.8± 1.2 46.5± 1.5 0.974

ESPAC can learn well on the given sets of triplets, there are still
unseen triplets that the learned ESPAC not perform well. A
solution is to perform ESPAC multiple passes to further enhance
the performances, as is also suggested by [32, 29].

7.9 Comparison of Training Time
A comparison of training time on AR-Scarf is given in Table 6.

The two compared methods, BoostMetric and AdaboostMetric,
also use triplets for training. Implementation of BoostMetric was
provided by its authors. AdaboostMetric was implemented by
strictly following its paper. The experiments were conducted on
the same computer under exactly the same setting. The training
time of each of the methods is related to the number of triplets
used. For 5 different numbers of triplets constructed, the training
times (in seconds) are given in Table 6. The complexity of
BoostMetric per iteration mainly relies on the number of triplets
(O(N × S × D), N the number of samples, S the number of
same class neighbors, D the number of different classes
neighbors). AdaboostMetric decomposes triplets into pairs
(O(N × (S +D))) and is more efficient. The implementation of
the proposed methods uses a modification of the scheme in the
work of McFee and Lanckriet [25], which is neither triplet nor pair
based. ESPAC-NS with this scheme is very efficient. While
ESPAC-S and ESPAC-PS use ADMM to learn SPAC which takes
hundreds of iterations to converge, the training processes are
longer. However, with this scheme, the training time increases
little with the triplets’ number increases.

Table 6: Comparison of training time (in seconds).
Methods 9960 19920 29880 39840 49800
MetricBoost 924 1863 2724 3926 5040
AdaboostMetric 573 987 1412 1839 2203
ESPAC-NS 61 69 75 82 91
ESPAC-S 2237 2364 2513 2647 2773
ESPAC-PS 2434 2626 2768 2776 2898

7.10 Interpretations and Some Possible
Extensions

Relationship with face attribute learning. In [17], the authors
proposed to learn semantic face features to describe face
attributes. The proposed SPAC also can be seen as learning a
classifier but with the objective of separating pairs of samples
encoded in triplets. SPAC automatically determines the best
regions for separating the current inseparable groups of triplets.
From Fig. 4 and Fig. 5, the learned SPAC also have some implicit
semantic meanings such as misaligned jaw on CUFSF dataset or
occluded eye areas on AR dataset. In this way, the proposed
method is related to automatic face semantic feature learning,
without the need of labeling attributes and manually determine
attribute related face regions for training. As the method in [17]
used non-linear SVM for training, this further provides us insight
to make SPAC non-linear in our future work.

Relationship with Mahalanobis metric learning. As the
proposed method is also applicable for single-modal metric
learning. Compared with Mahalanobis metric learning, it is easy
to see that Mahalanobis metric tries to separate samples in the
space of xi − xj , while the cross-modal metric is using the space
of [xi;−xj ]. As has been discussed in [7], the former space may
reduce data separability and our formulation is a more generalized
one. We have partly proved this on AR dataset that our method
even the non-sparse based version is either better or comparable to
BoostMetric and AdaboostMetric. So it is worth trying to test it on
more single-modal based datasets.

Extend to other feature extraction frameworks. In Section 4,
we have introduced the local face feature extraction method used
in this paper. It is clear that combinations with other facial
landmark features and features at multiple scales [8] are also
possible. In this way, the proposed method will be able to find
more informative face landmarks for recognition. Combining with
the convolutional neural networks (CNN) [19] is also an
interesting new line of research as the features of CNN have
invariant spatial properties.

8. CONCLUSION
In this paper, an ensemble of sparse cross-modal metric learning

method is proposed for heterogeneous face recognition. A set of
sparse cross-modal weak metrics are learned to remove modality
variations. In addition, feature selection is performed to remove
noisy features relating to the variations such as, occlusions,
expressions and illumination changes. Each learned weak metric
selects a few face features or a few face regions for measuring dis-
tances between samples. Although one weak cross-modal metric
is not able to handle all the variations, by using an Adaboost
framework to reassign weights based on triplets, the finally learned
weak metrics become complementary. All the weak metrics are
combined into a strong one which is able to deal with various vari-
ations. State-of-the-art performances on three heterogeneous face
recognition datasets are achieved. On the AR dataset, we have
shown that the proposed methods can improve the recognition
results by a large extent for faces with heavy occlusions.

There are a few future directions of this work. One is to extend
the linear weak metrics to non-linear ones which may further
improve face recognition performances. Another is that multi-pass
ensembles can be further tested. Besides, as the framework is
fairly flexible, combination with other face feature extraction
framework such as face landmark indexed features, can also be
tested to find which face landmarks convey more information for
face matching.
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