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Low-rank matrices arise in many scientific and engineering computations. Both computational and storage costs of manipulating
such matrices may be reduced by taking advantages of their low-rank properties. To compute a low-rank approximation of a dense
matrix, in this paper, we study the performance of QR factorization with column pivoting or with restricted pivoting on multicore
CPUs with a GPU.We first propose several techniques to reduce the postprocessing time, which is required for restricted pivoting,
on a modern CPU. We then examine the potential of using a GPU to accelerate the factorization process with both column and
restricted pivoting.Our performance results on two eight-core Intel SandyBridgeCPUswith oneNVIDIAKeplerGPUdemonstrate
that using the GPU, the factorization time can be reduced by a factor of more than two. In addition, to study the performance of
our implementations in practice, we integrate them into a recently developed software StruMF which algebraically exploits such
low-rank structures for solving a general sparse linear system of equations. Our performance results for solving Poisson’s equations
demonstrate that the proposed techniques can significantly reduce the preconditioner construction time of StruMF on the CPUs,
and the construction time can be further reduced by 10%–50% using the GPU.

1. Introduction

In applied and numerical mathematics or in scientific and
engineering simulations, we often encounter low-rankmatri-
ces, and more frequently, we encounter matrices whose sub-
matrices are low-rank. We can reduce both computational
and storage requirements of manipulating many of these
matrices by taking advantages of their low-rank properties.
In this paper, we study the performance of the following
two algorithms for computing a low-rank approximation of
a dense matrix on multicore CPUs and investigate the poten-
tial of using a GPU to accelerate the process: (1) the QR
factorization with column pivoting (QP3) [1, 2] and (2) the
QR factorization with restricted pivoting (QPR) [3, 4]. In
addition, to study the performance of QP3 and QPR in
practice, we integrate our implementations of QP3 and QPR
into StruMF [5, 6] which is a recently developed software
for solving a general sparse linear system of equations.
StruMF algebraically exploits a low-rank structure, referred

to as a hierarchically semiseparable (HSS) structure [7], of a
coefficient matrix while computing and applying a precondi-
tioner, and uses QP3 and QPR for computing the low-rank
approximation of the dense submatrices. In many cases, the
preconditioner construction time of StruMF is dominated by
the low-rank approximation of the submatrices.

The rest of the paper is organized as follows. First, in
Section 2, we review QP3 and QPR. Then, in Section 3, after
analyzing the performance of StruMF on a CPU, we propose
several techniques to improve the QPR performance on the
CPU. Next, in Section 4, we describe our implementations of
QP3 and QPR using a GPU. Finally, in Section 5, we show
their performance on multicore CPUs with a GPU and its
impact on the performance of StruMF. We provide our final
remarks in Section 6. Throughout this paper, the 𝑗th column
of amatrix𝐴 is denoted by a𝑗, while𝐴 𝑖

1
:𝑖
2
,𝑗
1
:𝑗
2

is the submatrix
consisting of the 𝑖1th through the 𝑖2th rows and the 𝑗1th
through the 𝑗2th columns of 𝐴.
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2. QR Algorithms with Column Pivoting

An𝑚-by-𝑛matrix𝐴 has a numerical rank 𝑟 with respect to a
threshold 𝜏 when

𝜎1 (𝐴)

𝜎𝑟 (𝐴)
≤ 𝜏 <

𝜎1 (𝐴)

𝜎𝑟+1 (𝐴)
, (1)

where 𝜎1(𝐴), 𝜎2(𝐴), . . . , 𝜎𝑚(𝐴) are the singular values of𝐴 in
the descending order (i.e., 𝜎1(𝐴) ≥ 𝜎2(𝐴) ≥ ⋅ ⋅ ⋅ ≥ 𝜎𝑚(𝐴)) (we
assume that 𝑚 ≤ 𝑛 without the loss of generality). Then, an
RRQR factorization of 𝐴 has a form

𝐴𝑃 = 𝑄𝑅, (2)

where 𝑄 is an 𝑚-by-𝑚 orthonormal matrix, 𝑅 is an 𝑚-by-
𝑛 upper-triangular matrix, and 𝑃 is a permutation matrix
chosen to reveal the numerical rank:

𝜎min (𝑅1:𝑟,1:𝑟) ≈ 𝜎𝑟 (𝐴) , (3)

𝜎max (𝑅𝑟+1:𝑚,𝑟+1:𝑛) ≈ 𝜎𝑟+1 (𝐴) . (4)

Since the interlacing properties of the singular values [8]
states that

𝜎min (𝑅1:𝑟,1:𝑟) ≤ 𝜎𝑟 (𝐴) , (5)

𝜎max (𝑅𝑟+1:𝑚,𝑟+1:𝑛) ≥ 𝜎𝑟+1 (𝐴) , (6)

satisfying (3) or (4) is equivalent to finding the permutation
matrix 𝑃 such that one of the following two tasks is satisfied,
respectively:

task-1: max
𝑃
𝜎min (𝑅1:𝑟,1:𝑟) , (7)

task-2: min
𝑃
𝜎max (𝑅𝑟+1:𝑚,𝑟+1:𝑛) . (8)

More detailed discussion on the RRQR factorizations can be
found in [9] and the references therein.

In the following subsections, we review the existing
algorithms to compute such RRQR factorizations. Namely,
we first review the blocked versions of Householder QR [8]
(Section 2.1). We then outline QP3 [1, 2] which is a greedy
algorithm for solving task-1 and is implemented in LAPACK
[10] (Section 2.2).Next, we describe howan algorithm solving
task-1 can be modified to solve task-2 and present three
types of so-called hybrid algorithms [9] that are theoretically
guaranteed to solve task-1 or task-2, or both (Section 2.3).
Finally, we discuss QPR [3] that uses the hybrid algorithm as
a postprocessing scheme to reduce the computational bottle-
neck of QP3, while ensuring the rank-revealing properties of
the computed factorization (Section 2.4).

2.1. Blocked QR Algorithm. The 𝑗th step of Householder QR
[8] generates the Householder transformations to zero out
the off-diagonal elements in the 𝑗th column of 𝐴 (for 𝑗 =
1, 2, . . . , 𝑚). To improve the data locality of the factorization,
a blocked version of the algorithm (QR3) accumulates 𝑛𝑏
Householder transformations and uses a BLAS-3 to apply
the accumulated transformations at once to the trailing

submatrix; that is, for 𝑘 = 1, 2, . . . , 𝑚/𝑛𝑏, and 𝑟 = (𝑘 − 1)𝑛𝑏
(we assume that both 𝑚 and 𝑛 are multiples of 𝑛𝑏, but the
discussion can be easily extended for other cases),

𝐴𝑟:𝑚,𝑟+𝑛
𝑏
:𝑛 := 𝐻

[𝑘]
𝑟:𝑚,𝑟:𝑚𝐴𝑟:𝑚,𝑟+𝑛𝑏 :𝑛, (9)

where 𝐻[𝑘] is the product of the 𝑛𝑏 Householder matrices;
that is, 𝐻[𝑘] = 𝐻[𝑘,𝑛𝑏 :−1:1] = 𝐻[𝑘,𝑛𝑏]𝐻[𝑘,𝑛𝑏−1] ⋅ ⋅ ⋅ 𝐻[𝑘,1] and
𝐻[𝑘,𝑗] = 𝐼 − 𝜏

[𝑘]
𝑗 v[𝑘]𝑗 v[𝑘]𝑇𝑗 . (The matrices 𝐻[𝑘] is not explicitly

formed. Instead, we store v[𝑘]𝑗:𝑚,𝑗 in the lower-triangular part of
a𝑗 and store 𝜏[𝑘]𝑗 in an 𝑛-length vector.) This matrix𝐻[𝑘] can
be represented in a so-called 𝑉𝑊 form [11]:

𝐻
[𝑘]
= 𝐼 − 𝑉

[𝑘]
𝑊
[𝑘]𝑇
, (10)

where w[𝑘]𝑗 = 𝜏
[𝑘]
𝑗 𝐻
[𝑘,𝑗−1:−1:1]𝑇v[𝑘]𝑗 . Since 𝑗 = 1, 2, . . . , 𝑛𝑏,

these 𝑗 − 1 Householder matrices are applied to the vector
v[𝑘]𝑗 in addition to the matrix 𝐴; this blocked algorithm
requires about 𝑛𝑏/𝑚 times more floating point operations
(flops) than the unblocked algorithm. However, on a modern
computer, the blocked algorithm takes advantage of the
memory hierarchy and often obtains a significant speedup
over an unblocked algorithm.

The additional 𝑚-by-𝑛𝑏 workspace to store 𝑊[𝑘] can be
reduced by factorizing𝑊[𝑘] into the following form [12]:

𝑊
[𝑘]
= 𝑉
[𝑘]
𝑇
[𝑘]
, (11)

where 𝑇[𝑘] is an 𝑛𝑏-by-𝑛𝑏 upper-triangular matrix such that
𝑇
[𝑘]
1:𝑖,𝑖 = 𝜏

[𝑘]
𝑖 [

z
1.0 ] and z is an (𝑖 − 1)-length vector given by

z = −𝑇[𝑘]1:𝑖−1,1:𝑖−1𝑉
[𝑘]𝑇
:,1:𝑖−1v

[𝑘]
𝑖 . Algorithm 1 shows the pseudocode

of the resulting blocked QR algorithm with BLAS-3 (QR3).

2.2. QP3 Algorithm. At each step of an RRQR factorization,
selecting an optimal pivot to satisfy task-1 (7) or task-2 (8), or
both, is likely to be a combinatorial optimization problem.
To reduce the computational cost, a greedy algorithm is
generally used. In this section, we discuss such a greedy
algorithm for solving task-1. Specifically, at the (𝑟 + 1)th step
(for 𝑟 = 0, 1, . . . , 𝑚−1), assuming that the 𝑟well-conditioned
columns of 𝐴 have been already selected and factorized,
the next pivot column is selected from the remaining 𝑛 − 𝑟
columns such that the smallest singular value of the 𝑟 + 1
selected columns are maximized:

(
𝑅1:𝑟,1:𝑟 r1:𝑟,𝑟+1

r𝑟+1:𝑚,𝑟+1
)

= arg max
𝑗=𝑟+1,...,𝑛

𝜎min(
𝑅1:𝑟,1:𝑟 a1:𝑟,𝑗

a𝑟+1:𝑚,𝑗
) .

(12)

Since selecting such a column is still computationally expen-
sive, heuristics are used. First, since a Householder trans-
formation can zero out the elements of a𝑟+1:𝑚,𝑗 below the
diagonal, we have

𝜎min(
𝑅1:𝑟,1:𝑟 a1:𝑟,𝑗

a𝑟+1:𝑚,𝑗
) = 𝜎min(

𝑅1:𝑟,1:𝑟 a1:𝑟,𝑗
𝛾𝑗
) , (13)
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setup: 𝑟 := 0 and 𝑘 := 0
while 𝑟 < 𝑚 do

(1) panel factorization:
for 𝑗 = 1, . . . , 𝑛𝑏 do

generation of Householder transformation:
(𝜏
[𝑘]
𝑗 , k
[𝑘]
𝑗 ) such that𝐻[𝑘,𝑗] := 𝐼 − 𝜏[𝑘]𝑗 k[𝑘]𝑗 k

[𝑘]𝑇
𝑗 .

right-looking update of panel:
𝐴𝑟+𝑗:𝑚,𝑟+𝑗:𝑟+𝑛𝑏 := 𝐻

[𝑘,𝑗]

𝑟+𝑗:𝑚,𝑟+𝑗:𝑚𝐴𝑟+𝑗:𝑚,𝑟+𝑗:𝑟+𝑛𝑏 .
end for

(2) computation of matrix 𝑇[𝑘]:
for 𝑗 = 1, 2, . . . , 𝑛𝑏 do
𝑇[𝑘]1:𝑗−1,𝑗 := 𝑇

[𝑘]
1:𝑗−1,𝑗 − 𝜏

[𝑘]
𝑗 𝑇
[𝑘]
1:𝑗−1,1:𝑗−1𝑉

[𝑘]𝑇
𝑗:𝑛,1:𝑗−1k

[𝑘]
𝑗:𝑛,𝑗

𝑇[𝑘]𝑗,𝑗 := 𝜏
[𝑘]
𝑗

end for

(3) right-looking update of trailing submatrix:
𝐴𝑟:𝑚,𝑟+𝑛𝑏 :𝑛 := 𝐻

[𝑘]
𝑟:𝑚,𝑟:𝑚𝐴𝑟:𝑚,𝑟+𝑛𝑏 :𝑛.

𝑘 := 𝑘 + 1 and 𝑟 := 𝑟 + 𝑛𝑏.
end while

Algorithm 1: Blocked QR factorization algorithm.

where 𝛾𝑗 = ‖a𝑟+1:𝑚,𝑗‖2. Furthermore, we can approximate the
smallest singular value of the matrix by the reciprocal of the
largest row norm of its inverse [9, 13]:

𝜎min(
𝑅1:𝑟,1:𝑟 a1:𝑟,𝑗

𝛾𝑗
) ≤ max
𝑖=1,2,...,𝑟+1



e𝑇𝑖 (
𝑅1:𝑟,1:𝑟 a1:𝑟,𝑗

𝛾𝑗
)

−1

−1

2

≤ √𝑛𝜎min(
𝑅1:𝑟,1:𝑟 a1:𝑟,𝑗

𝛾𝑗
) .

(14)

In addition, since 𝑅1:𝑟,1:𝑟 is assumed to be well-conditioned,
all the row norms of 𝑅−11:𝑟,1:𝑟 are expected to be small. Hence,
it leads to the following approximation:

min
𝑖=1,2,...,𝑟+1



e𝑇𝑖 (
𝑅−11:𝑟,1:𝑟 −𝑅

−1
1:𝑟,1:𝑟a1:𝑟,𝑗𝛾

−1
𝑗

𝛾−1𝑗
)

2

≈ min
𝑖=1,2,...,𝑟+1



e𝑇𝑖 (
−𝑅−11:𝑟,1:𝑟a1:𝑟,𝑗𝛾

−1
𝑗

𝛾−1𝑗
)

2

≈ 𝛾
−1
𝑗 ,

(15)

where

(
𝑅1:𝑟,1:𝑟 a1:𝑟,𝑗

𝛾𝑗
)

−1

= (
𝑅−11:𝑟,1:𝑟 −𝑅

−1
1:𝑟,1:𝑟a1:𝑟,𝑗𝛾

−1
𝑗

𝛾−1𝑗
) . (16)

Based on these heuristics, QR with column pivoting (QRP)
[1] selects the next pivot column that is farthest away in the
Euclidean norm from the subspace spanned by the already
selected columns (i.e., the column with the largest 𝛾𝑗 =
‖a𝑟+1:𝑚,𝑗‖2). Since an orthogonal transformation does not
change the column norms, once these norms are initialized
(𝛾𝑗 := ‖a𝑗‖2 for 𝑗 = 1, 2, . . . 𝑛), it can be cheaply downdated
at the end of the (𝑟 + 1)th step (𝛾𝑗 := 𝛾𝑗 − 𝑟

2
𝑟+1,𝑗 for 𝑗 =

𝑟 + 2, 𝑟 + 3, . . . , 𝑛).

Algorithm 2 shows a blocked version (QP3) of QRP [2].
One difference between QP3 and QR3 of Algorithm 1 is at
the trailing submatrix update. Specifically, QR3 stores the
product of the 𝑛𝑏 Householder matrices in the 𝑉𝑊 form
(10) (or using the matrix 𝑇[𝑘] to reduce the memory require-
ment) and updates the trailing submatrix by two matrix-
matrixmultiplies (our implementation takes advantage of the
triangular structures of both 𝑉[𝑘] and 𝑇[𝑘]); that is, after the
𝑘th panel factorization, the trailing submatrix is updated by
𝐴 := 𝐴 − 𝑉[𝑘]𝐹[𝑘]𝑇 where 𝐹[𝑘] = 𝐴𝑇𝑊[𝑘]. On the other hand,
the 𝑗th step of the 𝑘th QP3 panel factorization computes the
𝑗th column of the matrix-matrix product 𝐴𝑇𝑊[𝑘] and uses
the resulting vector f[𝑘]𝑗 to update the 𝑗th row of 𝐴, which,
in return, is needed to downdate the column norms of the
trailing submatrix (Steps 1.5 and 1.6 of Algorithm 2). Finally,
QP3 updates the trailing submatrix by a single matrix-matrix
multiply, 𝐴 := 𝐴 − 𝑉[𝑘]𝐹[𝑘]𝑇. Since QP3 saves the result of
the matrix-matrix product 𝐴𝑇𝑊[𝑘] in the auxiliary matrix
𝐹[𝑘], QP3 and QR3 require about the same numbers of flops.
However, QP3 performs about a half of the total flops using
BLAS-2, while QR3 performs most of its flops using BLAS-3.

In some cases, due to the round-off errors, the downdated
norms 𝛾𝑗 diverge significantly from the true norms [14].
When this occurs, the trailing submatrix is immediately
updated with the outstanding Householder transformations,
and the column norms are recomputed. If the column norms
must be frequently recomputed, then in comparison to QR3,
QP3 not only requires significantly more flops for recomput-
ing the norms but also exhibits a poorer data locality since the
trailing submatrices are updated using smaller blocks.

2.3. Hybrid Algorithms. In this section, we first show how
an algorithm solving task-1 can be used to solve task-2, and
thendescribe so-called hybrid algorithms for solving task-1 or
task-2, or both. The algorithms presented in this subsection
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setup: Compute the column norms
𝛾𝑗 = ‖a𝑗‖22 for 𝑗 = 1, 2, . . . , 𝑛 𝑟 = 0, and 𝑘 = 0.

While 𝑟 < 𝑚 do
(1) panel factorization:
for 𝑗 = 1, 2, . . . , 𝑛𝑏 do

(1.1) pivoting:
select the pivot column with the largest 𝛾ℎ.
𝐴 :,[𝑟+1,ℎ] = 𝐴 :,[ℎ,𝑟+1] and 𝛾[𝑟+1,ℎ] = 𝛾[ℎ,𝑟+1].
𝐹[𝑘]
[ℎ,𝑗],1:𝑗−1

= 𝐹[𝑘]
[𝑗,ℎ],1:𝑗−1

.
𝑟 := 𝑟 + 1 (update numerical rank).

(1.2) left-looking update of pivot column:
𝐴𝑟:𝑚,𝑟 := 𝐴𝑟:𝑚,𝑟 − 𝑉

[𝑘]
𝑟:𝑚,1:𝑗−1f

[𝑘]𝑇
𝑟,1:𝑗−1.

(1.3)Householder matrix computation:
(𝜏
[𝑘]
𝑗 , k
[𝑘]
𝑗 ) such that𝐻[𝑘]𝑗 = 𝐼 − 𝜏

[𝑘]
𝑗 k[𝑘]𝑗 k

[𝑘]𝑇
𝑗 .

(1.4) Computation of the 𝑗-auxiliary vector f𝑗:
f [𝑘]𝑟:𝑛,𝑗 = 𝜏

[𝑘]
𝑗 (𝐴𝑟:𝑚,𝑟:𝑛 − 𝑉

[𝑘]
𝑟:𝑚,1:𝑗−1𝐹

𝑇
𝑟:𝑛,1:𝑗−1)

𝑇k[𝑘]𝑗
(1.5) right-look update of pivot row:

r𝑟,𝑟:𝑛 = a𝑟,𝑟:𝑛 − k
[𝑘]
𝑟,1:𝑗−1𝐹

[𝑘]𝑇
𝑟:𝑛,1:𝑗−1

(1.6) norm downdate:
𝛾ℓ = 𝛾ℓ − 𝑟

2
𝑟−1,ℓ for ℓ = 𝑟, 𝑟 + 1, . . . , 𝑛.

(if norms must be recomputed then break)
end for

(2) trailing submatrix update:
𝐴𝑟+1:𝑚,𝑟+1:𝑛 := 𝐴𝑟+1:𝑚,𝑟+1:𝑛 − 𝑉

[𝑘]
𝑟+1:𝑚,1:𝑛𝑏

𝐹[𝑘]𝑇𝑟+1:𝑛,1:𝑛𝑏 .
𝑘 := 𝑘 + 1 (recompute norms if necessary).

end while

Algorithm 2: QP3 factorization algorithm, where 𝐴 :,[𝑟+1,ℎ] is the submatrix consisting of the (𝑟 + 1)th and ℎth columns of 𝐴.

are used as a postprocessing to improve the numerical prop-
erties of an RRQR factorization, and the matrix 𝐴 is of
upper-triangular form. For instance, Algorithm 3(a) shows
the QP3 algorithm applied to an upper triangular matrix 𝑅.
To simplify our notation, we write the RRQR factorization as

𝐴𝑃 = 𝑄[
𝑅[1,1] 𝑅[1,2]

𝑅[2,2]
] , (17)

where 𝑅[1,1] is the 𝑟-by-𝑟 leading submatrix. Then, task-2 is
equivalent to

task-3: max
𝑃
𝜎min ((𝑅

[2,2]
)
−𝑇
) . (18)

Hence, to solve task-2, we apply an algorithm that solves task-
1 to the transpose-inverse of the matrix𝐴. Namely, if we have
such an RRQR factorization,

𝐴
−𝑇
𝑃 = 𝑄[

𝑅[1,1] 𝑅[1,2]

𝑅[2,2]
] , (19)

then we also have

𝐴𝑃 = 𝑄[

[

(𝑅[1,1])
−𝑇

− (𝑅[2,2])
−𝑇
𝑅[1,2]𝑇𝑅[1,1]

𝑇

(𝑅[2,2])
−𝑇
]

]

. (20)

Moreover, if �̂� is the permutation matrix with ones on the
antidiagonal, then

𝐴(𝑃�̂�) = (𝑄�̂�)[

[

𝑅[2,2]
−1

−𝑅[1,1]
−1

𝑅[1,2]𝑅[2,2]
−1

𝑅[1,1]
−1

]

]

, (21)

where 𝑃�̂� is a permutation matrix, 𝑄�̂� is an orthogonal
matrix, and 𝜎max(𝑅

[1,1]
−1

) is minimized. Hence, the factoriza-
tion (21) is anRRQR factorization solving task-2.This is called
the unification principle of the algorithms solving task-1 and
task-2 [9].

We now introduce the Chan-I algorithm for solving task-
1, whose task-2 version is used as the postprocess scheme
in Section 2.4. Just like the QRP algorithm, the Chan-I
algorithm pivots the column with the largest norm, but it
uses an additional heuristic. Namely, at the (𝑟 + 1)th step, the
column norm 𝛾𝑟+𝑘 is approximated using the right-singular
vector corresponding to the largest singular value of the
submatrix 𝐴[2,2]. Specifically, if 𝐴[2,2] = 𝑈Σ𝑉𝑇 is the singular
value decomposition of 𝐴[2,2], then the 𝑘th column norm of
𝐴[2,2] is approximated by

a
[2,2]

𝑘

2
=


∑

ℓ=1,2,...,𝑛−𝑟

𝜎ℓ (𝐴
[2,2]
) V𝑘,ℓuℓ

2
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(a)
Golub algorithm for task-1.
for 𝑗 = 1, 2, . . . , 𝑚 − 1 do

Golub-I (𝐴, 𝑗, 𝑚, 𝑛)
end for

(b)
Chan algorithm for task-2.
for 𝑗 = 𝑚,𝑚 − 1, . . . , 2 do

Chan-II (𝐴, 1, 𝑗, 𝑛)
end for

(c)
Golub-I (𝑅, 𝑟, 𝑚, 𝑛) algorithm.
(1) compute the column norms:

for 𝑗 = 𝑟 + 1, 𝑟 + 2, . . . , 𝑛
𝛾𝑗 = ‖r𝑟:𝑚,𝑗‖2

(2) find a pivot column 𝑗 such that
𝛾𝑗 = max𝑘=𝑟+1,𝑟+2,...,𝑛𝛾𝑘

(3) shift columns for column pivot:
y = r1:𝑗,𝑗
for 𝑘 = 𝑗, 𝑗 − 1, . . . , 𝑟 + 1
r1:𝑘,𝑘 = r1:𝑘,𝑘−1

r1:𝑗,𝑟 = y
(4) re-triangularize 𝑅:

for 𝑘 = 𝑗, 𝑗 − 1, . . . , 𝑟 + 1 do
(4.1) generate a Given’s rotation

to zero out 𝑟𝑘,𝑟 with 𝑟𝑘−1,𝑟
(4.2) apply the Given’s rotation

to the trailing submatrix
end for

(d)
Chan-II (𝑅, 𝑟, 𝑚, 𝑛) algorithm.
(1) compute right singular vector k

corresponding to 𝜎min(𝑅1:𝑟,1:𝑟)

(2) find a pivot column 𝑗 such that
|V𝑗| = min𝑘=1,2,...,𝑟|V𝑘|

(3) shift columns for column pivot:
y = r1:𝑟,𝑗
for 𝑘 = 𝑗, 𝑗 + 1, . . . , 𝑟 − 1

r1:𝑘+1,𝑘 = r1:𝑘+1,𝑘+1
r1:𝑟,𝑟 = r1:𝑟,𝑗

(4) re-triangularize 𝑅:
for 𝑘 = 𝑗, 𝑗 + 1, . . . , 𝑟 − 1 do
(4.1) generate a Given’s rotation

to zero out 𝑟𝑘+1,𝑘 with 𝑟𝑘,𝑘
(4.2) apply the Given’s rotation

to the trailing submatrix
end for

Algorithm 3: Unification principle of QRP algorithm.

= ( ∑
ℓ=1,2,...,𝑛−𝑟

(𝜎ℓ (𝐴
[2,2]
)
V𝑘,ℓ

)
2
)

1/2

≈ 𝜎1 (𝐴
[2,2]
)
V𝑘,1

 .

(22)

Hence, at the (𝑟 + 1)th step, the algorithm pivots the (𝑟 +
𝑘)th column, whose corresponding element V𝑘,1 of the most
dominant right singular vector v1 has the largest module.
Algorithm 3(b) shows the Chan-II algorithm which is the
task-2 version of the Chan-I algorithm and pushes the col-
umn that minimizes 𝜎max(𝑅

[2,2]) into the trailing submatrix
at each step.
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Hybrid-I (𝑅, 𝑟, 𝑛, 𝑚) to solve task-1
repeat

pivot “best” column among {r𝑟, r𝑟+1, . . . , r𝑛} to r𝑟
Golub-I (𝑅, 𝑟, 𝑛, 𝑚)
pivot “worst” column among {r1, r2, . . . , r𝑟} to r𝑟
Chan-II (𝑅, 1, 𝑟, 𝑚)

until no column pivot occurred

Hybrid-II (𝑅, 𝑟, 𝑛, 𝑚) to solve task-2
repeat

pivot “best” column among {r1, r2, . . . , r𝑟+1} to r𝑟+1
Chan-II (𝑅, 𝑟 + 1, 𝑛,𝑚)
pivot “worst” column among {r𝑟+1, r𝑟+2, . . . , r𝑛} to r𝑟+1
Golub-I (𝑅, 1, 𝑟 + 1,𝑚)

until no column pivot occurred

Hybrid-III (𝑅, 𝑟, 𝑛, 𝑚) to solve both task-1 and task-2
Hybrid-I (𝑅, 𝑟, 𝑛, 𝑚), to address task-1
Hybrid-II (𝑅, 𝑟, 𝑛, 𝑚), to address task-2

Algorithm 4: Hybrid algorithms.

Finally, Algorithm 4 shows a single iteration of three
hybrid algorithms Hybrid-I, Hybrid-II, and Hybrid-III [9]
that solve task-1, task-2, and both task-1 and task-2, respec-
tively. The iteration is terminated when the 𝑟th column is not
moved.

2.4. QPR Algorithm. Even when QP3 and QR3 performs
about the same number of flops, QP3 is often slower. This
is largely because QR3 performs most of its flops using
BLAS-3, while QP3 performs about half of its flops using
BLAS-2. Since this BLAS-2 is needed to select the pivot
among all the remaining columns, QPR [3] tries to reduce
the bottleneck by selecting the pivot among a fixed number,
𝑛𝑤, of the columns. Algorithm 5(a) shows the pseudocode
of QPR. At each step of the panel factorization, while QP3
computes the matrix-vector product with the whole trailing
submatrix, QPR updates the columns within this window
using a Householder matrix (both by BLAS-2). Since the
pivots are now selected only within the window, in order to
ensure the rank-revealing properties, QPR uses a condition
estimator and accepts only the pivots that satisfy (5). After
all the columns are either accepted or rejected (Step 1 in
Algorithm 5(a)), theQR factorization of the rejected columns
is computed to obtain the upper-triangular matrix 𝑅 (Steps
2 and 3). At the end, in comparison to QP3, QPR performs
a fewer flops using BLAS-2 to select the pivots. However,
the 𝑛𝑤 − 𝑛𝑏 columns of the trailing submatrix are now
updated using BLAS-2. In Sections 3 and 5.1, we compare the
performance of QPR and QP3 on a CPU and on multicore
CPUs with a GPU, respectively.

Since QPR selects the pivots only within the windows, it
requires postprocessing to globally ensure the rank-revealing
property. Though there are two postprocessing options [9,
15], here, we focus on the first [9] because it has shown
to be more effective in our experiments. Algorithm 5(b)

shows the pseudocode of this postprocessing scheme, which
modifies the Hybrid-III algorithm of Algorithm 4 to improve
its convergence rate [3].

3. Case Studies with StruMF on a CPU

Theperformance of both QP3 andQRP depends on the input
matrix 𝐴. To study their performance, in this section, we
provide their case studies with StruMF for solving 3D seven-
point Poisson’s equations on one core Intel Sandy Bridge
CPU. In our experiments, we use the same default parameters
used for solving Poisson’s equations with StruMF in [5] (e.g.,
the numerical rank tolerance is set to be 𝜏 = 5 × 10−1,
and FGMRES(30) is considered to be converged when the
residual norm is reduced at least by the order of 10−6), and
for QPR, we used the default window size recommended in
[3] (i.e., 𝑛𝑤 = 𝑛𝑏 +min(𝑚, 𝑛,max{10, 𝑛𝑏/2 + 0.05𝑛})).

3.1. Performance of Original StruMF and QRP. Figure 1(a)
shows the breakdown of the StruMF time using QP3. It
clearly shows that StruMF spends most of its preconditioner
construction time in QP3. Moreover, the percentage of the
time spent in QP3 often increases as the global matrix
dimension increases. To analyze the performance of QP3,
Figure 2 shows the dimensions of the off-diagonal blocks for
which the low-rank approximations are computed. Most of
these off-diagonal blocks are short and wide having a few
hundreds rows and tens of thousands of columns. In addition,
the dimensions of the off-diagonal blocks, especially, their
numbers of columns, often increase with respect to the global
dimension. Hence, if the compression time of these short-
wide blocks can be reduced using another algorithm or a
GPU, then the StruMF solution time may be significantly
reduced.
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(a)
QPR factorization algorithm.
(1)QR factorization with restricted pivoting:
setup: 𝑟 := 0 and 𝑘 := 0.
While 𝑟 < 𝑚 do

(1.1) panel factorization:
setup: initialize column norms within the window,

𝑤 = 𝑟 + 𝑛𝑤 (last column in window).
for 𝑗 = 1, . . . , 𝑛𝑏 do

(1.1.1) restricted pivoting:
swap 𝑗th column with pivot column
of the largest norm within the window.

if condest (𝑅1:𝑟+1,1:𝑟+1) > 𝜏 then

𝑛𝑏 := 𝑗 and break.
𝑟 := 𝑟 + 1 (update numerical rank).

(1.1.2)Householder matrix computation:
𝐻[𝑘,𝑗] := 𝐼 − 𝜏

[𝑘]
𝑗 k[𝑘]𝑗 k

[𝑘]𝑇
𝑗 .

(1.1.3) right-look update of window:
𝐴𝑟:𝑚,𝑟:𝑤 := 𝐻

[𝑘,𝑗]

𝑖:𝑚,𝑖:𝑚𝐴𝑟:𝑚,𝑟:𝑤.
end for

(1.2) trailing submatrix update: (𝑘 := 𝑘 + 1).
compute matrix 𝑇[𝑘].
update trailing submatrix right of current window.

(1.3) swapping rejected columns to end:
end while

(2)QR factorization of rejected columns
with column pivoting

(3)QR factorization of rejected columns
with no pivoting

(b)
QPR postprocessing algorithm.
setup: set 𝑟 to be the maximum column index

such that condest (𝑅1:𝑟,1:𝑟) ≤ 𝜏.
repeat

(1) pivoting for task-1 and task-2
repeat

Golub-I (𝑅, 𝑟, 𝑛, 𝑚)
Golub-I (𝑅, 𝑟 + 1, 𝑛,𝑚)
Chan-II (𝑅, 𝑟 + 1, 𝑛,𝑚)
Chan-II (𝑅, 𝑟, 𝑛, 𝑚)

until no column pivot occurred
(2) convergence check

𝛼 = condest(𝑅1:𝑟,1:𝑟)

𝛽 = condest(𝑅1:𝑟+1,1:𝑟+1)

if 𝛼 ≤ 𝜏 and 𝛽 > 𝜏 then

break
else if 𝛼 ≤ 𝜏 then

𝑟 := 𝑟 + 1, move to right
else

𝑟 := 𝑟 − 1, move to left
end if

end repeat

Algorithm 5: QRP factorization and postprocessing algorithms, where condest (𝑅) computes an estimation of the condition number of 𝑅.
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Figure 1: Relative time and memory requirements of StruMF.
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Figure 3: Original StruMF solution time.

Figure 3 compares the StruMF solution times using QP3
and QPR. The figure clearly indicates that even though the
factorization time is reduced using QPR, the postprocessing
can be expensive. In the next subsection, we propose modi-
fications to the QPR implementation, which often reduce the
postprocessing time and make QPR more competitive. Just
for reference, Figure 3 compares the StruMF solution time
with that of a direct multifrontal factorization. We see that
for a large enough system, StruMF can reduce not only the
memory requirement (see Figure 1(b)) but also the solution
time of the direct factorization.

3.2. Proposed Modifications to Original QPR Implementation.
The performance of QPR depends strongly on the condition
estimator used to evaluate Step 1.1.1 of Algorithm 5(a). In the
original implementation, the smallest singular value of 𝑅[1,1]
is estimated using an incremental condition estimator (ICE)
[16, 17], while the largest singular value is estimated by the
product of the largest column norm and the third root of the
matrix dimension (i.e., (𝑟 + 1)1/3max𝑟+1𝑗=1‖ r𝑗 ‖2where 𝑅

[1,1] is
of dimension 𝑟+1, and 𝑟𝑗 is the 𝑗th column of 𝑅[1,1]) [3].This
simple estimator is used for the largest singular value because
though the estimatormay lead to a greater estimation error, it

requires a fewer flops (i.e., ICE requires 𝑂(𝑟) flops to update
the estimation of 𝑅[1,1]). During the postprocessing phase,
the same estimators are used at Step 1 of Algorithm 3(b), but
in order to obtain an accurate final factorization, both the
largest and smallest singular values are estimated by ICE at
Step 3 of Algorithm 5(b). We found that, in our numerical
experiments using random matrices, this simple estimator
underestimates the largest singular values. As a result, many
components that should be rejected are accepted. In addition,
during the preconditioner construction for solving Poisson’s
equation by StruMF, the simple estimator overestimates the
singular values, rejecting the components which should be
accepted. In either case, this estimation error could signif-
icantly increase the postprocessing cost. Figure 4(a) shows
that when a more accurate condition estimator (i.e., ICE) is
used, the postprocessing time can be dramatically reduced. In
addition, ICE reduced the factorization time slightly because
most of the components are accurately accepted by Step 1 of
Algorithm 5(a), and Step 2 has less work.

During the postprocessing (Algorithm 5(b)), the Golub-
I algorithm requires the column norms of the trailing
submatrix 𝑅𝑟:𝑚,𝑟:𝑛, and the Chan-II algorithm requires the
column norms of the leading submatrix 𝑅1:𝑟+1,1:𝑟+1. At the
beginning of Step 1 to call the Chan-II algorithm, the original
implementation computes the column norms of the leading
submatrix 𝑅1:𝑟−1,1:𝑟−1. Then, the norms ‖r𝑟‖2 and ‖r𝑟+1‖2
are computed as they are permuted into 𝑅1:𝑟+1,1:𝑟+1. On the
other hand, for each Golub-I call, the column norms of the
trailing submatrix 𝑅𝑟:𝑚,𝑟:𝑛 are recomputed. This is because
when the Chan-II algorithm applies Given’s rotation to the
leading submatrix 𝑅1:𝑟,1:𝑟, the column norms of the trailing
submatrix 𝑅𝑟:𝑚,𝑟:𝑛 changes. In our experiments, this norm
computation could become expensive, especially when Step
1 requires many iterations or a large tolerance 𝜏 is used. To
reduce this computational cost, we incrementally update or
downdate the norms when Given’s rotation is applied and
when the submatrix size 𝑟 changes at the outer iteration of
Algorithm 5(b). In addition, we use the same criteria used
in QP3 [14] to detect if the updated norms have diverged
from the actual norms due to the round-off errors. When
this happens, the column norms are recomputed. Figure 4(b)
clearly indicates that the postprocessing time of StruMF can
be significantly reduced by avoiding the norm computation.

For Step 2 of the factorization in Algorithm 5(a), the orig-
inal implementation uses the column-wise QRP algorithm.
On a modern computer, a blocked algorithm can obtain
significant speedups. Hence, we replaced it with QP3. In
addition, we use ICE to detect the numerical rank instead
of the simple estimator used in the original implementation
(i.e., QP3 terminates when the estimated condition number
of the leading submatrix 𝑅1:𝑟+1,1:𝑟+1 becomes greater than the
threshold 𝜏). Figure 5(a) shows that the blocked algorithm
reduces the factorization time, but the overall improvement is
not significant since after ICE is integrated, only a short time
is spent at Step 2 for solving this Poisson’s equation.

Finally, while QP3 aims to solve task-1, the QPR post-
processing tries to solve both task-1 and task-2. Hence, we
replaced it with the postprocessing algorithms for solving
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Figure 4: Solution time of original StruMF (left bar) and after modification (right bars), using ICE and tuning the postprocess in left and
right plots.

only either task-1 or task-2. Even though the postprocessing
solved different tasks, StruMF converged in a similar number
of iterations. However, the task-1 postprocessing converged
slightly faster than the task-2 postprocessing, which was
faster than the original postprocessing. We have also used
the test matrices from the original paper [3] to evaluate
the quality of the factorization after the postprocessing.
Figure 5(c) shows that the quality of the factorization did not
change significantly when different postprocessing schemes
were used. We use the original postprocessing scheme in
the remaining of the paper since it provides the most robust
behavior, while the overhead is not significant after all the
proposed modifications are integrated. Figure 5(d) compares
the StruMF solution time using QP3 and QPR after all the
modifications are made. Now, the solution time using QPR is
shorter than that using QP3.

4. GPU Implementations

We now describe our QP3 and QPR implementations that
utilizes a GPU.

4.1.QP3 Implementation. MAGMA(http://icl.utk.edu/magma/)
extends LAPACK (http://www.netlib.org/lapack/) to hetero-
geneous architectures based on a hybrid programming and
static scheduling. For instance, for the blocked QR factoriza-
tion, the latency-limited BLAS-2 based panel factorization is
scheduled on the CPUs, while the compute-intensive BLAS-
3 based trailing submatrix update is scheduled on the GPU
[18]. Furthermore, as soon as the next panel is updated on the
GPU, it is copied to the CPU such that the panel factorization

on the CPUs can be hidden behind the remaining submatrix
update on the GPU (this is commonly referred to as a
lookahead). As a result, for a large enough matrix, the QR
factorization by MAGMA can obtain the performance of the
BLAS-3, which exhibits a high-level of data parallelism and
can be efficiently implemented on the GPU [19].

Our first QP3 implementation is based on the same
hybrid paradigm, where the CPUs factorize the panel while
the GPU updates the trailing submatrix. However, in contrast
to the QR panel factorization that accesses only a panel, each
step of the QP3 panel factorization accesses the whole trailing
submatrix to look for the pivot. Hence, the entire trailing
submatrix must be updated before the panel factorization
starts. As a result, though the transfer of the panel to the CPU
can be overlapped with the remaining submatrix update,
the actual panel factorization cannot be overlapped with
the update (the lookahead is not possible). In addition, the
QP3 factorization time is often dominated by the BLAS-2
based panel factorization that performs about a half of the
total flops. Hence, our second implementation accelerates
this panel factorization using a GPU. Because the flop count
of the panel factorization is dominated by the matrix-vector
product with the trailing submatrix (Step 1.4 of Algorithm 2),
theGPU is used to accelerate this BLAS-2 kernel. As shown in
Figure 5(e), our implementation computes the matrix-vector
product with the top block row of the trailing submatrix on
the CPUs, while the rest of the product is computed on the
GPU. This is because this top block row is needed for the
column norm downdating (Step 1.6), which is performed on
the CPUs. Hence, this hybrid paradigm avoids the transfer
of a row from the GPU to the CPU at each step of the panel
factorization. Figure 5(f) illustrates this hybrid paradigm.
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Figure 5: Illustration of the hybrid QP3 implementation.
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(a) Whole trace (𝑛 = 𝑚 = 1000)

(b) Partial zoomed-in trace

Figure 6: Execution trace of the hybridQP3 implementation.The top trace is on the CPU, while the remaining two traces are on theGPUwith
two GPU streams (matrix-vector multiply, matrix-matrix multiply, column swap, pivot selection, reflector generation, norm computation,
and communication are in green, purple, orange, magenta, red, cyan, and black, respectively. Since the BLAS matrix-vector multiply routine
does not support a vector-matrix multiply, a matrix-matrix multiply is used to compute f𝑗 at Step 1.4 of Algorithm 2).The second GPU stream
is used to transfer the next panel and top block row to the CPU.

Unfortunately, in comparison to theQR factorization, this
hybrid implementation of the QP3 factorization lead tomuch
lower speedups. This is mainly because its performance is
limited by thememory bandwidth tomove a columnbetween
the CPU and GPU at each step of the panel factorization.
This data transfer is needed for the column pivoting and
matrix-vector multiply (see Figure 5(f)). As an execution
trace in Figure 6 also shows, this CPU-GPU data transfer
could become as expensive as the actual computation at each
step of the panel factorization. To avoid this data transfer, our
second implementation of QP3 performs all the computation
on the GPU. At each step of the factorization, this GPU
implementation still requires two synchronizations on the
CPU; one to pick a pivot and the other one to check if
the column norms must be recomputed (Steps 1.1 and 1.6,
resp.). Furthermore, in many cases, the CPUs obtain higher
performance of BLAS-1 (e.g., Householder vector generation)
than the GPU. However, once the matrix is copied from the
CPUs to theGPU, thisGPU implementation does not transfer
any vector or matrix between the CPUs and GPU and could
obtain a higher performance than our hybrid implementation
could (see Section 5).

Initially, our GPU implementations used an individual
GPU kernel for each BLAS or LAPACK routine used for the
panel factorization.However,many of these routines perform
only small amounts of computation or require a scalar to
be on the CPU. In order to improve the performance, we
merged several computational kernels into one kernel in
order to avoid the kernel launch overhead and unnecessary
GPU-CPU communication. In addition, we have tuned these
kernels (e.g., block size and thread grid) for the matrix
dimensions typical for the QPR factorization. We will show
the effects of these optimization techniques in Section 5. A
similar GPU-implementation is proposed in [20].

4.2. QPR Implementation. In contrast to QP3, QPR allows
lookaheads. Namely, once the GPU updates all the columns
of the next window, the CPU can start the panel factorization

while theGPUupdates the remaining submatrix. However, in
contrast to the QR panel factorization that only requires the
panel, the QPR panel factorization updates all the columns
within the window at each step of the panel factorization.
Hence, when the window size is large in comparison to
the trailing submatrix dimension, it becomes difficult to
hide the BLAS-2 based panel factorization on the CPUs
behind the BLAS-3 based trailing submatrix update on the
GPU (we have investigated a hybrid panel factorization.
However, in many cases, it was less efficient due to the CPU-
GPU synchronization and communication, especially in our
experiments with StruMF, where only a few columns were
accepted at each panel factorization).

For Step 2 of the QPR factorization in Algorithm 5(a),
we use the GPU implementation of QP3 (described in
Section 4.1). Since at the end of Step 1, the coefficient matrix
is on the GPU, Step 2 does not require any data transfer to
the GPU. For Step 3, if the remaining submatrix is relatively
small (𝑚 < 300 in our experiments), then we compute its
QR factorization using LAPACK on the CPU. Otherwise, the
QR factorization is computed using MAGMA on the GPU.
We found that, in many cases, QP3 does not accept any of
the rejected columns from Step 1. Hence, in order to hide
the cost of copying the matrix from the GPU to the CPU for
Step 3, thematrix is asynchronously copied to the CPU, while
QP3 is performed on the GPU. Only when QP3 accepted
a column, the matrix is resent to the CPU after the whole
matrix is factorized. Finally, to generate the final orthogonal
matrix 𝑄, the Householder vectors from both QP3 and QR
are accumulated on the GPU.

4.3. Integration into StruMF. To call our GPU kernels from
StruMF, we copy the matrix to the GPU, compute the
factorization, and then copy the result back to the CPU.
Initially, we allocate a fixed amount of GPU memory for the
workspace, and theworkspace is reallocatedwhen the current
workspace is not large enough. Since the interfaces of most
of the MAGMA routines are identical to those of LAPACK,
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Figure 7: Performance comparison of different QP3 implementations on random matrices.

replacing the LAPACK routine with the MAGMA routine is
relatively easy.

5. Performance Studies with a GPU

We now study the performance of our QP3 and QPR imple-
mentations with a GPU (Section 5.1) and its impacts on the
performance of StruMF (Section 5.2).We compiled our codes
using the C compiler gcc 4.4.6 and the CUDA compiler
nvcc 5.0.35 and linked them to the threaded version of
MLK 2013.4.183. We emphasize that our CPU codes have
been optimized. Namely, our QPR code integrates all the
modifications described in Section 3.2, and our QP3 code
computes a partial factorization, where the factorization is
terminated at the numerical rank specified by the tolerance
𝜏. Computing a partial factorization obtains a significant
speedup compared to the QP3 routine of MKL that computes
the full factorization. This was especially true in our experi-
ments, where a relatively large 𝜏 is used.

5.1. Kernel Performance. Figure 7(a) shows the performance
of our QP3 implementations to factorize square random
matrices with an NDIVIA Tesla K20c GPU (𝜏 = 0.0)
and compares it with that of MKL on two eight-core Intel
Sandy Bridge CPUs. Our GPU implementation improves the
performance of our hybrid implementation because it avoids
the data transfer between the CPU and GPU. Figure 7(b)
demonstrates the advantage of the GPU implementation for
the short-wide matrices. In addition, our optimized GPU
implementation (Section 4.1) obtains significant speedups for
both small and short-wide matrices, and this is used for the
remaining of the experiments.

Figures 7(a) and 7(b) also show that all of our implemen-
tations obtain significant speedups over MKL. We observed

that, for large matrices, our GPU implementation and MKL
obtain similar performance relative to the practical peak per-
formance on the corresponding hardware,where the practical
peak performance is measured by computing the required
matrix-vector products with the trailing submatrices and the
matrix-matrix products for the submatrix update without any
synchronization. In other words, our GPU implementation
obtains the speedups over MKL because it effectively utilizes
the higher memory and computational bandwidths of the
GPU.

Figure 8(a) shows the breakdown of theQP3 factorization
time. Up to 70% of the factorization time is spent in the
BLAS-3 matrix-matrix and BLAS-2 matrix-vector multiplies.
Even though these BLAS-3 and BLAS-2 perform about
the same numbers of flops, the bandwidth-limited BLAS-2
dominates the factorization time. Figure 8(b) compares the
performance of our QPR implementations with that of the
QP3 implementations on random short-wide matrices. It
shows that after the proposed modifications were integrated,
the QPR implementation obtained the higher performance
and greater scalability on the CPUs. Furthermore, our hybrid
QPR implementation outperformed our QP3 GPU imple-
mentation due to the fewer BLAS-2 flops required to select
the pivots. Since the performance ofQP3 andQPR (especially
that of QPR) depends greatly on the input matrix (e.g., the
number of columns accepted at each panel factorization), in
the next subsection, we study the performance of these two
algorithms within StruMF.

5.2. Performance of StruMF. Figure 9(a) shows the per-
formances of StruMF using our QP3 implementations for
solving a 3D Poisson’s equation. First, by comparing the per-
formance on a single CPU in the figure with that of
Figure 5(a), we clearly see the advantage of computing the
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Figure 9: Performance of StruMF solving 3D Poisson equation using the GPU (𝑛𝑥 = 100).

partial factorization by QP3 (the factorization is terminated
at the numerical rank specified by the tolerance 𝜏). Next, the
preconditioner construction time of StruMF using QP3 is
often dominated by BLAS-2 or BLAS-3 on small submatrices,
and the construction time did not scalewell on theCPUs. As a
result, our GPU kernel was able to accelerate the construction
time by 30%–50% over StruMF running on up to 16 CPUs.

Figure 9(b) then shows the performance of StruMF using
QPR. Using QPR, the preconditioner construction slowed
down on a single CPU, but it scaled better and was faster than
usingQP3 onmultiple CPUs. Furthermore, the GPU reduced
the construction time by 10%–20%. In comparison to QP3,
the GPU acceleration was smaller in QPRmainly because the
trailing submatrices were updated using smaller blocks. Most
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Figure 10: Performance of StruMF solving 2D Poisson equations using the GPU (𝑛𝑥 = 3000).
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Figure 11: Statistics of off-diagonal blocks whose low-rank approximations are computed.

of the columns in each window are rejected, and significant
time is spent swapping the rejected columns to the end of the
matrix.

Figure 10 shows the results of solving a 2D Poisson equa-
tion, where the same tolerance 𝜏 from [5] was used (i.e., 𝜏 =
10−4). Though the sizes of the dense submatrices were signif-
icantly smaller in the 2D problem (see Figure 11), our GPU
kernel, especially the QP3 implementation, still obtained
significant speedups. Unfortunately, the compression time
was less dominant in the 2Dproblem, and the reduction in the
preconditioner construction time was less significant using
the GPU.

6. Conclusion

We studied the performance of QP3 and QPR for computing
the low-rank approximation of dense submatrices. We first

proposed several modifications to the original QPR imple-
mentation to improve its performance on the CPUs. We then
investigated the potential of using a GPU to accelerate the
factorization time. Our performance results demonstrated
that the proposed modifications could significantly improve
the performance of the QPR factorization on the CPU, and
the factorization time can be further reduced using a GPU. In
addition, we provided the case studies with an hierarchically
semiseparable linear solver StruMF, which showed that the
preconditioner construction time of StruMF can be reduced
by 30%–50% and 10%–20% using the GPU for the QP3 and
QPR factorizations, respectively. Though we only show the
results of solving Poisson’s equations in this paper, the perfor-
mance is representative of many cases and good indications
for other cases. We emphasize that our focus is to study
the performance of computing low-rank approximations, and
our aim is not on improving the numerical performance of
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StruMF.The techniques discussed in this paper are applicable
to other software which computes low-rank approximations
or numerical ranks of dense matrices, including those on
distributed-memory systems.

We did not study the impact of the input parameters on
the performance of our implementations. For instance, we
used all the default parameters of StruMF and QPR (e.g.,
compression rate 𝜏, iteration stopping and restarting criteria
for StruMF, and window size for QPR). In particular for
StruMF, a smaller compression ratewould lead to larger dense
blocks increasing the effectiveness of our GPU kernels, while
it would also reduce the iteration count, potentially reducing
the total solution time. For QPR, the smaller window size
would improve the effectiveness of the lookahead and may
improve the performance of our hybrid implementation. On
the other hand, the larger window size could improve the
performance of the trailing submatrix updates and may also
lead to more accurate factorization, potentially reducing the
postprocessing time. We are currently studying the effects
of these parameters on the performance of StruMF. In
addition, we mentioned that, in comparison to QP3, QPR
obtained smaller speedups on the GPU, mainly because it
uses a smaller block to update the trailing submatrix. We
are currently studying prepossessing techniques that would
increase the block size and improve the performance of the
QPR implementation (e.g., before the factorization, reorder
the matrix columns in the descending order of their norms).
We also discussed that the performance of the QPR imple-
mentation depends on the performance of the condition
number estimator. We are investigating if more accurate
estimators are needed for other test matrices. Finally, we are
studying the performance of the randomization algorithm
[21] to compute the low-rank approximation on a GPU [22]
and would like to investigate the performance of our QP3
implementation in a communication-avoiding version of the
algorithm [23] on multiple GPUs (e.g., distributed-memory
system).
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