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Abstract

We propose an approach for screening future infrastructure and demand management
investments for large water supply systems subject to uncertain future conditions. The
approach is demonstrated using the London water supply system. Promising portfolios of
interventions (e.g., new supplies, water conservation schemes, etc.) that meet London’s
estimated water supply demands in 2035 are shown to face significant trade-offs between
financial, engineering and environmental measures of performance. Robust portfolios are
identified by contrasting the multi-objective results attained for (1) historically observed
baseline conditions versus (2) future global change scenarios. An ensemble of global change
scenarios is computed using climate change impacted hydrological flows, plausible water
demands, environmentally motivated abstraction reductions, and future energy prices. The
proposed multi-scenario trade-off analysis screens for robust investments that provide
benefits over a wide range of futures, including those with little change. Our results suggest
that 60 percent of intervention portfolios identified as Pareto optimal under historical
conditions would fail under future scenarios considered relevant by stakeholders. Those that
are able to maintain good performance under historical conditions can no longer be
considered to perform optimally under future scenarios. The individual investment options
differ significantly in their ability to cope with varying conditions. Visualizing the individual
infrastructure and demand management interventions implemented in the Pareto optimal
portfolios in multi-dimensional space aids the exploration of how the interventions affect the
robustness and performance of the system.

Keywords: Water Resources Planning; Decision-Making Under Uncertainty; Many-
objective Optimization; Trade-off Analysis; Robust Investments

1. Introduction

Many urban water systems across the globe face future stresses such as reduced or shifted
water availability due to climate change, increased water demands, more demanding
regulatory regimes and heightened service expectations (Ferguson et al., 2013; Hallegatte,
2009; Pahl-Wostl, 2009). Water supply infrastructure in many major cities globally relies on
aging assets designed and constructed over a century ago (Boyko et al., 2012). Refurbishment
of existing infrastructure and capacity expansion is needed to cope with future pressures.
Moreover, the uncertainty in future conditions motivates novel approaches that help discover
which combinations of interventions would work well under a wide range of plausible
futures.

Instead of defining “optimality” under historical or narrowly defined conditions, planners
have recently been seeking “robustness” for planning under uncertainty (Ben-Haim, 2000;
Haasnoot et al., 2013; Herman et al., 2015; Lempert et al., 2003). Robustness as a planning
goal is well suited to situations where the probabilities that govern uncertain future states are
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uncertain themselves. Such uncertainties are known as ‘deep’ or Knightian uncertainties
(Knight, 1921). For example, assigning probabilities to population growth or the effects of
climate change on systems is problematic (Walker et al., 2013). A robust system is one that
performs well or satisfactorily well over a broad range of plausible future conditions rather
than optimally in one. Robustness is increasingly incorporated as a goal in many-objective
water systems planning studies (Giuliani et al., 2014; Hamarat et al., 2014; Herman et al.,
2014; Kasprzyk et al., 2013; Kasprzyk et al., 2012). Planning approaches seeking robustness
have also been investigated in the UK’s water resource planning context (Borgomeo et al.,
2014; Korteling et al., 2013; Matrosov et al., 2013a; Matrosov et al., 2013b) but none of those
explored the implications of many-objective decision-making and how the trade-offs change
when multiple sources of uncertainty are considered. Recently, dynamic robustness (Walker
et al., 2013) that specifically considers the value of flexibility and adaptation has been
explored using the Dynamic Adaptive Policy Pathways approach for pre-specified strategies
(Haasnoot et al., 2013; Urich and Rauch, 2014) and in multi-objective optimization (Hamarat
et al., 2014; Kwakkel et al., 2014). Application of such frameworks by water system planners
will require them to understand and accept the benefits of embedding the search for
robustness within automated investment filtering approaches which historically only
considered cost. In our study we focus on demonstrating how performance trade-offs between
investment packages change when uncertainties are considered within complex real-world
water systems. Our goal is to communicate to policy makers the increase in understanding
and judgement they can obtain by incorporating uncertainty into automated intervention
evaluation methods.

Urban water supply planners have commonly employed narrowly defined, least-cost decision
frameworks to guide capacity expansions subject to maintaining required service levels (e.g.,
Hsu et al., 2008; Padula et al., 2013). Planning that does not capture key concerns or
preferences across major stakeholder groups increases the likelihood that policies are viewed
as performing poorly (McConnell, 2010) and maladaptative. The optimality assumptions
implicit to least-cost approaches assume a central planner for whom expected aggregated
costs fully describe their preferences amongst water supply alternatives. One vision of
optimality inevitably forces a decision maker to prior judgments without the knowledge of
the decision’s wider implications (Cohon and Marks, 1975). In real planning contexts, an
increasingly diverse range of stakeholder perspectives must be addressed with major public
investments and plans (Vogel and Henstra, 2015); this is particularly the case with decisions
involving natural resources management (Jackson et al., 2012; Orr et al., 2007; Voinov and
Bousquet, 2010). The emphasis is no longer only on one vision of optimality (e.g. least-cost)
but on converging on a plan that addresses major concerns and acceptably allocates benefits
between the major stakeholder groups and economic sectors (Loucks et al., 2005). Generating
multiple alternative solutions that are good with respect to multiple objectives but differ from
each other enables explicit examination of the alternatives and gaining insight and knowledge
about the system (Brill et al., 1982). Methods that clarify the trade-offs across the various
benefits and impacts of portfolios of different supplies and water conservation actions have
garnered a more significant role in recent published work (Arena et al., 2010; Beh et al.,
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2015; Herman et al., 2014; Kasprzyk et al., 2009; Matrosov et al., 2015; Mortazavi et al.,
2012; Zeff et al., 2014).

Simple capacity expansion approaches such as least-cost yield planning (Padula et al., 2013)
are being renewed in many areas of resource management to incorporate the planning
approaches described above. The current UK approach does not consider a portfolio’s
robustness, cost, and social and environmental acceptability explicitly (Dessai and Hulme,
2007). Water planners and regulators recognize the limitations of the current approach and
are actively seeking to improve the statutory planning framework (Defra, 2011). Our study
aims to reflect the necessity of the current water planning policy changes that are being
considered. These include a move from solely least-cost solutions to planning for resilience
and robustness against a wide range of plausible future conditions whilst considering wider
impacts of decisions beyond cost (Environment Agency, 2015). However, the current water
supply system planning framework (Padula et al., 2013) requires water companies consider
intervention yields, i.e., the maximum daily water supply an intervention can provide, based
on historical flow data. This paper describes a planning approach that explicitly considers
both multiple sources of uncertainty and multiple evaluation objectives. We show how
considering only historical data can lead to poorly performing system designs under
hydrological futures considered plausible by national climate model results (Centre for
Ecology & Hydrology, 2015). In our proposed system design screening framework the goal
of robustness and resilience is incorporated explicitly into an automated intervention
selection process. This contrasts with common approaches where robustness and resilience
are evaluated post-optimization using sensitivity analyses (e.g. Thames Water, 2014). This
provides analysts with a high performing set of robust system designs and the associated
trade-offs in benefits implied by intervention choices. The benefits of incorporating multiple
sources of uncertainty into a multi-objective decision making process are demonstrated.

Trade-off analysis has some, but limited, prior history of inclusion in water resource planning
regulations (e.g. California Department of Water Resources, 2008; UKWIR, 2016). Here we
seek a visually communicable approach which enables stakeholder deliberation about
benefits achievable by the water system and its engineered assets that is compatible with the
resilience and participatory aspirations of UK water planning (Environment Agency, 2015).
Our study demonstrates the importance of understanding how benefit trade-offs change when
diverse sources of uncertainty are considered. From a policy perspective the trade-offs and
broader performance requirements help to avoid the myopia of least-cost decision making
(Herman et al., 2015). Results aid policy makers to orient their investment strategies towards
their key requirements and aspirations.

Our study proposes a multi-scenario multi-objective decision-making approach which
addresses some limitations of the current planning approach. Several conflicting performance
goals including the financial, engineering and environmental performance are considered
explicitly. Multiple sources of uncertainty in the form of scenarios considered relevant by
stakeholders are used in an automated search for robust combinations of interventions. The
ensemble of scenarios consists of climate change impacted hydrological flows, plausible
water demands, environmentally motivated abstraction reductions, and future energy prices.

3
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The approach is demonstrated by exploring portfolios of alternative water infrastructure and
conservation investments for London’s water supply for an estimate of conditions in 2035.
We use visual analytics to investigate the trade-offs between performance goals and
communicate the influence of specific interventions on a portfolio’s performance. Robust
portfolios from a multi-scenario search are compared to those developed when considering
only historical conditions to highlight the benefits of explicitly considering multiple futures
within the investment portfolio search. Visualizing the individual interventions implemented
in the identified portfolios from both single and multi-scenario search aids the exploration of
how the options affect the robustness of the system. The proposed multi-scenario efficient
trade-off analysis is a valuable investment screening tool for utility planners identifying
robust infrastructure and conservation investment bundles that provide benefits over a wide
range of future conditions. We believe such an approach is particularly valuable where
decisions on resource development are contested and trade-offs need to be negotiated with
stakeholders interested in a diverse set of definitions for desirable system performance.

The approach is described in the Methods section. Section 3 introduces the Thames basin
water resource system, planning context, and details the optimization formulation and the
scenarios of future conditions. Results are presented in section 4 and discussed in section 5.

2. Methods

Least-cost optimal plans are typically identified using baseline historical conditions and
tested against multiple realizations of future conditions, particularly in the UK planning
context (Environment Agency et al., 2012; Thames Water, 2013). Linking to this standard
evaluation scheme we apply a many-objective approach considering a range of supply and
demand management interventions as decisions and a combination of financial, engineering
and environmental objectives (detailed in section 3.1). A deterministic baseline is developed
using only historical hydrological conditions and demands estimated for the year 2035 (i.e., a
single deterministic scenario of the future) as a preliminary screening for the Thames basin
water supply and demand investments. We then implement a multi-scenario many-objective
optimization approach that incorporates multiple plausible realizations of future conditions of
concern to planners with the same problem formulation as above, with the only difference
being that the objective values are assessed across the ensemble of scenarios. Decisions are
evaluated against all possible combinations of considered future changes in external
conditions; solutions that work well across the multiple future states are sought via the multi-
objective multi-scenario optimization. The results of the two approaches are then compared.
Lastly, solutions from the deterministic optimization are subjected to the multiple scenarios
of the 2™ problem. Deterministic solution performance is contrasted with that of the multi-
scenario solutions to assess the advantages of considering multiple futures whilst searching.
Figure 1 illustrates the steps performed in this study.
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Figure 1. Flow chart showing the steps of the two approaches followed in the study. Two separate
optimizations, deterministic (left) and multi-scenario (right), were performed and the results analyzed.
The deterministic solutions were then simulated against the multiple scenarios and their performance was
compared to that of the multi-scenario solutions.

2.1. Simulation-Optimization framework

This study applies a multi-objective evolutionary algorithm (MOEA) linked to a water
resource system simulator where the simulator is used to assess the performance of different
portfolios. MOEAS are heuristic global search algorithms that simulate the process of natural
evolution and are able to optimize over many objectives (Coello Coello, 2007). Rather than
generating a single optimal solution, MOEAs produce Pareto optimal sets of solutions, i.e.,
solutions which cannot be further improved in one objective without simultaneously reducing
performance in another (Coello Coello, 2007; Kollat and Reed, 2006). When dealing with
complex ‘real-world’ problems the “true” Pareto optimal set is unknown; a close
approximation of the Pareto optimal set is therefore generally sought (Herman et al., 2014),
hence our use of the term ‘Pareto-approximate’ or ‘approximately Pareto optimal’. For
simplicity this is referred to as Pareto optimal in the following text. MOEAs coupled with
simulation have been shown to be suitable for complex water resource management and
planning applications (Maier et al., 2014; Nicklow et al., 2010; Reed et al., 2013), including
reservoir operation (Chang et al., 2005; Chang and Chang, 2009; Giuliani et al., 2014;
Hurford et al., 2014), and urban water supply operation (Cui and Kuczera, 2003, 2005). This
study utilizes the Epsilon-dominance Non-dominated Sorting Genetic Algorithm II (e-
NSGAII) (Kollat and Reed, 2006), a description of which is provided in the Supplementary
Material.
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The MOEA is linked to an Interactive River-Aquifer Simulation 2010 (IRAS-2010)
(Matrosov et al., 2011) model of the Thames basin water resource system. The MOEA
generates decision variables such as reservoir capacity which are passed to the simulation
model as input in addition to other input variables such as inflows, network composition,
operating rules, etc. The latter then simulates the system quantifying flow and storage at
system nodes (reservoirs, junctions, abstractions, aquifers, treatment and desalination plants,
etc.) and links (rivers, pipes, water transfers) using a weekly time step. Performance metrics
such as supply reliability are calculated at the end of the simulation and passed to MOEA as
objective values. The optimization objectives can therefore be explicitly based on the
physical performance of the system. IRAS-2010 Thames model has been shown to
successfully emulate a model maintained by the environmental regulator Environment
Agency (Matrosov et al., 2011). Surface storage in the basin is aggregated into a single
reservoir node, the London Aggregate Storage (LAS), while the main demand in the system
is represented by the London aggregate demand.

3. Case study

The Thames basin is located in the south-east of England and is the driest part of Britain with
an average annual precipitation of just 500mm (Wilby and Harris, 2006). The population
density is four times higher than that of the rest of England, which results in more than half of
the effective rainfall being used for the public water supply (Merrett, 2007). Water
availability in the region is threatened by possible changes in rainfall patterns. The UK
Climate Projections (UKCP09) (Murphy et al., 2009) estimate a 15% increase in winter
precipitation and an 18% decrease in summer in the London area under the SRES A1B
medium emissions scenario when compared to the 1961-1980 baseline conditions
(Environment Agency, 2009). Thames Water Utilities Ltd. (TWUL), which manages most of
the Thames basin water resources, projects a 25% increase in population in the region by
2040 (Thames Water, 2014). This “expected” future is nevertheless highly uncertain. The
Thames basin with existing and possible new water resource infrastructure is shown in Figure
2. A description of the supply and demand management interventions as well as the basin is
provided in the Supplementary Material.
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The non-linear seasonal Lower Thames Control Diagram (LTCD) (refer to Matrosov et al.,
2011, and the Supplementary material) specifies when drought-alleviating supply schemes
should be activated based on the London Aggregate Storage (LAS) volumes. The LTCD also
dictates when the minimum environmental flows in the Thames downstream of all
abstractions at Teddington should be lowered and when water-use restrictions are imposed.
The thresholds vary depending on the period of the year. The Levels of Service (LoS) then
specify the maximum frequency of imposing the associated water-use restrictions on
customers (Table 1), which are used as constraints in our problem formulation (Section 3.1).

Table 1. Constraint values based on LTCD diagram and TWUL's Levels of Service (Thames Water,
2014)

LTCD Demand | Average annual frequency of Constraint value referring
Level restrictions to supply reliability

1 1 in 5 years c; = 80%

2 1 in 10 years ¢z = 90%

3 1 in 20 years c3 =95%

4 Never ¢, = 100%

Planners use the ‘Economics of Balancing Supply and Demand’ (EBSD) framework (Padula
et al., 2013; UKWIR, 2002) to identify the least-cost portfolio of new water supply and
conservation interventions. EBSD is a planning method that seeks to minimize the financial
costs of meeting future water demands over a 25-30 year planning horizon given portfolios of
different supply and demand management interventions and Levels of Service. Although the
current least-cost planning guidelines do consider financial, social and environmental costs,
they require monetization and aggregation of all criteria (Environment Agency et al., 2012;

7
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Padula et al., 2013). The Water Resources Planning Guidelines (WRPG) (Environment
Agency et al., 2012) encourage water companies to iterate over the identified least-cost plan
to find the optimum balance between the financial, environmental and social costs as well as
non-monetary environmental benefits. The final plans are tested for their supply reliability
and resilience. These tests are however performed post-optimization. Our proposed approach
explicitly takes into account these metrics within the optimization and helps to identify plans
that demonstrate all of these characteristics. The metrics are described in the following
section and the Supplementary Material.

3.1. Many-objective problem formulation

The London water supply problem described above was formulated to demonstrate the
benefits of incorporating many performance objectives within the optimization of alternative
investment portfolios. This section describes the objectives, decisions, and constraints used in
the formulation. The performance objectives in this study consider the financial (capital,
feapcost» and energy, fenergy, cost), engineering (supply deficit, foyppey, reliability, fouprers
and resilience, fs,,res) and environmental (eco-deficit, fg., ) performance of the system.
Some of the objectives used in the previous study (Matrosov et al., 2015) were changed after
a consultation with stakeholders. In particular, the operating cost objective here includes only
the cost of energy required to operate the system to assess the effects of possible energy price
change explicitly. The resilience objective that minimizes the duration of failures considers
the maximum duration of failure here instead of the average duration in the previous study.
The environmental performance is assessed by comparing the natural and simulated flows in
the river Thames rather than using the shortage index associated with a fixed river flow
volume as was the case previously. The storage vulnerability objective maximizing the
minimum aggregate storage level in the previous study is not included here as the reliability
and resilience objectives were considered sufficient to assess the London’s aggregate storage
performance. The same proposed future supply and demand management interventions are
considered as decisions as in Matrosov et al (2015). These include the Upper Thames
Reservoir, River Severn Transfer, Northern Transfer, Columbus transfer, South London
Artificial Recharge Scheme (SLARS), a water reuse scheme and a new desalination plant
(Figure 2). Demand management options include active leakage control, a pipe repair
campaign (i.e., main pipes replacement), water efficiency improvements, installation of
meters, and implementation of seasonal tariffs. The Upper Thames Reservoir, River Severn
Transfer, and Northern Transfer supply interventions are mutually exclusive where only one
of these interventions can be implemented within a single portfolio.

This study considers two formulations: a deterministic approach and a multi-scenario
approach. The deterministic approach where the portfolios are evaluated against a single
future scenario based on historical conditions uses a single value for each objective. In the
multi-scenario optimization portfolios are identified as robust when they perform
satisfactorily well over the considered range of external conditions in the form of scenarios.
The performance metrics are calculated for each future scenario in the same way as for the
deterministic case. We then calculate the average and the worst 95t percentile of values
obtained from all scenarios to assess performance across the ensemble of scenarios. The

8
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percentile values here do not have a probabilistic interpretation but refer to the fraction of
considered cases where an outcome occurs. Water planners are typically risk averse and will
want to consider system performance under stressful conditions. The worst 95 percentile
performance value reflects how a candidate solution would perform if nearly worst-case
conditions occurred and is applied to metrics related to system failure (in our study, reliability
and resilience).

The feasibility of portfolios is constrained by the mutual exclusivity of certain supply
interventions and by meeting the minimum Levels of Service across the ensemble of
scenarios (Table 1). In this work we assume water managers are interested in solutions that
are able to satisfy today’s minimum performance levels over a wide range of plausible future
conditions. For this reason, current Levels of Service are applied to all future scenarios as
constraints. The failure frequency, i.e., the frequency of imposing demand restrictions (Table
1), is calculated for each scenario. If a candidate solution violates any of the constraints in
any scenario, it is not brought forward into the trade-off space. Keeping the current Levels of
Service limits the solutions to only those that would be acceptable under current planning
goals. This does not consider that, in response to a changing climate, future managers may
decide 2015-era Levels of Service are too strict. The problem formulation is defined by
Equations 1 — 3:

Minimize F(x) = (f, capcostr fsuppefs fsupres: — fsupret feco » /i Energy) 0]
x = {¥;, Cap;}
Y; € {0,1} Vi e N

subjectto ¢, < FRy, (2)

YiempYi <1 (3)

where x is a vector representing a portfolio of supply and demand interventions, Y; is a binary
variable representing the inclusion of intervention i in portfolio x (1 means the intervention is
included and 0 not included), Cap; is a real variable associated with the capacity/release value
of intervention i, Q represents the whole decision space, ¢y is a constraint associated with
Level of Service (LoS) &, FRy is the value of maximum failure frequency in each scenario
allowed for LoS £, and ME represents the set of mutually exclusive interventions. The
individual objectives and constraints are described in more detail in the Supplementary
Material.

3.2. Scenarios of future conditions

One of the most widely applied approaches to incorporate uncertainties into planning is using
scenarios of plausible future conditions. The economic regulator for the UK water industry
Ofwat (Ofwat, 2013) requires water companies to assess key risks of their proposed plan.
Planners evaluate these risks post optimization by testing their preferred plans against
plausible futures using scenario simulation. However, the preferred least-cost portfolio is still
identified considering only baseline historical conditions. TWUL identified and used for

9
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scenario testing four external conditions with the highest potential to adversely impact their
water resources system, based on Ofwat’s recommendations (Thames Water, 2014). These
include climate change impact on hydrological flows, demand growth, sustainability
reductions from stricter environmental regulations and energy prices. The scenarios for the
four uncertainties were selected by TWUL to span the range of conditions that they would
like their system to be able to respond to (Thames Water, 2014). For the purpose of our study
we use the same scenarios as identified by TWUL and consider all of their possible
combinations for the simplicity and ease of communication. The ensemble, which is
incorporated within the optimization, includes 11 hydrological flow scenarios, 2 demand
levels, 2 sustainability reductions levels and 2 energy price scenarios resulting in the total of
88 scenarios of future conditions (Table 2).

Table 2. Future scenarios. All combinations of future conditions were considered in the multi-scenario
robust optimization.

Uncertainty dimension Number of scenarios Future conditions
Hydrology 11 See section 3.2.1
Water demand 2 2,325 ML/day

2,558 ML/day
‘Sustainability reductions’ to ) No reduction (current licensed)
water licenses Total of 175 ML/day reduction
Energy unit price 2 13 p/kWh

35 p/kWh
Total number of scenarios 88

3.2.1. Supply-side scenarios

The WRPG guidelines (Environment Agency et al., 2012) require assessing the effects of
climate change on the supply availability and recommend four different approaches to do so.
Two of these approaches use 11 Future Flows (FFs) hydrological flow scenarios. The FF
scenarios represent equally probable hydrological scenarios characterized by future climate
change impacted river flow time-series. The time-series were developed by the ‘Future Flows
and Groundwater Levels’ project (Prudhomme et al., 2013) and are available from the
National River Flow Archive (NRFA) online database (Centre for Ecology & Hydrology,
2012). The scenarios were derived from the set of transient climate projections obtained from
the Met Office Hadley Centre Regional Climate Model (HadRM3-PPE) by dynamically
downscaling the global climate model (Hadley Centre for Climate Predictions and Research,
2008). The model was run for the UK climate projections under the historical and medium
emissions scenario (SRES A1B) and was also used to derive the UK Climate Projections
scenarios produced in 2009 (UKCP09) (Murphy et al., 2009). TWUL applied FFs for their
scenario testing (Thames Water, 2014). The SRES emission scenarios (IPCC, 2000) provide
emission projections assuming no mitigation policies; the IPCC has recently produced the
Representative Concentration Pathways (RCP) scenarios that take into account the current
legislation on air pollutants projecting lower anthropogenic emissions (Kirtman et al., 2013).

10



N =

00 N O Ul B~ W

10
11
12

13

14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30

31
32
33
34
35
36
37
38
39

Climate projections obtained using the RCP scenarios may therefore provide different
magnitude of change for temperature and precipitation.

The flow time-series for the Thames basin were generated by the hybrid hydrological model
CLASSIC (Crooks and Naden, 2007), a semi-distributed grid-based rainfall-runoff model
that uses a combination of regionalized and catchment calibrated parameters. The entire time
series of all 11 members of the Future Flows scenario ensemble (afgcx, afixa, afixc, afixh,
afixi, afixj, afixk, afixl, afixm, afixo, and afixq) covers the period between 1950 and 2098
(Prudhomme et al., 2013).

This study uses a 30-year period (2020 - 2050) of all 11 scenarios for simulating demands
and energy prices estimated for 2035 where each of these 30 years is assumed to represent
possible conditions in the year 2035. A more detailed description, analysis and justification of
the used time-series is provided in the Supplementary Material.

3.2.2. Socio-economic and regulatory scenarios

The scenarios representing the socio-economic and regulatory uncertainties for the year 2035
were chosen based on TWUL’s estimates (Thames Water, 2014) and the Ofwat’s
recommendations (Ofwat, 2013). The socio-economic uncertainty is represented by two
demand projection scenarios and two energy prices scenarios. The two demand scenarios use
the estimate of demands for 2035 of 2,325 Ml/d and 2,558 M1/d, a 10% increase. These
values are adjusted for each month of the year by applying monthly factors used by the
Environment Agency’s commercial Aquator model. The demand of 2,325 Ml/d was
estimated by TWUL (Thames Water, 2014) based on the WRPG recommendations to
incorporate the population growth estimations from local authorities and several assumptions
such as continuation of the current metering policies, maintaining leakage at the 2015 levels,
etc. (Environment Agency et al., 2012). The 10% increase is used by TWUL to account for
the errors in estimates (Thames Water, 2014).

The energy price scenarios include an energy cost of 13p/kWh and 35p/kWh. The estimate of
13p/kWh uses the Department of Climate and Energy medium forecasts for industrial energy
prices. The increase to 35p/kWh was estimated by TWUL by doubling the forecasted price to
account for possible carbon price increases, network replacements and upgrades, energy price
increases, etc. (Thames Water, 2014).

The institutional uncertainty is represented by two sustainability reduction scenarios. These
reflect a possible reduction in the licensed abstraction volumes for water companies. TWUL
currently abstracts from several locations on the River Thames and River Lee. The IRAS-
2010 Thames model aggregates the surface water abstractions to a single abstraction node
upstream of Teddington Weir on the River Thames and downstream of Feildes Weir on the
River Lee, as well as a single groundwater abstraction point for the whole basin. The
reductions are therefore applied to these single abstraction nodes. One scenario assumes no
license change (i.e., that the company will be able to abstract the current volumes in 2035)
while the other includes a reduction of 25 ML/d in groundwater and 100 ML/d and 50 ML/d

11
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in surface water from the River Thames and River Lee, respectively, provided by the
Environment Agency as a plausible future reduction (Thames Water, 2014).

3.3. Computational details

The deterministic optimization was performed using a 30-year historical time-series of river
flows (1970-2000) with a weekly time-step and demand and energy estimates for the year
2035. As in Matrosov et al (2015) this implies that we use 30 years of historical hydrology to
represent hydrological conditions that we assume to be representative of those that may occur
in the year 2035. The MOEA optimization was run for 25,000 function evaluations (FEs) 50
times, each with a different random seed value to lessen the influence of random number
generation on the results. As the “true” Pareto optimal set is unknown, close approximation to
this set was sought (section 2.1). The reference set (obtained by non-dominated sorting of the
50 solution sets where any dominated solution, i.e., a solution that does not perform better
against any objective when compared to the other solutions, thus is not Pareto optimal, is
discarded) was almost identical to the Pareto optimal solutions obtained from a single seed
analysis.

The MOEA algorithm in the multi-scenario optimization was run for 50,000 FEs with 10
random seeds. In the multi-scenario runs, a higher number of function evaluations were
required due to the computational complexity of solving that case. Fewer random seeds (10)
were used here than in the deterministic case (50) in order to reduce the computational
burden. The obtained reference set again closely resembles the Pareto optimal solutions from
a single seed analysis.

4. Results
4.1. Deterministic optimization analysis

In this section we present the deterministic optimization results where only a single future
scenario based on historical conditions is considered. The many-dimensional visualization
offers a rich view into high performing combinations of interventions and their impacts (as
demonstrated in Matrosov et al (2015)). That study showed how progressively visualizing the
performance dimensions helps communicate many-dimensional trade-offs and aids
stakeholder understanding and deliberation. In this paper we assume stakeholders are familiar
with multi-dimensional trade-off interpretation and show plots with all dimensions of
performance (six) concurrently and focus on displaying graphically the benefits of
incorporating uncertainty explicitly within investment screening. The Pareto optimal
solutions here differ slightly from the solutions in our previous study due to different
objectives used and the shorter simulation period in the former.

Figure 3 shows the full set of Pareto optimal portfolios obtained from the six objective
optimization. The figure reveals two distinct “fronts” with one front skewed to the right, i.e.,
higher capital costs (shown on x axis in Figure 3) are required to achieve identical reliability
between the right and left fronts. By improving the reliability of the system (downward
direction on the vertical axis) one can also decrease supply deficits (shown on y axis in
Figure 3). Nevertheless, many perfect reliability solutions (at the bottom plane of the cube in
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Figure 3) exhibit varied supply deficit that decreases with higher capital investment. The
color scale distinguishes the portfolios according to their environmental performance, i.e., the
eco-deficit objective. The red points represent the highest eco-deficit, i.e., the worst
environmental performance, while the blue points show the lowest achievable eco-deficit,
1.e., the lowest environmental impact. Portfolios with the same level of reliability differ in
terms of their environmental performance; reducing the eco-deficit requires higher capital
investment. The orientation of the cones in Figure 3 shows the resilience of the portfolios
where the cones pointing upwards indicate the worst resilience, i.e., the longest maximum
duration of LTCD Demand Level 3 failure, while the cones pointing downwards show the
best achievable resilience. This performance objective is strongly correlated with reliability;
improving the system’s supply reliability also increases the supply resilience, i.e., reduces the
duration of the failure state.

Visualizing the energy cost objective, however, reveals potentially unexpected information
about the system. This objective is represented by the size of the cones in Figure 3 where the
bigger the cone the higher the average annual operating cost the portfolio requires. Both of
the two distinct fronts (discussed further in section 4.2.2) indicate that improving the
system’s engineering and environmental performance requires higher energy use. More
importantly, the portfolios on the left hand side front in Figure 3 exhibit higher energy cost
requirements than the portfolios on the right hand side of the plot. Although the latter require
higher capital investment to achieve similar engineering performance, these portfolios are
also able to achieve lower eco-deficit (color in Figure 3) than the former. Furthermore, lower
average annual energy cost requirements might influence the total long-term cost of a
portfolio.
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Figure 3. Pareto optimal portfolios obtained by deterministic optimization. The principal axes show the
capital cost, supply deficit and reliability objectives. The eco-deficit objective is depicted by the color
scale; the red solutions illustrate the highest eco-deficit while the blue solutions show the lowest eco-
deficit. The orientation of the cones illustrates the resilience of portfolios and the size of the cones the
energy cost requirements. Cones pointing upwards indicate worst resilience while cones pointing
downwards the best resilience; the bigger the cone the higher energy use the portfolio requires. The
arrows point towards the direction of preference, i.e., the ideal point would lie in the lower central corner
of the cube and its cone would be of the smallest size, blue color and pointing directly downwards. Given
the inherent trade-offs between the objectives, such performance cannot be achieved.

4.2. Comparison of deterministic and multi-scenario optimization results
4.2.1. Portfolio performance

Figure 4 illustrates how the Pareto front changes when we incorporate multiple sources of
uncertainty in the form of scenarios into the optimization. The individual objectives are
represented as defined in Figure 3. The translucent points show the deterministic optimization
results analyzed in the previous section while the full colored points show the multi-scenario
optimization Pareto optimal portfolios. The figure indicates the uncertainties cause the
objective space to shrink and shift slightly towards the right hand side of the cube, i.e.,
towards higher capital investment. Achieving absolute reliability under a range of plausible
futures requires higher capital investment than when only deterministic conditions are
considered. The range of the objective values is lower for the multi-scenario solutions than
for the deterministic solutions. For instance, the annualized capital cost of portfolios varies
between £18.2m/a and £65.6m/a for the former while the latter has values between £9.1m/a
and £64.4m/a. This suggests that the higher variability of external conditions requires higher
capital investment to maintain good engineering and environmental performance.
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The multi-scenario optimization solutions (full-colored cones in Figure 4) achieve similar
levels of reliability and resilience in varied conditions with better environmental performance
at the expense of higher capital and operating costs as compared to the deterministic solutions
(translucent cones). It is worth noting, however, that the highest energy cost value does not
significantly exceed the highest value obtained by deterministic optimization. The similar
engineering performance of the two Pareto optimal sets of portfolios can be explained by the
Levels of Service constraints ensuring the acceptability of the system’s behavior under
varying future conditions. The two distinct fronts present in the multi-scenario results differ
in terms of the operating cost requirements as was the case in the deterministic solution set
(Figure 3).

Eco-deficit (%)

49 57.5 66
| . B = - [ Multi-scenario
results
Deterministic
99.2 results
Energy cost (Em/a)
Reh?blhty A 14.59
(%) A 494
99.6 Resilience (weeks)
A
Vo
100 L
Direction of
; ¢ preference
Supply deficit 65.6
o 1.9 ;
(%) 373 Annualized

capital cost
0.39.1 (£Em)

Figure 4. Multi-scenario Pareto optimal portfolio trade-offs (full color cones) compared to the
deterministic Pareto optimal portfolio trade-offs (translucent cones). The multi-scenario optimization
objective space shrinks and shifts towards higher capital and energy cost requirements (i.e., the full color
cones positioned further from the ideal point on the capital cost axis and bigger than the translucent
cones). These multi-scenario efficient portfolios attain good engineering performance despite the higher
variability of stresses while outperforming the deterministic portfolios in the ecological objective (color
scale). Please note that the translucent deterministic solutions and the full colored multi-scenario
solutions were evaluated against different future conditions and are therefore not directly comparable.
The plot highlights how the optimal space changes and shifts when multiple sources of uncertainty are
considered.

4.2.2. Portfolio composition
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Figure 5 compares portfolio composition (i.e., how interventions map to the performance
objective space) between the deterministic (left) and multi-scenario (right) results in the same
view as shown in Figures 3 and 4. The size of the cones illustrates the energy cost
requirements of portfolios. The color represents the implementation of the mutually exclusive
supply options; green cones show portfolios that include the Upper Thames Reservoir (UTR),
the red colored portfolios incorporate the unsupported River Severn Transfer (RST), and blue
cones depict portfolios that do not implement any of these. The deterministic Pareto optimal
portfolios implement a combination of these. When none of these new supply interventions
are implemented portfolios require the lowest capital investment but have the worst supply
reliability. Most of the Pareto optimal portfolios implement the UTR and only a fraction
implement the RST. The latter (red points in Figure 5) exhibit perfect reliability but these
portfolios require the highest operating energy use, possibly making them impractical in the
long-term. None of the multi-scenario Pareto optimal portfolios (right panel in Figure 5)
implement the transfer intervention which requires higher capital and operating costs than the
reservoir; all build the UTR reservoir.

The orientation of cones in Figure 5 indicates implementation of the Pipe repair demand
management intervention for the London Water Resource Zone (WRZ); cones pointing
upwards depict portfolios that include the Pipe repair campaign while cones pointing
downwards show portfolios that do not. Both panels show a combination of portfolios with
and without the Pipe repair campaign creating the two distinct fronts. Portfolios
implementing this intervention require higher capital investment but exhibit better
environmental performance (color of cones in Figure 4) and demand lower energy use (size
of cones in Figure 5) than the portfolios on the left front. This suggests the demand
management interventions may help improve the system’s performance with reduced energy
consumption. All of the multi-scenario Pareto optimal solutions implement all the other
demand management interventions for the London WRZ (i.e., active leakage control,
efficiency improvement, metering, and seasonal tariffs). Demand management interventions
may therefore be considered to increase the robustness of plans against uncertain future
conditions.
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Figure 5. Comparison of portfolio composition between the deterministic and multi-scenario Pareto
optimal solutions. The cardinal axes show the same objectives as in Figures 3 and 4. Cone size represents
the portfolio energy cost while color shows which of the mutually exclusive supply interventions was
implemented. Cone orientation indicates whether or not each portfolio implemented the London pipe
repair campaign. Implementing (lighter colored cones pointing upwards) or not implementing (darker
colored cones pointing downwards) the pipe repairs divides the trade-off space into two distinct fronts.

4.3. How deterministic solutions would perform under uncertainty

Intervention portfolios developed whilst considering only historical conditions (i.e.,
deterministic optimization) might not perform well under conditions that are possible in an
uncertain future. To demonstrate the potential bias in this approach we select six
representative solutions (supply and demand management portfolios) from the deterministic
Pareto optimal front. The six portfolios are highlighted in Figure 6 by full color points while
the translucent points depict the whole set of Pareto optimal solutions from the deterministic
(left) and multi-scenario (right) optimization. The portfolios are distinguished by indicative
names reflecting their capital investment requirements or implementation of one of the
mutually exclusive supply interventions. The Least Cost portfolio does not implement any of
the mutually exclusive strategic supply interventions and requires the lowest capital
investment. The Reservoir 1 and 2 portfolios build the UTR, exhibit the same performance
against the reliability objective but differ in the capital investment requirements. The more
expensive Reservoir 2 portfolio implements the Pipe repair campaign demand management
intervention for the London WRZ, while the cheaper Reservoir 1 portfolio does not. The
Reservoir 3 portfolio also implements the UTR and Pipe repair campaign but requires even
higher capital investment which results in perfect reliability. The Transfer portfolio
implements the RST and achieves 100% reliability. The Highest Cost portfolio achieves
perfect reliability by implementing all considered supply (including UTR) and the majority of
demand interventions and requires the highest capital investment.

The six solutions were simulated under the same 88 scenarios that were used in the multi-
scenario optimization. When subjected to the multi-scenario conditions only two of the six
portfolios satisfy the LoS constraints as calculated over the scenario ensemble. The
performance of these two portfolios (Reservoir 3 and Highest Cost) under multiple future
conditions is shown in the right panel in Figure 6 (full color points) and compared to the
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multi-scenario Pareto optimal portfolios (translucent points in the right panel of Figure 6).
These two solutions exhibit worse reliability performance under the 88 future scenarios than
they did under the deterministic analysis. In fact, both of these portfolios exhibit worse
performance in all other objectives under uncertainty (summarized in Table 3). The operating
costs show the highest difference indicating that to satisfy the Levels of Service under higher
variability of conditions the system would need to operate more intensively resulting in
higher operating expenditure.

Least Cost
992 gl R_esgrvo.'r 1 -— =
. " Reservoir 2 v
Reliability ™= -
o . Fa Transfer vy
( 0) - 7 i 7 / ‘, g .
/ / / - S 4
- 0 ' / e
99.6 7 Rgservo:r 3 B
/ Highest-|
Cost " e
/ -
100 100 Y —
91 37.3 65.6 9.1 37.3 65.6
Annualized capital cost (£Em)
Deterministic (historical) conditions Multi-scenario future conditions
Strategic supply options (mutually exclusive)
None ; ;
) t Direction of
RSN preference
River Severn Transfer

Figure 6. Six representative deterministic (left) Pareto optimal portfolios (large full color spheres in the
left panel) were simulated under the 88 future scenarios. The performance of these solutions over the
future scenarios is compared to that of the multi-scenario Pareto-approximate optimal solutions (full
color spheres vs translucent cones, respectively, in the right panel). Only two portfolios (Reservoir 3,
Highest Cost) satisfy the LoS constraints when subjected to the multiple scenarios but are dominated by
other portfolios (they show higher capital costs than portfolios with the same reliability). Please note that
while these two solutions were Pareto optimal under deterministic conditions, they are not Pareto optimal
under the 88 possible scenarios. The two-dimensional plots are projections of a six-objective frontier onto
a two-dimensional surface and as such show only the trade-off between the two plotted dimensions.
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Table 3. Performance comparison of the Reservoir 3 and Highest Cost portfolios depicted in Figure 6
between the deterministic and multi-scenario conditions.

Reservoir 3 Highest Cost
Objecti i
Jective Deterministic Multz' Deterministic ~ Multi-scenario
scenario
Supply deficit (%) 1.20 2.63 0.35 1.35
Supply resilience 0 8 0 o)
(weeks)
Supply reliability (%) 100 99.50 100 99.87
Eco-deficit (%) 56 57 51 54
Energy cost (£m/a) 5.56 7.87 9.30 13.69
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To illustrate the importance of incorporating uncertainty directly into the optimization the
whole deterministic Pareto optimal set of solutions was simulated over the 88 scenarios. Only
40% of this set satisfied LoS constraints when calculated over all 88 plausible future
scenarios. These surviving solutions were then sorted amongst each other to preserve only the
dominating solutions in the set, discarding majority of these solutions. Only 3% of the
original deterministic Pareto optimal solutions were left. While these solutions were Pareto
optimal under deterministic conditions, they are not Pareto optimal under the 88 possible
scenarios.

Figure 7 illustrates how the performance of these remaining solutions compares to that of the
multi-scenario Pareto optimal solutions. The latter are shown as opaque while the former are
depicted by translucent points. The two panels show two different views of the same solution
sets. When subjected to the 88 future scenarios, the remaining deterministic solutions
(translucent spheres in Figure 7) are dominated by the multi-scenario Pareto optimal solutions
(full color spheres in Figure 7), i.e., they can no longer be considered Pareto optimal. The
translucent portfolios require higher capital investment and energy use (shown by the size of
points in Figure 7) to achieve the same levels of reliability than the full colored portfolios
(that are located in the same position regarding the vertical axis of Figure 7a). The latter also
require lower capital investment and energy use to maintain the same levels of supply deficit
than the former, also exhibiting better environmental performance (shown by color in Figure
7). This is particularly visible in Figure 7b where the same set of portfolios as in Figure 7a is
shown in different view; the reliability and supply deficit axes were switched and the plot
rotated anticlockwise. The full colored spheres require lower capital and operating cost as
they are closer to the ideal point with respect to the capital cost axis and of lower size than
the translucent spheres.

- T 3.3 7
e ~_ 7  : - i (0,
(a) o (b) Y, Eco-deficit (%)
/7 / 49 4—— 60
Reliability | | I—
(%) | Multi-scenario
results

Survived
deterministic results
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@ 1450 l
o 7.37
Supply deficit 65.6 7 Rellablity (%) Direction of
i i
(%) 1.8 2 Ann.uallzed 18.2 1.9 85 6 preference
capital cost . .
“ (£m) Annualized capital cost
0.3 18.2 (Em)

Figure 7. Deterministic Pareto optimal solutions that comply with the LoS constraints under the multi-
scenario conditions (translucent points) and the multi-scenario Pareto optimal solutions (full colored
points) visualized together. The cardinal axes show the same objectives as Figures 3, 4 and 5. Color
represents the environmental performance of portfolios while the size of the points indicates their energy
costs. The deterministic solutions are dominated by the multi-scenario efficient solutions (i.e., their
positions, colors, and sizes are further away from the ideal point than the multi-scenario solutions).
Whilst deterministic solutions were Pareto optimal under historical conditions, they are not Pareto
optimal under the 88 plausible scenarios.
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5. Discussion
5.1. Many-objective optimization

Water resource systems serve stakeholders with complex and varying interests who may have
differing preferences regarding how the system should be able to adapt in the context of
future uncertainty (Heffernan, 2012). It is therefore desirable to integrate these multiple needs
in the decision making process (Simpson, 2014) and provide decision-makers with the ability
to consider the broader consequences of various decisions (Loucks, 2012). Multi-objective
optimization allows planners to incorporate different and often conflicting preferences into
decision making. Optimizing for these preferences explicitly, without the need to monetize
and aggregate them into a single objective, allows decision makers to visually assess the
trade-offs that different investments imply. Trade-offs can facilitate stakeholder deliberations
post optimization and provide planners with a rich view into high performing intervention
portfolios that otherwise would remain hidden if lower dimensional analysis (monetary only)
was used. In the Thames basin, reducing capital investments negatively affects the
engineering and environmental performance of the system (Figure 3). Higher capital
investment results in maintaining good engineering and environmental performance whilst
saving on energy costs. Decision makers who value reliability and good environmental
performance without a large increase in energy use may choose a plan from the portfolios in
the lower part of the right front in Figure 3.

5.2. Incorporating uncertainties into many-objective optimization

When planning under uncertainty planners should ensure their system is able to cope with a
wide range of plausible futures. Our study illustrates that taking into account multiple
performance objectives and planning for robustness can be achieved concurrently.
Deterministic optimization the Thames water resource system interventions considering only
the historical flow record was compared to a multi-scenario optimization which considered
multiple sources of uncertainty. We found that using historical flow records to assess future
system investments can provide biased information about individual portfolios, i.e., make
them seem favorable when in fact they do not perform well in many alternate plausible
futures. Figure 6 illustrated how the performance of six representative solutions from the
deterministic optimization analysis changes subject to multiple sources of uncertainty. Only
two solutions remain feasible (Reservoir 3 and Highest Cost in Figure 6) but show worse
performance against the optimized objectives than suggested by the deterministic approach
(Table 3). In total 60% of portfolios considered Pareto optimal in the deterministic analysis
fail under the wider set of future conditions with only 3% of the original set surviving non-
dominated sorting (see the first paragraph of section 3.3). Figure 7 showed that the multi-
scenario portfolios perform better with respect to the environmental and economic objectives
than the survived deterministic portfolios. By incorporating uncertainty directly into the
optimization process one identifies robust solutions that perform well under a range of
plausible future states.

5.3.  Visual analytics
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Visualizing the Pareto optimal set of solutions in the many-dimensional objective space
allows decision makers to discover how the different system performance objectives conflict
and interact with each other. Many objectives may be represented by other visualization
techniques such as parallel plots (Rosenberg, 2015). The many-dimensional trade-off scatter
plots presented here highlight the interactions and conflicts between the objectives for the
purpose of this study. In our experience communicating the information provided by many-
objective trade-off plots to decision makers is best done by visualizing dimensions
progressively. The many-dimensional plot of Figure 3 only represents the final stage of the
exploration. The progressive introduction of dimensions within trade-off plots is explored by
Matrosov et al (2015). Visualizing and exploring the Pareto optimal portfolios progressively
may aid the learning and decision making process and help justify to interested parties why a
certain intervention was selected. Decision makers are given the opportunity to decide the
balance between performance preferences a posteriori. Visual analytics can provide the
means to compare the deterministic and multi-scenario optimization objective spaces as well
as how and why their Pareto optimal portfolios differ.

Robust interventions can be identified by their presence in the Pareto optimal solutions
obtained from the multi-scenario optimization. Figure 5 showed that although some
deterministic Pareto optimal portfolios implement the unsupported River Severn Transfer
instead of the Upper Thames Reservoir, none of the multi-scenario portfolios select the more
expensive and less reliable transfer. In contrast, the UTR is implemented in all of the multi-
scenario portfolios. This suggests that, given how the system is currently modeled, the
reservoir intervention improves the system design’s robustness against a variety of future
conditions. Similarly, the Pipe repair demand management intervention improves the
system’s performance under the considered range of future conditions. Further analysis
showed that all the other demand management interventions are implemented in all the robust
portfolios in the London WRZ. Water companies generally prefer implementing supply-side
measures to plan for future deficits (Charlton and Arnell, 2011) but our results suggest that
reducing demand by implementing demand management interventions increases plan
robustness. These interventions do not require energy unlike the majority of supply
interventions, do not rely on uncertain hydrological flows and are likely appropriate strategies
for relatively water scarce systems in the face of uncertainty.

5.4. Limitations and future work

Future conditions in this study were represented in a limited way. The set of 11 Future Flow
scenarios is recommended for the climate change impact assessment in the UK by regulators
and used in the Thames basin water resource system planning (Environment Agency et al.,
2012; Thames Water, 2014). The 30-year flow time-series used here (2020-2050) may be
considered quasi-stationary at best; just over half of the scenarios do not exhibit transient
characteristics during this time period (see Supplementary material). Transient time-series,
where the probability distribution that characterizes the flow at any given time period
changes progressively as time moves forward, are not appropriate for studies considering a
static snapshot of a system’s performance in time. The sample of water demand, energy
prices and sustainability reductions was suitable in the particular planning context (chosen in
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consultation with stakeholders) but it does not represent a wide range of possibilities; only 2
different states for each were represented. We acknowledge the shortcomings of using a
limited number of scenarios as well as estimates based on the extrapolations of current socio-
economic trends to consider uncertainty of future conditions. The purpose of the study is to
highlight the possible improvements to the current planning approach in England, one of
which is using the scenarios to identify the robust portfolios instead of evaluating the
deterministic least-cost portfolio against each of those separately. In future, a larger more
diverse scenario set could be sampled and more advanced sampling techniques could be used.

Identifying robust combinations of assets is valuable but it does not fully serve the planning
processes where investments must be chosen and prioritized over time. The approach as
applied here did not recommend a schedule of implementation (as does the current EBSD
approach); this is left to future work which will need to consider, and trade-off, the value of
flexibility (Woodward et al., 2014) and adaptation (Haasnoot et al., 2013; Hamarat et al.,
2014).

The proposed approach is computationally intensive, even when only 88 scenarios are
considered. Our multi-scenario optimization ran in 46 hours on 96 CPU cores. Further
increasing the number of possible future scenarios increases the number of their combinations
exponentially. Evaluating each candidate portfolio against such a large ensemble poses
significant computational challenges. The ability of the MOEA optimization algorithm to
converge to the true Pareto optimal front becomes increasingly difficult to demonstrate. Here
we performed a random seed analysis for the multi-scenario optimization with 10 different
random seeds (see Kollat and Reed (2006) for more details) while the deterministic
optimization random seed analysis checked the approximation to the true Pareto optimal set
using 50 random seeds. As more scenarios are used, it might be increasingly harder to verify
the approximation sufficiently.

6. Conclusions

This paper proposed an approach to identify and visually display robust plans for water
resource systems that meet many financial, engineering and ecological goals. The approach
was applied to identifying portfolios of new water supplies and demand management
interventions that could meet London’s estimated water supply demands in 2035. Proposed
portfolios were evaluated against the following metrics: annualized capital cost, maximum
annual supply deficit, supply resilience, supply reliability, hydro-ecological deficits and
annual average energy cost. Future portfolios were also assessed against multiple scenarios of
future climate change impacted hydrological flows, water demands, environmentally
motivated abstraction reductions, and energy prices. To identify the most robust portfolios
amongst the many available options we used a search algorithm (many-objective
evolutionary algorithm) linked to a water resource system simulator.

Results were presented via many-dimensional visualizations that help decision-makers
consider how the performance objectives trade-off with each other for the portfolios
identified as Pareto optimal. Plots can also show how options are distributed within the

23



00 N O U A WN B

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Pareto front and how they influence the system’s performance. The study was designed to
show the benefits of considering multiple plausible futures to optimize a complex system,
rather than a single deterministic scenario. Only 3% of deterministic Pareto optimal solutions
perform satisfactorily well under the set of plausible future conditions chosen by stakeholders
in our study. Multi-scenario optimization identified portfolios that dominate those suggested
by deterministic optimization. Exploring the Pareto optimal portfolios of supply and demand
interventions helps identifying robust interventions that provide benefits over a wide range of
futures including those with conditions similar to today.
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Tables 1,2, 3

Table 1. Constraint values based on LTCD diagram and TWUL's Levels of Service (Thames Water,

2014)

LTCD Demand | Average annual frequency of Constraint value referring
Level restrictions to supply reliability

1 1 in 5 years c1 = 80%

2 1 in 10 years c; =90%

3 1 in 20 years c3 = 95%

4 Never ¢y, = 100%

Table 2. Future scenarios. All combinations of future conditions were considered in the multi-scenario

robust optimization.

Uncertainty dimension

Number of scenarios

Future conditions

Hydrology 11 See section 3.2.1
Water demand 2 2,325 ML/day

2,558 ML/day
‘Sustainability reductions’ to 2 No reduction (current licensed)
water licenses Total of 175 ML/day reduction
Energy unit price 2 13 pkWh

35 p/kWh
Total number of scenarios 88

Table 3. Performance comparison of the Reservoir 3 and Highest Cost portfolios depicted in Figure 6
between the deterministic and multi-scenario conditions.

Reservoir 3 Highest Cost
Objective .
Deterministic Mouli . Deterministic Multi-scenario
scenario
Supply deficit (%) 1.20 2.63 0.35 1.35
Supply resilience 0 8 0 )
(weeks)
Supply reliability (%) 100 99.50 100 99.87
Eco-deficit (%) 56 57 51 54
Energy cost (£m/a) 5.56 7.87 9.30 13.69




Figure captions

Figure 1. Flow chart showing the steps of the two approaches followed in the study. Two separate
optimizations, deterministic (left) and multi-scenario (right), were performed and the results analyzed.
The deterministic solutions were then simulated against the multiple scenarios and their performance was
compared to that of the multi-scenario solutions.

Figure 2. Current and possible future supply options in the River Thames basin (adopted from Matrosov
et al., 2015)

Figure 3. Pareto optimal portfolios obtained by deterministic optimization. The principal axes show the
capital cost, supply deficit and reliability objectives. The eco-deficit objective is depicted by the color
scale; the red solutions illustrate the highest eco-deficit while the blue solutions show the lowest eco-
deficit. The orientation of the cones illustrates the resilience of portfolios and the size of the cones the
energy cost requirements. Cones pointing upwards indicate worst resilience while cones pointing
downwards the best resilience; the bigger the cone the higher energy use the portfolio requires. The
arrows point towards the direction of preference, i.e., the ideal point would lie in the lower central corner
of the cube and its cone would be of the smallest size, blue color and pointing directly downwards. Given
the inherent trade-offs between the objectives, such performance cannot be achieved.

Figure 4. Multi-scenario Pareto optimal portfolio trade-offs (full color cones) compared to the
deterministic Pareto optimal portfolio trade-offs (translucent cones). The multi-scenario optimization
objective space shrinks and shifts towards higher capital and energy cost requirements (i.e., the full color
cones positioned further from the ideal point on the capital cost axis and bigger than the translucent
cones). These multi-scenario efficient portfolios attain good engineering performance despite the higher
variability of stresses while outperforming the deterministic portfolios in the ecological objective (color
scale). Please note that the translucent deterministic solutions and the full colored multi-scenario
solutions were evaluated against different future conditions and are therefore not directly comparable.
The plot highlights how the optimal space changes and shifts when multiple sources of uncertainty are
considered.

Figure 5. Comparison of portfolio composition between the deterministic and multi-scenario Pareto
optimal solutions. The cardinal axes show the same objectives as in Figures 3 and 4. Cone size represents
the portfolio energy cost while color shows which of the mutually exclusive supply interventions was
implemented. Cone orientation indicates whether or not each portfolio implemented the London pipe
repair campaign. Implementing (lighter colored cones pointing upwards) or not implementing (darker
colored cones pointing downwards) the pipe repairs divides the trade-off space into two distinct fronts.

Figure 6. Six representative deterministic (left) Pareto optimal portfolios (Iarge full color points in the left
panel) were simulated under the 88 future scenarios. The performance of these solutions over the future
scenarios is compared to that of the multi-scenario Pareto-approximate optimal solutions (full color
points vs translucent points, respectively, in the right panel). Only two portfolios (Reservoir 3, Highest
Cost) satisfy the LoS constraints when subjected to the multiple scenarios but are dominated by other
portfolios (they show higher capital costs than portfolios with the same reliability). Please note that while
these two solutions were Pareto optimal under deterministic conditions, they are not Pareto optimal
under the 88 possible scenarios. The two-dimensional plots are projections of a six-objective frontier onto
a two-dimensional surface and as such show only the trade-off between the two plotted dimensions.

Figure 7. Deterministic Pareto optimal solutions that comply with the LoS constraints under the multi-
scenario conditions (translucent points) and the multi-scenario Pareto optimal solutions (full colored
points) visualized together. The cardinal axes show the same objectives as Figures 3,4 and 5. Color
represents the environmental performance of portfolios while the size of the points indicates their energy
costs. The deterministic solutions are dominated by the multi-scenario efficient solutions (i.e., their
positions, colors, and sizes are further away from the ideal point than the multi-scenario solutions).
Whilst deterministic solutions were Pareto optimal under historical conditions, they are not Pareto
optimal under the 88 plausible scenarios.



Figure 1
Click here to download high resolution image

Deterministic Multi-scenario

1 scenarnio

Simulation- Simulation-
optimization optimization
" i x B
Trade-off & Pareto-optimal Pareto-optimal | Trade-off &
portfolio analysis solutions | solutions | portfolio analysis
88 scenarios
Simulation

i ™
Reevaluated
solutions

Comparison
of solutions




Figure 2
Click here to download high resolution image




Figure 3
Click here to download high resolution image

f"fﬂm"‘mw Eco-deficit {%}
99.2 Tl Y 51 «—— 66
' S I T
#1440 f"’:;il
Reliability '\ - ﬂ‘"ﬂw e II,' Energy cost (Em/a)
(%) | < = || A 1450 l
@ | > || A aes
e = AR | )
k 1 a™ o | | Resilience (weeks)
N /' A2 l
100, — | Vo
AN l Direction of
-« —
Supply deficit 64.4 preference
(%) "9 568 Annualized
capital cost
(Em)



Figure 4
Click here to download high resolution image

Eco-deficit (%)

49 575 66
- .. & Multi-scenario
//\ results. N
s \\ . E;esﬁzgnmlstlc
| :::'._. " | Energy cost (Em/a)
Reliability | *#3 // A 1450 l
(%) ) - A 494
99.6 | Resilience (weeks)
A l
Vo
13%\&#/!! Direction of
preference
Supply deficit 65.6
(%) 8 +- 3 Annualized

. capital cost
0.39.1 (Em)



Figure 5

Click here to download high resolution image

99.2,

Reliability
%) |
99.8 '.

100L—"

34

Supply deficit
(%e)

0381

99.2
LTy i |
e 4 [
.u" | |
99.6
1001
3.4
d 65.6
373 Ann_ualized 19
capital cost
0391 (Em)

Deterministic

Multi-scenario

Slrategic supply oplions
{mutually exclusive)

e Mone
Reservoir
River Severn

Transler
Fipe repair campaign
(London WRZ)

‘ Implemented
' Mol implemeanted

Energy cost (Emifa)

A 1450 l

A 494

Direction of

. preference




Figure 6
Click here to download high resolution image

Least Cost
99.2 g Reservoir 1 99.2
- " Reservoir 2 b4
Reliability - vl
(%) = : Transfer
» @
99.6 Reservoir 3
Highest
Cost |
100 -  gmetm 100 | —
65.6 9.1 373 65.6
Annualized capital cost (Em)
Deterministic (historical) conditions Multi-scenario future conditions
Strategic supply options (mutually exclusive)
None . ’
; ¢ Direction of
i preference
River Severn Transfer




Figure 7
Click here to download high resolution image

99_27-- - (a) . b Supply
Reliability | g .' d{e‘}f:;rt
(%) | @ |
99.5'.| .' 8|
|
|
100! -
3.3
Supply deficit o= 65.6
o, 1.8 Annualized
(%) #1000 :
, capital cost
0.3 18.2 (Em)

Eco-deficit (%)

49 -——0 &0

[ == S ]

* Multi-scenaria
results

. Survived
determinisiic resulls

Energy cost (Emfa)
@ 1450 l
e« 737

Direction of

: preference

419 65.6
Annualized capital cost
(Em)




Supplementary Material for on-line publication only
Click here to download Supplementary Material for on-line publication only: R1 resubmission Supplementary material.docx



