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Three-dimensional printed bone scaffolds:
The role of nano/micro-hydroxyapatite
particles on the adhesion and
differentiation of human mesenchymal
stem cells

Marco Domingos1, Antonio Gloria2, Jorge Coelho3, Paulo Bartolo1 and
Joaquim Ciurana4

Abstract
Bone tissue engineering is strongly dependent on the use of three-dimensional scaffolds that can act as templates to
accommodate cells and support tissue ingrowth. Despite its wide application in tissue engineering research, polycapro-
lactone presents a very limited ability to induce adhesion, proliferation and osteogenic cell differentiation. To overcome
some of these limitations, different calcium phosphates, such as hydroxyapatite and tricalcium phosphate, have been
employed with relative success. This work investigates the influence of nano-hydroxyapatite and micro-hydroxyapatite
(nHA and mHA, respectively) particles on the in vitro biomechanical performance of polycaprolactone/hydroxyapatite
scaffolds. Morphological analysis performed with scanning electron microscopy allowed us to confirm the production of
polycaprolactone/hydroxyapatite constructs with square interconnected pores of approximately 350 mm and to assess
the distribution of hydroxyapatite particles within the polymer matrix. Compression mechanical tests showed an
increase in polycaprolactone compressive modulus (E) from 105.5 6 11.2 to 138.8 6 12.9 MPa (PCL_nHA) and
217.2 6 21.8 MPa (PCL_mHA). In comparison to PCL_mHA scaffolds, the addition of nano-hydroxyapatite enhanced the
adhesion and viability of human mesenchymal stem cells as confirmed by Alamar Blue assay. In addition, after 14 days of
incubation, PCL_nHA scaffolds showed higher levels of alkaline phosphatase activity compared to polycaprolactone or
PCL_mHA structures.

Keywords
Biomanufacturing, bioactive materials, hydroxyapatite, mesenchymal stem cells, bone tissue engineering, scaffold
development
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Introduction

Bone is able to heal and remodel without leaving any
scar in cases of very limited damage. However, in
pathological fractures, traumatic bone loss or primary
tumour resection, where the bone defect exceeds a criti-
cal size, bone is no longer able to heal itself.1,2 In these
cases, the clinical approach requires the use of bone
grafts, defined as an implanted material that promotes
bone healing, alone or in combination with other
materials, through osteogenesis, osteoinduction and
osteoconduction.3 Autografts, the gold standard in
reconstructing small bone defects, are harvested from
one site and implanted into another within the same
individual. There is no risk of disease transmission or

immune system rejection. Main complications are lim-
ited availability, donor-site morbidity and pain, pro-
longed hospitalization, increased risk of deep infection
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and haematoma.2,4 Allografts (natural bone material
explanted from a similar donor) could be used as an
alternative by reducing site morbidity and pain com-
monly associated with autografts. However, the risk of
immune rejection, transmission of pathogenic diseases
and low integration with native tissues clearly reduce
their clinical application.5–11 Synthetic implants, based
on metallic or ceramic materials, may be seen as alter-
native to both autografts and allografts.5 Despite being
able to provide an immediate mechanical support in
the area of the defect, restoring the structural stability
required for bone healing, metallic implants exhibit a
low osteointegration and may increase the risk of bone
fracture due to the mechanical properties mismatch.
On the other hand, the use of ceramic implants with
high capability to promote osteointegration and
osteoinduction remain limited due to low torsion,
bending and shearing resistance.5–14 Therefore, strate-
gies based on the combined use of scaffolds, cells and
biomolecules are gaining an increasing importance as a
viable alternative to the abovementioned clinical thera-
pies.15 The success of this therapy relies on the ability
to generate an adequate biomechanical environment
for cellular growth and new tissue formation. The
material’s requirements used for the production of scaf-
folds have greatly evolved during the past few years,
changing from bioinert to bioactive systems capable
of incorporating biomolecules and/or cells hence estab-
lishing a more effective interaction with the native
tissues.16,17 Several studies reported the use of poly-
meric- and ceramic-based materials for the production
of bone tissue engineering (TE) scaffolds.18–21 The most
commonly used biodegradable polymers are polycapro-
lactone (PCL), polylactic acid and polyglycolic acid
(PGA) mainly due to their biocompatibility and proces-
sability.22–26 PCL possesses several properties that
make it a very attractive material for the production of
TE scaffolds, namely, its low biodegradation rate
(2–4 years in vivo), high chemical and thermal stability,
biocompatibility and low cost.27–29 Nonetheless, its
application in TE remains quite constrained due to its
low bioactivity, which limits the integration or mechan-
ical interlock between the implant and the native tissue.
To overcome this limitation, researchers have been
exploring the introduction of ceramic materials, namely
calcium phosphates (CPs), attempting to increase
the bioactivity of the produced scaffolds.30–32

Hydroxyapatite (HA) and tricalcium phosphate (TCP)
are inorganic components with a chemical composition
very similar to that of the mineral bone phase. This
chemical similarity is determinant for the apatite
deposition process, protein adsorption and subsequent
bone regeneration.33 The production of biphasic com-
posites (organic–inorganic), mixing polymers and CPs
enable us to conjugate the high mechanical perfor-
mance of polymers with the increased compression
resistance of ceramics, hence mimicking the biomecha-
nical properties of bone.34,35 In general, the results
reported in the literature highlight an increment of the

mechanical and biological performance of TE scaffolds
related with the introduction of CPs.35–37 However,
very few works describe the effect of CPs granulometry
on the mechanical behaviour and cellular activity of
composite scaffolds.38,39 Heo et al.38,39 reported the
production and evaluation of nano- and micro-HA
composite scaffolds both in vitro and in vivo.
Nonetheless, the method used for the preparation of
the blends (with organic solvents) and the shape of the
particles (irregular) prevent the scalability of the pro-
cess and the accurate biomechanical evaluation of the
structures. Therefore, this article explores the use of a
screw-assisted extrusion-based additive manufacturing
(AM) system to produce bioactive porous composite
scaffolds, consisting of PCL and nano- or micro-HA
(nHA and mHA, respectively) particles with regular
shape and dimensions. The organic–inorganic compo-
sites were obtained using a melt blending process, thus
avoiding the use of any organic toxic solvents. The
effect of the HA addition as well as particle size on the
mechanical performance of three-dimensional (3D)
scaffolds was assessed in vitro under static compres-
sion. Cell viability and osteogenic differentiation of
human mesenchymal stem cells (hMSCs) were assessed
using Alamar Blue� and alkaline phosphatase (ALP),
respectively.

Materials and methods

Materials

PCL (CAPA 6500, Mw=50,000) in the form of pellets
was obtained from Perstorp Caprolactones (Cheshire,
United Kingdom). Synthetic nHA (particle size4
200nm) was purchased from Sigma-Aldrich (Sigma-
Aldrich Quimica, S.A. Portugal) and used without fur-
ther modifications. Synthetic mHA (particle size of
56 1.0mm) was supplied by Fluidinova (nanoXIM
HAp 402, Fluidinova, SA, Portugal) and used as
received.

Preparation of PCL/HA composite blends

Two types of PCL-based blends were initially prepared
using HA powder with different granulometries: nano-
and micro-HA (nHA and mHA, respectively) particles.
PCL/HA blends (25wt% of HA content) were prepared
by melt blending using a Plastograph� EC (Brabender�

GmBH & Co. KG, Germany). First, the HA powder
was weighed, placed in a glass recipient and dried in an
oven at 100 �C for 2 h. Then, PCL pellets were melted
in the Brabender at 100 �C and 40 r/min, during 10min.
Once the PCL was fully melted, the HA powder was
added and the mixture was kept in the Brabender for
30min at 100 �C and 40 r/min, in order to promote a
complete homogenization of the composite system. The
obtained composite blends were removed from the
Brabender and compressed into films, using a hydraulic
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press. Finally, the films were manually cut into pellets
and dried under vacuum during 24h.

Scaffold design and fabrication

For the fabrication of PCL and PCL/HA scaffolds, a
screw-assisted AM system was employed, equipped
with an extrusion nozzle of 300mm. A detailed descrip-
tion of the system, along with the flowchart informa-
tion required for the fabrication of TE scaffolds, can be
found elsewhere.40–42 Rectangular prisms measuring 30
(length)3 30 (width)3 8mm (height) were produced
employing a single lay-down pattern of 0�/90� and a
filament distance (FD) of 750mm. Process parameters
are indicated in Table 1. After fabrication, the obtained
3D constructs were cut into smaller blocks of adequate
dimensions for further analysis.

Scaffold morphology

Scanning electron microscopy. Scaffold morphology was
carried out using scanning electron microscopy (SEM,
FEI Quanta 600F). Top and cross-section images were
obtained under low vacuum conditions, 12.5 kV voltage
and 0.6Torr of pressure. Obtained micrographs were
used to evaluate structural integrity of the scaffolds,
distribution of HA particles, pore spatial distribution
and consistency between theoretical and experimental
values of pore size (FG) and filament diameter (RW).
Energy-dispersive X-ray spectroscopy (EDS) was
employed to determine the elementary chemical com-
position of the scaffold’s surface using an Oxford
INCAx-sight system.

Micro-computed tomography. Micro-computed tomogra-
phy (mCT) was performed using a SkyScan 1072 system
(Aartselaar, Belgium) employing rotational increments
of 0.9� along a total angle of 180�. Cross-sectional as
well 3D images of the scaffolds were then reconstructed
using SkyScan software as well Image J (National
Institute of Health, USA), MIMICS (Materialise,
Belgium) and RapidForm (IBUS Technology, Inc.,
Germany). The obtained micro-tomography results
enabled the determination of the scaffold porosity and
interconnectivity, calculated based on the following
equations

Porosity=
VolPores

VolPores +VolScaffold
3100 ð1Þ

where VolPores corresponds to the total volume occu-
pied by the pores and VolScaffold corresponds to the total
scaffold volume

Interconectivity=
VolPoresinterc

VolPoresinterc +VolPoresClosed
3100

ð2Þ

where VolPoresinterc correspond to the total volume of
interconnected pores and VolPoresClosed correspond to
total volume of closed pores (not interconnected).

Mechanical analysis

Compression tests were performed to evaluate the
effect of HA on the scaffold mechanical properties.
Produced scaffolds were cut into smaller samples of
5.0-mm length (l), 5.0-mm width (w) and 8-mm height
(h0). All tests were carried out at a rate of 1mm/min up
to a strain value of 0.5mm/mm, using an INSTRON
5566 testing system. The procedure used to determine
the ‘apparent’ stress (s) and strain (e) can be found
elsewhere.38

Biological analysis

In vitro biological tests were carried out in order to
investigate the effect of HA particle size on the viabi-
lity, adhesion, proliferation and differentiation of bone
marrow–derived hMSCs, which were used at passages
4–6 from primary culture. PCL and PCL/HA scaffolds
were cut into properly shaped blocks to fit inside cell
culture plate wells. The structures were sterilized using
70% ethanol/water solution for 24 h, washed exten-
sively with a phosphate buffer solution (PBS) 0.01M,
pH 7.4, irradiated with UV light during 40min
and finally placed in culture media for 2 h. PCL and
PCL/HA scaffolds were then seeded with hMSCs,
using a density of 173 103 cells/sample. Cell viability
and proliferation were evaluated using the Alamar Blue
assay as described in previous works.40,43 The osteo-
genic differentiation of hMSCs was assessed via ALP
measurements following a specific biochemical assay
(SensoLyte� pNPP Alkaline Phosphatase Assay Kit).
ALP was then normalized against DNA quantity using
Quant-iT� PicoGreen kit. Cell-scaffold constructs were
also analysed with a confocal laser scanning micro-
scope (CLSM, Zeiss LSM 510/ConfoCor 2), using
rhodamine phalloidin staining for actin filaments to
qualitatively investigate cell adhesion and spreading at

Table 1. Process parameters used to fabricate PCL/HA scaffolds.

Process parameters

DV (mm/s) ST (mm) LT (�C) EP (bar) SRV (r/min)

10 280 90 5 30

DV: deposition velocity; ST: slice thickness; LT: liquefier temperature; EP: extrusion pressure; SRV: screw rotation velocity.

Domingos et al. 3



7, 14 and 21 days after seeding. Confocal images
obtained from all the cell-scaffold constructs were pro-
cessed with Image J software to assess the cell morphol-
ogy, using a shape factor defined elsewhere.40

Statistical analysis

All of the results were analysed using analysis of var-
iance (ANOVA) followed by Bonferroni post hoc tests;
statistical differences were set at p \ 0.05. With regard
to biological tests, each experiment was performed at
least three times in triplicate.

Results and discussion

Morphological analysis

Results obtained with SEM showed that PCL and
PCL/HA scaffolds produced with the BioCell Printing
had a well-defined square internal geometry, intercon-
nected pores, with dimensions between 371 and 378mm
and a uniform spatial distribution. The extruded fila-
ments evidenced a regular circular geometry with
;370mm diameter, as well a good adhesion between
adjacent layers (Figure 1).

Using SEM, it was also possible to evaluate qualita-
tively the distribution of HA particles in the filaments

Figure 1. SEM micrographs of 3D PCL and PCL/HA scaffolds: (a) PCL top view, (b) PCL cross-section view, (c) PCL_nHA top view,
(d) PCL_nHA cross-section view, (e) PCL_mHA top view and (f) PCL_mHA cross-section view.
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Figure 2. SEM micrographs of 3D PCL/HA filaments: (a) PCL_nHA cross-section view and (b) PCL_mHA cross-section view. Top
corner amplifications of 10,0003.

Figure 3. EDS analysis on (a) PCL scaffolds showing C and P peaks, (b) PCL_nHA scaffolds showing the peaks of Ca and P and (c)
PCL_mHA scaffolds showing the peaks of Ca and P.

Domingos et al. 5



of the scaffolds. Figure 2 clearly evidences the success-
ful introduction of HA particles within the PCL fila-
ments. However, from the 10,0003 magnification, a
much more refined and homogeneous distribution of
the nHA particles is visible (Figure 2(a)) within the fila-
ments, compared to the mHA particles (Figure 2(b)).
The mHA particles should tend to form aggregates of
considerably higher dimensions compared to the nHA
aggregates, leading to a rough and heterogeneous dis-
tribution of HA within the PCL_mHA scaffolds.

Spectroscopy results showed the presence of HA par-
ticles in the PCL matrix, as confirmed by the HA char-
acteristic peaks of calcium (Ca) and phosphorous (P)
(Figure 3).

Through mCT analysis, it was possible to determine
scaffold interconnectivity (100%), surface area to vol-
ume ratio (i.e. 20.07mm2/mm3) and porosity (i.e. 58%)
(Figure 4). No variations were detected between PCL,
PCL_nHA and PCL_mHA scaffolds.

Mechanical analysis

Compression tests highlighted the influence of HA par-
ticles on the mechanical behaviour of the scaffolds. The
obtained results were in agreement with the literature
and showed that the introduction of HA increased the
compressive modulus (E) (Figure 5; Table 2).38,44

The addition of 25wt% of HA enhanced the com-
pressive modulus of PCL scaffolds from 105.56 11.2 to
138.86 12.9MPa (PCL_nHA) and 217.26 21.8MPa
(PCL_mHA) as shown in Table 2. In terms of compres-
sive modulus, the differences between 3D PCL scaffolds
and PCL/HA structures, as well as those between

PCL_nHA and PCL_mHA scaffolds, were statistically
significant.

Furthermore, if compared to the neat PCL, the pres-
ence of HA particles did not significantly influence the
maximum stress.

Furthermore, the results from compression tests evi-
denced that PCL_mHA scaffolds presented a higher
value of compressive modulus than PCL_nHA scaf-
folds (Table 2). Such results can be ascribed to two pos-
sible reasons: (1) the heat absorption properties of the
HA nanoparticles may change the crystallization pro-
cess of PCL, thus altering its final mechanical

Figure 4. 3D reconstruction of PCL and PCL/HA scaffolds obtained from mCT images: (a) cross-section view of PCL scaffold, (b)
cross-section view of PCL_nHA scaffold, (c) cross-section view of PCL_mHA scaffold, (d) top view of PCL scaffold, (e) top view of
PCL_nHA scaffold and (f) top view of PCL_mHA scaffold.

Figure 5. Typical stress–strain curves obtained for 3D PCL and
PCL/HA scaffolds characterized by a 0�/90� lay-down pattern
and a filament distance of 750 mm, compressed at a rate of
1 mm/min up to a strain value of 0.5 mm/mm.
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properties; (2) the poor interfacial adhesion between
PCL and HA particles may also have a weakening
effect. This last phenomenon would be more significant
in the case of PCL_nHA, where the contact area
between polymer and ceramic is higher. Additional
studies are being carried out to evaluate the effect of
each phenomenon on the mechanical performance of
the scaffolds.

Biological assay

Bone marrow–derived hMSCs were used at passages 4–
6 from primary culture, as reported in the literature.45

In vitro biological tests were performed to qualitatively
and quantitatively determine the influence of HA gran-
ulometry on the biological behaviour of hMSCs. The
results from the Alamar Blue assay are reported in
Figure 6.

In terms of percentage of reduction of Alamar Blue,
at days 7 and 14, there were no differences between

PCL scaffolds and PCL-based composite structures.
Furthermore, at the end of the incubation period (day
21), it was not possible to detect significant differences
regarding cell viability/proliferation between PCL and
PCL_nHA scaffolds. However, at day 21, PCL_nHA
scaffolds presented higher cell viability when compared
to PCL_mHA structures. In particular, the observed
differences were statistically significant (p \ 0.001).

As shown by SEM micrographs (Figure 2), HA
micro-particles tend to form aggregates, which can act
as physical barriers, preventing cells from establishing
cell–cell contact and subsequent proliferation. This
observation is supported by previous works,39 where
nano-HA composite scaffolds enhance the proliferation
of MG-63 osteoblast-like cells.

Osteogenic differentiation was evaluated by deter-
mining the ALP activity of hMSCs. The obtained
results (Figure 7) suggested that all the scaffolds were
able to promote cell differentiation, independently of
the presence and size of HA particles. ALP activity
significantly increased during the initial stage of incu-
bation reaching its peak at day 14. The abrupt
decrease occurred between day 14 and 21 could be
associated with the deposition of cell matrix (mineral
phase) that inhibits the detection of ALP. In particu-
lar, PCL_nHA scaffolds showed higher levels of ALP
activity compared to PCL or PCL_mHA scaffolds
throughout the entire period of incubation. The
observed differences were statistically significant (p
\ 0.001). Furthermore, at each time point, no differ-
ences were found between PCL and PCL_mHA.
Despite its bioactive properties, all the results would
seem to suggest that the presence of micro-HA parti-
cles inhibited the osteogenic differentiation of hMSCs.
This should be ascribed to the potential formation of

Table 2. Effect of HA particle size on the mechanical
properties of PCL scaffolds.

Scaffold Compressive
modulus (E) (MPa)

Maximum stress
(smax) (MPa)

PCL 105.5 6 11.2 16.5 6 1.4
PCL_nHA 138.8 6 12.9 15.3 6 1.7
PCL_mHA 217.2 6 21.8 17.4 6 1.8

PCL: polycaprolactone; nHA: nano-hydroxyapatite; mHA: micro-

hydroxyapatite; ANOVA: analysis of variance.

Compressive modulus and maximum stress reported as mean

value 6 standard deviation. Statistical analysis was performed using

ANOVA followed by Bonferroni post hoc tests (p \ 0.05).

Figure 6. Percentage of Alamar Blue� reduction as a function
of time and HA granulometry. Error bar represents the standard
deviation. ***p \ 0.001 indicates statistically significant
differences between PCL_nHA and PCL_mHA scaffolds, at the
same time from cell seeding.

Figure 7. ALP activity as a function of time and HA
granulometry. Error bar represents the standard deviation.
***p \ 0.001 indicates statistically significant differences
between PCL_nHA and PCL as well as between PCL_nHA and
PCL_mHA scaffolds, at the same time from cell seeding.

Domingos et al. 7



micro-HA particle aggregates on the surface of the
scaffold filaments preventing the establishment of
cell–cell interactions essential for the differentiation
process.

Additional tests were carried in the attempt of pro-
viding a better insight into the effect of HA granulome-
try through the investigation of cell morphology.
Confocal laser scanning microscopy (CLSM) results are
depicted in Figure 8. Results at the end of 14 days of
incubation showed that (1) the number of viable cells
present in the PCL_nHA scaffolds was higher than
PCL and PCL_mHA scaffolds (in agreement with
Alamar Blue and ALP activity results); (2) cell mor-
phology was strongly influenced by the presence and
size of HA particles. With regard to PCL_nHA scaf-
folds, a much higher and homogeneous number of cells
with filamentary morphology was present if compared
to PCL and PCL_mHA scaffolds; and (3) cells adhering
on PCL_mHA scaffolds presented a circular geometry
showing a low degree of adhesion and few cell–cell

contact. These observations would reinforce the idea
that the surface topography of PCL_mHA scaffolds
prevents cellular contacts, leading to poor levels of
adhesion, viability, proliferation and differentiation.

Further cell adhesion and spreading analysis were
performed based on the determination of the shape fac-
tor using CLSM images. Typical values of the shape
factor at 7, 14 and 21days after cell seeding time are
reported in Figure 9 as mean value6 standard devia-
tion. Basically, the cell shape factor significantly
decreased from day 7 to day 21 independently of the
scaffold typology. PCL_nHA scaffolds presented the
lowest shape factor at the end of the incubation period.
Based on previous experiments, the lower is the cell
shape factor, the more elongated is the cell.40 Thus, the
establishment of multiple cellular extensions (increased
total cellular area) should imply a reduction in the
shape factor (elongated cells) leading to better adhesion
and spreading. These results confirmed the CLSM
observations and revealed the higher potential of nano-
HA to promote cell adhesion, proliferation and
differentiation.

Conclusion

Composite PCL/HA scaffolds with different granulo-
metries were successfully produced using an extrusion-
based system. SEM analysis revealed composite
scaffolds with square and fully interconnected pores,
also providing information on the distribution of HA
particles in the PCL matrix. Even though the introduc-
tion of HA enhanced the compressive modulus of the
PCL structures, no statistically significant differences
were found in terms of maximum stress. With regard to
hMSC adhesion, proliferation and osteogenic differen-
tiation, the biological performance of the PCL_nHA
scaffolds was higher when compared to PCL_mHA
scaffolds.

Figure 8. Typical results from CLSM analysis on PCL and PCL/HA scaffolds at day 14. Images of rhodamine phalloidin–labelled actin
filaments (red).

Figure 9. Typical values of shape factor obtained from CLSM
images of hMSCs deposited on PCL, PCL_nHA and PCL_mHA
scaffolds.
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