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Abstract: We develop a non-parametric imputation methodtiaminon-response based on the well-
known hot-deck approach. The proposed imputatiothoaeis developed for imputing numerical data
that ensure that all record-level edit rules atesfiad and previously estimated or known totaks ar
exactly preserved. We propose a sequential hotidegktation approach that takes into account
survey weights. Original survey weights are noingjeal, rather the imputations themselves are
calibrated so that weighted estimates will equalvikm or estimated population totals. Edit rules are
preserved by integrating the sequential hot-deqduiation with Fourier-Motzkin elimination which
defines the range of feasible values that can bé i imputation such that all record-level editt

be satisfied. We apply the proposed imputation oetimder different scenarios of random and
nearest-neighbour hot-deck on two data sets: anahistructural business survey and a synthetically
generated data set with a large proportion of mgsdata. We compare the proposed imputation
methods to standard imputation methods based eta svaluation measures.
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1. Introduction

Missing data form a well-known problem that hadéodealt with by agencies collecting data on
persons or enterprises. Missing data can arise fiibmon-response or item-nonresponse. Unit non-
response occurs when units that are selected farcddection cannot be contacted, refuse or are
unable to respond altogether, or respond to sajfestions that their response is deemed useless for
analysis or estimation purposes. Unit non-resp@gsually corrected by weighting the responding

units (see, e.g., Sarndal, Swensson and Wretmahdr@dSarndal and Lundstrom 2005).

Item non-response occurs when data on only sortteeafems in a record, i.e. the data of an
individual respondent, are missing. Persons mayinftance, refuse to provide information on their
income or on their sexual habits, while at the sime give answers to other, less sensitive questio
on the questionnaire. Enterprises may not provigsvars to certain questions, because they may
consider it too complicated or too time-consumim@mnswer these specific questions. The most
common solution to handle item non-response is tatfmn, where missing values are filled in with
plausible estimates. There is an abundance o&litex on imputation of missing data. We refer to
Kalton and Kasprzyk (1986), Rubin (1987), Kovar &dhlitridge (1995), Schafer (1997), Little and
Rubin (2002), Longford (2005), Andridge and Lit{910), De Waal, Pannekoek and Scholtus
(2011), Van Buuren (2012) and references theraithis paper we focus on item non-response for
numerical data, and whenever we refer to missing itlethis paper we will be referring to missing

data due to item non-response, unless indicatesheite.

In many cases, especially at National Statistiestitutes, data have to satisfy constraints irfdhm

of edit restrictions, or edits for short. These eestrictions constrict the imputation of missoega.
Examples of such edits are that the profit of aerpmise equals its turnover minus its costs, aatl t
the turnover of an enterprise should be at least Becords that do not satisfy these edits are
inconsistent, and are hence considered incorredpiie the abundance of literature on imputation,

imputation of numerical data under edit restrictiasma rather neglected research area. Approaches f



imputation of numerical data under edit restrictibrave been developed by Geweke (1991),
Raghunathan et al. (2001), Tempelman (2007), Helah. (2010), Coutinho, De Waal and
Remmerswaal (2011), Coutinho and De Waal (2012)n&eoek, Shlomo and De Waal (2013) and
Kim et al. (2013). For categorical data under esgtrictions some work has been done by Winkler

(2003 and 2008).

A further complication is that numerical data samet have to sum up to known or previously
estimated totals. This situation can arise witbree*figure’ policy, where an agency aims to publish
only one estimate for the same phenomenon occunmnidiferent tables. Statistics Netherlands
pursues a ‘one-figure’ policy for the Dutch Cenésratistics Netherlands 2014), as well as for many
other statistics. As an example, when budgets faricaipalities are decided upon by national
statistics, these statistics must be numericalfssbent across all statistical outputs of the agen
Therefore, when a ‘one-figure’ policy is pursuetimates need to be calibrated to the previously

estimated or known totals and this takes precedeweeother desired statistical properties.

Cox (1980) proposed the weighted sequential hdt dexthod, which was designed so that means and
proportions estimated using the imputed data wlefual in expectation to the weighted mean or
proportion estimated using respondent data onlis differs from our aim where we want totals for

the imputed data to be exactly equal to known evipusly estimated totals as well as preserve decor

level edit restrictions.

For numerical data, Zhang and Nordbotten (2008)Zrahg (2009) have extended nearest hot deck
imputation so that totals are (approximately) pnes@. There is, however, no guarantee of numerical
consistency for a ‘one figure’ policy. In additichese authors do not consider edit restrictiotso A

for numerical data, Beaumont (2005) has developealibrated imputation approach that in principle
can deal with edit restrictions. This approachasdal on solving a mathematical optimization problem

that can be exceedingly large. Beaumont (2005) mpggrts results for a simulation study that does



not involve edit restrictions. The computationadbility of the approach for data sets involvimtite
restrictions is as yet unknown. Pannekoek, Shlontblze Waal (2013) have developed imputation
methods for numerical data based on regression Isnadth random residuals that ensure that edits
are satisfied and previously estimated or knowalsadre preserved. Drawbacks of the methods
developed by Pannekoek, Shlomo and De Waal (20&3)at they are relatively complex and are
based on parametric model assumptions. In partidhlese methods assume the data to be either
normally or log-normally distributed. For data tlaaé distributed otherwise these methods may give

biased results.

Favre, Matei and Tillé (2005) and Coutinho, De Warad Shlomo (2013) have developed methods for
categorical data having to satisfy edits and tegmee totals. An obvious difference between those

methods and our approach is we focus on numeratal d

The aim of this paper is to develop non-paramétmutation methods that lead to satisfied edits and
preserved totals. In order to avoid problems of ehodisspecification and reduce the reliance on
parametric assumptions, we base our approach dskm@lvn hot deck approaches, similar to Zhang
and Nordbotten (2008) and Zhang (2009). The majectibe of our imputation methods is to obtain

accurate point estimates while satisfying all ediid preserve totals.

The remainder of this paper is organized as folld@extion 2 describes calibrated imputation in
comparison to calibration via survey weights. Set8 introduces the edit restrictions and sum
constraints due to known or previously estimatedlsove consider in this paper. Section 4 develops
sequential hot deck imputation algorithms for guputation problem. Section 5 describes an

evaluation study and its results. Finally, Secaroncludes with a brief discussion.



2. Calibrated Imputation versus Calibrated Weighting

Calibrated weighting is a well-known way of caldilg survey weights for survey data which
benchmarks known or estimated population totalsebected auxiliary variables. Calibration means
that the weighted sample counts of the auxiliaryaddes equal the benchmarked population totals.
Calibrated imputation is the lesser known equiviatdrtalibrated weighting. When calibrated
imputation is used, the imputations are selectetthi@opopulation estimates for selected variables
obtained from the imputed data are equal to knompreviously estimated totals. The survey design

weights do not need to change.

We will discuss why in some cases it is usefulde calibrated imputation instead of calibrated
weighting (see also Pannekoek, Shlomo and De WHz)2 Let us suppose that first a sunggwith
a numerical variable becomes available and later a second susyavith a categorical variablg.
Figure 1 illustrates the case. In the rows we hgaunits inS; andS, and in the columns the
variables in these data sets. The shaded patissifigure indicate the overlapping records in ghes

surveys.

Figure 1. Two partly overlapping surveys

Survey §; (x)

Survey S, (y)

In such a case, one could first use the data ey}, to estimate the population totalxafWhen a
later surveys, becomes available one could use the overlap betaw®eyss; andS, to estimate the

population totals of the breakdownxofnto categories of. If a ‘one-figure’ policy is pursued, the



total estimate fox based on the overlap 8f andS, should be equal to the original estimate based on
surveys;. This can be achieved by calibrated weighting,(seg, Sarndal and Lundstrém 2005) or by

applying a calibrated imputation approach as we@se in the current paper.

In the usual sample survey setting, units are naylgelected from a population according to a
specified sampling design, where each populatignisimcluded in the samplewith a non-zero
probability. Estimates of population totals andestharameters of interest are then calculated imgus
survey weightsy; that are the inverse of the inclusion probabiliddfusted for non-response and
calibrated to known or estimated population totale correction for the unbalanced sample by

calibrating the weights will affect estimates fdnariables.

The situation with item-nonresponse differs frora $iituation with (only) unit non-response as item
non-response fractions can vary greatly betweeialas. Adjustment to unit level weights only is
therefore no longer an option. To deal with item-mesponse one usually first imputes the missing
items for the responding units so that a complata det is obtained. Next, the responding units are
weighted to correct for unit non-response. In tisghting step, calibration weighting can again be

used to ensure that estimates of totals will bakguthe known or estimated population totals.

However, for variables with imputed values, diffezes between estimated totals and their known
values are now not only caused by unit non-respdngealso by systematic errors in the imputed
values due to misspecification of the imputatiordeloWe will refer to these errors iasputation
bias The weight adjustments due to calibration hertcaat correct for an unbalanced selection of
units only but also for imputation bias in specifariables. There is no compelling reason to list th
adjustment for imputation bias affect the estimafeall other variables. This makes calibration

weighting less desirable in the case of item-nguese.



A drawback of weighting in general is that it carlyobe applied to so-called monotone missing data
patterns and not to general missing data pattérnsissing data pattern is called monotone if the

variables can be ordered such that the valuesrihlesX; ., to X,, are missing whenever the value

of variableX; is missing, foralj = 1, ...,p — 1, wherep is the number of variables.

In this paper we therefore develop a different apph, where we do not change the design weights of
the responding units. Instead of calibrating theghts we will calibrate the imputations so weighted

estimates will equal known or estimated populataals.

3. Constraintson Imputed Data

Edit rules imply restrictions within records on treues of the variables. Edits for numerical dat

either linear equations or linear inequalities. Wémote the number of variables pyEdit k (k =

1, ..., K) can then be written in either of the two followifegms:

A1k Xi1 + o+ apkxip + bk =0 (1a)

or

A1k Xi1 + -+ apkxip + bk >0 (1b)

where thea;, and theb, are certain constants, which define the edit. &amyncases, thig, will be

equal to zero.

Edits of type (1a) are referred to as balance eflitexample of such an edit is

T,~C—P,=0 @



whereT; is the turnover of an enterprise correspondinthéa-th record(i = 1, ..., m), P; its profit,
and C; its costs. Edit (2) expresses that the profitrokeaterprise equals its turnover minus its costs.

Edits of type (1b) are referred to as inequalitgsed\n example of such an edit is
T, =20 3)
expressing that the turnover of an enterprise shbalnon-negative.

Sum constraints due to known or previously estithatgpulation totals can be expressed as

— ybop
2 Wixij = X]

ier

with w; the survey weights that have been adjusted fornamitesponse; the set of respondents and

XP°P the known population total of variabte .

4. Sequential Hot Deck I mputation Satisfying Edits and Totals

4.1 The basicidea

The imputation methods we apply in this paper 8reased on a hot deck approach. When hot deck
imputation is used, for each record containing mggsalues, the so-called recipient record, ona use
the values of one or more other records where thases are observed, the so-called donor record(s)

to impute the missing values (see Andridge andel#010).

Usually, hot deck imputation is applied in a mudtiate fashion, that is several missing values in a
recipient record are imputed simultaneously, usiirtgsame donor record. This approach aims to

preserve the correlation structure in the data.odomproblem that approach is often not feasilflan|



imputed record failed the edits, all one couldmsuch an approach is to reject the donor recadd an
try another donor record. For a relatively compkdaset of edits, one may have to test many diftere
potential donor records until a donor record igidthat leads to an imputed record satisfying all
edits. Moreover, for some recipient records one naybe able to find any donor records such that
the resulting imputed records satisfy all editsalene imputed records that at the same time also

preserve totals.

Our imputation methods, in principle, aim for mudtiiate hot deck imputation where all imputations
are taken from the same donor. When that is ndilples our imputation methods automatically
switch to sequential imputation, where for differeariables in a recipient record a different donor
may be used. In particular, for variables with rimgssalues involved in balance edits it is rar®&¢o
able to find a donor satisfying all balance editsis means that for some of those variables our
imputation methods switch to sequential imputati®anerally, the first missing fields in a recoré ar
imputed using the same donor, whereas the valtleedast variable involved in a balance edit will
not be based on that donor (or another donorwilbe determined deterministically from the other

values involved in this balance edit.

The hot deck imputation methods we apply are desdrin Subsection 4.3. These hot deck imputation
methods are used to order the potential imputatimes for a certain missing field. Whether a value
is actually used to impute the missing field dejgeoid whether the edits and totals can be satisfied.
The approach for hot deck imputation that ensudés end sum constraints is described in Section

4.2 below.

4.2  Using a Sequential Approach to Imputation

In order to be able to use a sequential approadaingatation, we apply Fourier-Motzkin elimination
(Duffin 1974 and De Waal, Pannekoek and Scholtus1P0Fourier-Motzkin elimination is a

technique to project a set of linear constraint®lving g variables onto a set of linear constraints



involving g — 1 variables. It is guaranteed to terminate aftenief number of steps. The essence of
Fourier-Motzkin elimination is that two constraintsay L(x;y, ..., Xj j—1, X j+1, - Xig) < X;; and
Xij < U(Xiq, s Xi j—1, Xi 41, -+» Xiq), Wherex;; is the variable to be eliminated in a recdérénd
L(xiq, ooes Xij—1, Xi ja1s 0 Xig) QAU (Xyq, oo, X j—1, X j 41, -+, Xiq) @€ linear expressions in the other

variables, lead to a constraint

L(xil‘ ...,xi‘j_l,xi,j_,_l, ...,xiq) < U(xil, ...,xi‘j_l,xi‘jﬂ, ...,xiq)

involving these other variables. The main propeftyrourier-Motzkin elimination is that the original
set of constraints involving variables can be satisfied if and only if the esponding projected set of

constraints involving}-1 variables can be satisfied.

Now, suppose we want to impute a record with sonigsing items. By repeated application of
Fourier-Motzkin elimination we can derive an adrfiksinterval for one of the values to be imputed
in this record. The main property of Fourier-Motzkjuarantees that if we impute a value within this
admissible interval, the remaining missing itemshiis record can be imputed in a manner consistent

with the constraints, i.e. such that all constaare satisfied.

Say we want to impute a variabtg We consider all the records in which the valuearablex; is
missing. In order to impute a missing fielg in a record;, we first fill in the observed and previously
imputed values (if any) for the other variablesenordi into the edits. This leads to a reduced set of

edits involving only the remaining variables toibmputed in record.

Next, we eliminate all equations from this redused of edits for record That is, we sequentially
select any equation and one of the variabl€x # x;) involved in the selected equation. We then
expressy in terms of the other variables in the selectagagign, and substitute this expressionfor

into the other edits in whiclkk is involved. In this way we obtain a set of editsolving only

10



inequality restrictions for the remaining variabliesrecordi. Once we have obtained imputation
values for the variables involved in this set @qoalities, it is guaranteed that we can later Vialdes
consistent with the edits for the variables thatevesed to eliminate the equations in recoly

means of back-substitution.

From the set of inequality restrictions we elimgany remaining variables excegpjf itself by means

of Fourier-Motzkin elimination. Using this eliminah technique guarantees that the eliminated

variables can later be imputed themselves suchathatlits become satisfied.

After Fourier-Motzkin elimination the restrictiofsr x;; can be expressed as interval constraints:

lij < x5 < wyj, (4)

wherel;; may be—c andu;; may beco..We have such an interval constraint (4) for eadordi in
which the value of variable; is missing. Now, the problem for variablg is to fill in the missing
values with imputations, such that the sum consttfar variablex; and the interval constraints (4) are

satisfied. For this we will use one of our sequrithputation algorithms as explained in Sectiorss 4

and 4.4.

In Appendix A we illustrate how a sequential apgioaan be used.

4.3  Hot deck imputation methods

In this paper we apply two classes of hot deck irajgon methods: nearest-neighbour imputation and

random hot deck imputation. We describe these ndsthelow.

11



4.3.1 Nearest-neighbour hot deck imputation

Suppose we want to impute a certain variablg = 1, ..., q) in arecord,. In the nearest-neighbour
approach we calculate for each other re¢dat which the value of; is not missing a distance to

recordi, given by some distance function.

Before we calculate these distance functions, ve¢ $cale the values. We denote the scaled value of

variablex; in recordi by x;;. We determine the scaled valg by

wheremed; is the median of the observed values for variapnds; the interquartile distance, i.e.
the difference between the value of the 75% peiteesmid the 25% percentile ®f. We have used the
median and the interquartile distance rather thammean and standard deviation for scaling the
variables in order to be more robust against ptessgilfluential correct observations in the datatéNo
that if one wants to apply outlier-robust imputatia practice, one should use a more complex
approach that on the one hand prevents influenltis¢érvations from having too much effect on
estimates, but on the other hand also ensureshétse influential observations are taken into actou
to a sufficient extent (see, e.g., Chambers amiZ®84). Since outlier-robust imputation is not the

topic of the current paper, we have opted for aupke approach.

In our evaluation study we have used the distameetionL, defined by

Ly(x,, %)) = Jz,-mbs(x;o,- —x;,)? (5)

12



wherex;, is the scaled recipient record atjda scaled potential donor recofths is the set of

observed variables in the recipient recogd

An alternative to using nearest-neighbour imputatiould be to apply predictive mean matching

(see, e.g., Little 1988). We have not examineddpiton and leave this to future research.

In our implementation of nearest-neighbour impotatiwe first apply a standard imputation routine in
order to obtain a complete data set for calculatiegdistance function. In this case, we implengnte
the multiple imputation routine in SAS, which wdlwefer to as “MI-SAS” (see SAS 2015 for details
on MI-SAS), and obtain a complete data set by @yegathe imputations across 10 replicates. MI-
SAS uses a Markov Chain Monte Carlo method fortieatyi missing data patterns assuming
multivariate normal data. See Schafer (1997) forenttetails of this method. The reason for selecting
MI-SAS rather than another imputation method ispdynthat this is a frequently used imputation
routine albeit based on parametric assumptiongradtively, we could have applied other good

imputation routines, such as “surveyimpute”, algailable in SAS.

Having now a complete dataset after the prior iragiom by means of MI-SAS, we can compute
distances between all pairs of records. Note tlatrhputation by MI-SAS introduces some
uncertainty. This uncertainty may influence theewrdf the potential donor records. However, without
this prior imputation step we would have had talfenway for dealing with missing values in our

distance functions which would have increased dmpiexity.

Further motivations for carrying out the prior imt@tion step to obtain a complete dataset for
calculating distance functions are:
» If the parametric assumptions of the initial impica step resembles the model for the true data,

then this step has the potential to improve thal fimputations.

13



»  The potential donor records for a certain recipienbrd are ordered in the same way for each
variable with missing values. This means thatpggble, multivariate imputation, using several
values from the first potential donor record onltbe is used. Only if a value of the first
potential donor record is missing or cannot be Umarduse this were to lead to failing edits or a

non-preserved total, a value from another potedtabr record is considered.

The imputed complete data set is only used to coenglistances between recipient records and
potential donor records. Only records with an obsgivalue for the current variable to be imputesl ar
considered while calculating these distances, soamually observed values will be selected for

actual imputation.

For each recipient record we construct a list déptal donor values in increasing order of the
distance function (5). To impute a missing value,will first select the first potential donor valoa
this list, i.e. the potential donor value from tleeord with the smallest distance to the recipiérihe
value is allowed according to the edits and tqsde Section 4.4 for when a value is allowed
according to the edits and totals), we will uge iimpute the missing value. If that value is not
allowed according to the edits or totals, we willthe second potential donor value on the listsmd

on until we find a donor value that is allowed ad@og to the edits and totals.

4.3.2 Random hot deck imputation

In our application of random hot deck imputatior, @onstruct a list of potential donor records for
each record with missing values by randomly drawimighout replacement) potential donor records,
until all potential donor records have been dranah put on the list for this recipient record. Ntitat
since we construct a list of potential donor resdit each recipient record, for each variable \aith

missing value in this recipient record the potdm@nor records are in the same order.

14



To impute a missing value in a certain recipienbrd, we follow the same procedure as for nearest-
neighbour imputation. Note that again, if possibte|tivariate imputation using several values from

the first potential donor record on this list vk used.

4.4  Theimputation algorithm

We now explain how we check whether a potentiabdealue for a certain record is allowed

according to the edits and totals.

We first examine the case where all survey weightsequal. When we want to impute a missing

value for variable; in a record, we apply the following procedure.

0. Sett:=1.

1. Select the-th observed value on the list of potential doralues obtained from one of the hot
deck methods described in Section 4.3.

2. We check whether this value lies in the admissittlerval forx; ;. If so, we continue with Step 3.
Otherwise, we set:= t + 1 and go to Step 4.

3. We check whether the potential donor value woulzbémus to preserve the total for variable
If so, we use this potential donor value to imphemissing value. Otherwise, we set t + 1
and go to Step 4.

4. If t does not exceed the number of potential donoresdior variable;, go to Step 1. Otherwise

we impute the first potential donor value.

We can efficiently combine the checks in Steps@ &nThe check in Step 2 is simply whether <
xi‘f]j Sy, wherexidj is the potential donor value drawn in Steg; 1,,is the lower bound according

to the edits for variable; in recordi, andu; ; the corresponding upper bound (see Section 4t#). T

check in Step 3 amounts to checking whether

15



N d
Yiem() lij < Xjimp — Xiem(j) Xij — Xiyj < Niem(j) Uij» (6)
i>i i<i i>io

whereM (j) is the set of records with missing values foralalex;, £;; (i € M(j),i < iy) are the

already imputed values, aid;,,;, is the total to be imputed for variabtg This total to be imputed

equals the totat”°? minus the sum of the observed values for variaple

In words, (6) simply says that the remaining ttdadbe imputed for variable; should lie between the
sum of the lower bounds for the remaining recoodset imputed and the corresponding sum of upper
bounds. That this check is necessary and suffianenitder to be able to preserve the total follows
from the observation that the sum of the lower lasuior the remaining records to be imputed is the
minimum amount that has to be imputed, and theesponding sum of upper bounds is the maximum

that can be imputed.

Check (6) can be rewritten as

_ .. ., d. - £, _ ..
Xj imp E Xij E U | = X5 = | Xjimp E Xij E Lij
ieM(j) ieM()) ieM(J) ieEM(j)
i<io i>ig i<io i>i,

The checks in Steps 2 and 3 can be combined irdaloack:
max (Xj_imp — Ziem() Xij — Xiem() Uij » lioj> < xS

i<ip >l
min (Xj,imp — Yiem() Xij — Xiem() Lij» uw‘)

i<iy i>io

()

16



Equation (7) is our check for unweighted totals.

We can easily extend this to the case of unequaplsag weightswy; for each record

w I d : w o
max (Xj,imp — iem() Wikij — Xiem(j) Wilij rWioli0j> < WX j < min (Xj,imp — iem(j) WiXyj —
i<io i>io i<io
Yiem@j) Willij Wioui0j> (8)
i>ig

HereX}%,.,, = X" — Yicops(jy Wixj- EQuation (8) is our check for weighted totals.
If ¢t exceeded the number of potential donor valuesddablex; in Step 4 of the algorithm, we adjust

the imputed value by changing it to the closestnidawy of (7) (unweighted) or (8) (weighted) totals.

Note that (7) and (8) imply that the value to b@uned lastly for a certain variable will be equathe
known total minus the sum (unweighted in the cdg&)and weighted in the case of (8)) of the
observed and imputed values of this variable ferdther records. The lastly imputed value is
guaranteed to satisfy the edits. Given that thisede sufficiently strict, they will offer some

protection against the imputation of an unreasanaalue for the lastly imputed value.

5. Evaluation Study

51 M ethods Evaluated

We give results for 4 versions of our imputatiortimoels: nearest-neighbour hot deck imputation
preserving unweighted totals (“NN HD without weight nearest-neighbour hot deck imputation
preserving weighted totals (“NN HD with weightstandom hot deck imputation preserving

unweighted totals (“Random HD without weights”) aaddom hot deck imputation preserving

17



weighted totals (“Random HD with weights”). We hdah an “unweighted” and a “weighted”
version of our imputation methods in order to sttiay effect of using survey weights on our

evaluation measures.

In our evaluation study we have compared our imjmnanethods to the MI-SAS imputations that
were described in Section 4.3.1 to calculate thadce functions. This represents a commonly used
multivariate parametric imputation procedure. Wsalompare our methods to standard versions of
random hot deck (“Standard Random HD”) and nearegghbour imputation using distance function
(6) (“Standard NN HD”) and using imputations obtdrfrom MI-SAS to calculate this distance
function. For each of our proposed imputation meéth&tandard NN HD and Standard Random HD
we have produced only one imputed data set. Th& MB-procedure, Standard NN HD and Standard
Random HD do not take edits or known totals intwoaat. In Standard NN HD and Standard Random
HD we have, in principle, applied multivariate doimoputation, where the donor is either the nearest
record or a randomly selected record. If a seledtetbr record did not have observed values for all
missing values in a recipient record, additionaials for the remaining missing values were selected
We have applied this procedure because of therugiber of missing values in evaluation data set 2

(see Section 5.2 below).

Comparing our imputation methods to MI-SAS, StadddlN HD and Standard Random HD enables
us to compare our methods to commonly used staricignatation methods, and at the same time to

some extent examine the effect of taking editstatals into account.

5.2 Evaluation Data

For our evaluation study we have used a data sketoliserved data from an annual structural business
survey of Statistics Netherlands from 2003. Thimd&t contains survey weights that differ across

different (strata of) records. We will refer todhlata set as data set 1.
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To test whether our imputation methods also prodmgeitations that satisfy edits and totals in
exceedingly difficult cases, we have applied therartother, more complicated data set. This data set
was synthetically generated and contained 500 decamd 10 variables. The number of missing
values was higher than typically observed in bissrsirveys. We will refer to this data set as deta

2.

The main characteristics of the data sets are predén Table 1.

Table 1. The characteristics of the evaluation dsets

data set 1 data set 2
Total number of records 3,09 500
Number ofrecords with missing valu 544(17.5% 49(C (98.0%
Total number of variables B 10
Total number of edits 14 16
Number of balance ed 1 3
Total number of inequality edits 13 13
Number of no-negativity edit 8 9

The actual values for the data in the two dataaetsll known. In the completely observed data set
values were deleted by a third party, using a n@shaunknown to us. For each of our evaluation
data sets we have two versions available: a vemgittnmissing values and a version with complete
records. The former version is imputed. The resgltata set is then compared to the version with

complete records, which we consider as a dataiiethe true values.

The numbers of missing values and (unweightedctsatistics of the variables of our data sets are
given in Tables 2 and 3. The percentages in bra@ketthe percentages of records with a missing
value for the corresponding variable out of thaltaumber of 3,096 records for data set 1 and 500

records for data set 2. The basic statistics &entaver all observations in the complete versamns
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the data sets. Variable i data set 1 does not contain any missing valneds only used as

auxiliary variable. In our evaluation study we havsum constraint due to a known total for every

variable in the data sets to be imputed.

We have not made an attempt to optimize the ordesich the variables are imputed. We have

simply imputed the variables in reverse orderfoedata set 1 we have imputed the missing values

for variable R first and the missing values for variablel&st, and similarly for data set 2.

Table 2. The numbers of missing values, mean, mest@ndard deviation and range in data set 1

Variable Number of Mear Mediar Standarc Range
missing values deviation

Ry 76 (2.5% 11,574.8 19915 51,747 [0; 1,264,087]
R, 68 (2.2%) 777.6 242.0 1,723 [0 ; 60,563]
Rs 130 (4.2% 8,978.7 10705 48,857 [0;1,257,34¢]
Ry 147 (4.8%) 1,034.1 187.0 3,791 [0;152,814]
Rs 79 (2.6%) 10,012.8 1496.0 49,862 [0; 1,258,837]
Rs 73 (2.4%) 169.2 0.0 4,885 [0 ; 205,210]
R; 67 (2.2% 209.¢ 7.0 4,927 [0; 20€,327]
Rs 0 (0.0 %) 374 14.0 58 [0 689]
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Table 3. The numbers of missing values, mean, mestandard deviation and range in data set 2

Variable Number of Mean Median Standard Range
missing values deviation

S 120 (24%) 97.8 95.0 39 [16 ; 223]
S, 180 (36% 175,018.: 159,045.! 101,787 [7,256; 55(,337]
S 240 (48%) 731.0 657.5 503 [0; 3,386]
S, 120 (24% 175,749.: 15¢€,627 101,847 [7,496; 55(,85€]
S 180 (36%) 154,286.5 140,321 98,117 [1,480 ; 525,490]
Se 180 (36% 7,522.3 7,36€.0 3,263 [431; 1,806]
S; 180 (36%) 8,519.7 8,355.0 4,327 [112; 21,355]
Ss 180 (36% 1,277.0 1,20€.5 78t [0; 3,74E]
S 120 (24%) 171,605.6 156,868.5 101,435 [10,4817;188]
Sio 120 (24% 4,143.¢ 4,12€ 3,24C [-5,911; 13,567

As explained in Section 4.1, variables with missiafjies involved in balance edits will only raraly

be imputed by means of multivariate imputationdéta set 1 there are 3 variables involved in one
balance edit, and in data set 2 there are in @otakiables involved in 3 balance edits. This mehat

our imputation methods will switch to sequentiapintation instead of multivariate imputation quite
regularly. In data set 1, 49% of the records withsing values were imputed by means of multivariate
imputation and for the remaining 51% our imputatiethods switched to sequential imputation. In
data set 2, where almost all variables are involmezhe or more balance edits, 99% of the records
with missing values were switched to sequentialutafion and only 1% were imputed by means of

multivariate imputation.

5.3 Evaluation measures
To measure the performance of our imputation aghemawe use d;; measure, am; measure, an

rdm measure, and the Kolmogorov-Smirnov distaficg€). The first two criteria and the
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Kolmogorov-Smirnov distance have been proposedhtmnters (2003). The, ; measure is the

average distance between the imputed and truesvdkiened as

o true
_ Diemp WilXij — xij
dp, =

Yiem() Wi

where from Section 4.4;; is the imputed value in recoif the variable; under consideration and

x};-”e the corresponding true valud(j) is the set of records where the value of variaple missing.

Them,; measure, which measures the preservation ofristarioment of the empirical distribution of

the true values, is defined as

- t
|Ziemc wi(Zij — x35'
m1 = |

ZiEM( HWi

Therdm (relative difference in means) measure has beet insan evaluation study by Pannekoek

and De Waal (2005), and is defined as

~ true
_ Xiem() Wikij — Xiem(j) WiXij
- true

rdm
ZiEM(j) WiXij

Therdm measure is the weighted bias due to imputation.

Finally, we use th&S Kolmogorov-Smirnov distance to compare the emplidéstribution of the

original values to the empirical distribution obttimputed values. For weighted data, the empirical

distribution of the true values is defined as
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Fy® = > 1(wixy < €)/IMQ)

iEM())

with |[M(j)| the number of records with missing values foraflex; and! the indicator function.

Similarly, we definav,?j(t). TheKS distance is defined as
KS = maxy |F;C](tk) - Ffj(tk)li
where thet;, values are th@|M (j)| jointly ordered true and imputed values.

We also evaluate how well the imputation measuresquve medians. For this we use the percent

relative absolute difference defined by

|¢orig - ¢imp|

PD(X) = 100 x
d’orig

where¢ denotes the median of the variable under condiderag its value in the original
complete data set calculated using survey weightsg;m,, its value in the imputed data set for the

imputation method under consideration again caledlasing survey weights.

Smaller absolute values of the evaluation measndisate better imputation performance.

54 Evaluation results

The evaluation results for data set 1 are presentédbles 4 to 8. As variableldoes not have any
missing values in data set 1, no evaluation re$olltBs are presented in the tables. The column
“Average” in Tables 4 to 7 is the average of thedlte results over all 7 variables, however inl&ab

8 “Average” is over 6 variables not including\Which has a median value of 0.
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Table 4. Results for thy ; measure for data set 1

R, R, R; R4 Rs Re R, Average

NN HD without weights

2,607 215 115 171 154 19 13 98

NN HD with weights 2,236 125 120 110 16 3 19 56
Random HD without weigh 6,147 404 121 181 167 17 34 132
Random HD with weights 3,374 199 117 111 50 3 17 71
MI-SAS 1,07z 23C 36C 347 21 17 26 1432
Standard NN HD 438 81 232 266 234 2 16 181
Standard Random HD 25,199 819 4,454 587 4,703 7 49 5,117
Table 5. Results for tha; measure for data set 1

Ry R, Rs R, Rs Re R; Average
NN HD without weights 28¢ 74 11 72 132 16 2 44
NN HD with weights 0 0 0 0 0 0 0 0
Random HD without weigh 3,13¢ 24C 6 73 143 14 21 71
Random HD with weights 0 0 0 0 0 0 0 0
MI-SAS 127 84 123 12¢€ 21 17 12 55
Standard NN HD 72 5 122 186 14 1 5 58
StandarcRandom HL 22,691 62z 2,36€ 41z 2,172 4 21 4,041
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Table 6. Results for the rdm measure for data set 1

R. R, Rs Ra Rs Rs R,  Averagd
NN HD without weights -13.0C 0.44 -0.01 0.44 0.0¢ 12.9¢ -0.1z  3.8¢
NN HD with weights 0.00 0.00 0.00 0.00 0.00 0.00 000. 0.00
Random HD without weigh 147 141 0.0C 045 0.0¢ 11.3¢ 1.2¢ 2.2¢
Random HD with weights 0.00 0.00 0.00 0.00 0.00 00.00.00 0.00
MI-SAS -0.06 -0.4¢ -0.0¢ 0.7¢ 0.01 13.1C 0.6¢ 2.17
Standard NN HD -0.03 003 -0.08 115 0.01 -0.72 290. 0.33
StandarcRandom HD 10.62 3.68 1.5¢ 25t 124 344 123 3.48

T“Average” in this table denotes the average oherabsolute values

Table 7. Results for the KS measure for data set 1

Ry R, Rs R4 Rs Rs R;  Average
NN HD without weights 0.7z 0.2C 0.0z 03z 0.0z 021 04C 0.17
NN HD with weights 0.46 0.20 005 040 0.03 0.09 510. 0.18
Random HD without weigh 0.21 0.2¢ 0.0t 03¢ 0.0z 0.2t 0.2z 0.17
Random HD with weights 0.33 038 0.05 041 0.04 90.00.42 0.20
MI-SAS 0.1€ 0.2¢ 0.1z 017 0.0¢ 0.1: 0.1z 0.1z
Standard NN HD 0.02 0.07 002 011 006 092 0.16 .190
StandarcRandom HL 0.52 0.2¢ 0.4z 0.1& 054 092 0.28 0.44




Table 8. Results for medians for data sét*1denotes that the median in the original, cdeip data

set is zero, and hence the percent differencedsfimed)

R. R, Rs Rs Rs Rs R;  Averagé
NN HD without weights 241 067 004 1.1¢ 0.0C * 4.3C 1.0¢
NN HD with weights 141 0.52 0.04 1.80 0.28 * 431 1.16
Random HD without weigh 0.7t 1.14 0.0C 1.74 0.1¢ * 1.8 0.81
Random HD with weights 141 2.00 0.00 231 0.28 * 314 1.48
MI-SAS 0.0C 0.0z 0.0C 1.8¢ 0.1c * 0.41 0.41
Standard NN HD 0.23 0.00 0.00 428 0.00 * 0.00 0.75
StandarcRandon HD 0.9¢ 0.8z 0.61 1.6C 0.8C * 0.0C 0.8C

¢ Average taken over 6 variables.

NN HD with weights performs especially well wittspect to evaluation measurds (Table 4)m,
(Table 5) anadm (Table 6), which all measure how well totals andividual values are preserved.
MI-SAS performs especially well for evaluation ma@KS (Table 7) and the preservation of the
medians (Table 8), which both measure how welkthgstical distribution is preserved. Standard
Random HD performs worst for measudgs, m,; andKS (Tables 4, 5 and 7), indicating that this

method is not good in preserving either individuales or the statistical distribution of dataket

The bad results of Standard Random HD are partigazhby outliers in the data. For instance, in one
record with a relatively large survey weight a viemge value is imputed for variablg,Rvhereas the
true value is small. Excluding this outliel,; for R; drops to 5,370n, to 2,862 anddmto 1.34.

These numbers are still quite large, but bettem Random HD without weights.

Comparing the unweighted versions of our imputatr@ihods to the weighted versions with respect
to evaluation measurels; (Table 4) KS (Table 7) and preservation of the median (Tabl¢h®)
unweighted versions perform worse thy, but perform better oKSand the preservation of the

median. The weighted versions by design perforrtebetm,; andrdm (Tables 5 and 6).
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Comparing NN HD with weights and Random HD with gfes to Standard NN HD and Standard
Random HD, we see that taking edits and knowngatdb account leads to better preservation of
totals and individual values (Tables 4 to 6). NN wEh weights and Random HD with weights also
appear to perform better with respect toKlsameasure, but this is partly caused by outliettién

data. For instance, the large values forkBeneasure for variablegfor Standard NN HD and
Standard Random HD are caused by a missing fieldhdis an unusually large value in the true data.
Variable R equals zero in most records, and both StandardiBNind Standard Random HD impute
zero in the corresponding record. Medians (Tabkee®m to be better preserved by the Standard NN

HD and Standard Random HD than by our proposedatdsth

The general conclusion we can draw is that stanaailtivariate hot deck imputation appears to
preserves distributional aspects better, whereasemuential imputation approach preserves point
estimates better. MI-SAS performs best with respedistributional aspects. With respect to point
estimates MI-SAS performs slightly better than 8gad NN HD (except fordm, see Table 6) and
much better than Standard Random HD. It performsavthan the weighted versions of our

imputation methods with respect to point estimates.

For the more complex data set 2, the statisticsfilution was less well preserved by our imputatio
methods than by MI-SAS. This can be seen in Tabllaé&e we compare NN HD with weights to MI-
SAS. The numbers in this table are the unweightedages over all 10 variables in the data set. For
evaluation measures; andrdm, NN HD with weights by design performs better th&iRSAS for all
variables. For MI-SASm, ranged from 4.5 to 1860.6, and the absolute vaflueém from 0.005 to

0.058. NN HD with weights hag; andrdm equal to zero for all variables.
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Table 9. Comparison of NN HD with weights to MI-Sé&Slata set 2

NN HD with weights MI-SAS
drs 1,930 1261
my 0.0 637.5
rdm 0.00 0.01
KS 0.10 0.06
median 17.25 11.43

In Appendix B we examine the preservation of catiehs.

Our imputation methods have been designed to gatilfs and preserve known (weighted) totals. As
can be seen from the evaluation measurgandrdmin Tables 5 and 6 the weighted versions of our
imputation indeed succeed in taking the weightéalgdnto account. Our imputation methods also

succeed in satisfying edits. Of the two data seasngtned, none of the records had violated edits.

Besides violating known totals (and hence meanisiciwcan be seen from evaluation measures
my andrdmin Tables 5 and 6, MI-SAS, Standard NN HD and &att Random HD also violate
edits. The number of violated edits and violatemrds, i.e. records in which at least one edit is
violated, is given in Table 10. In this table we $igat Standard NN HD and Standard Random HD
violate a relatively large number of edits and rdsoMI-SAS performs better in this respect as the
multivariate regression ensures that balance céstis are satisfied after imputation. Still 2.5%he

records of data set 1 and 5% of the records ofgkita are violated when MI-SAS is used.
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Table 10. Numbers of violated edit rules and resardboth data sets

data set 1 data set 2

violated edits violated record violated edits violated record
NN HD without weights 0 0 0 0
NN HD with weight: 0 0 0 0
Random HD without weights 0 0 0 0
RandomHD with weight: 0 0 0 0
MI-SAS 123 77 (2.5%) 25 25 (5.0%)
Standard NI HD 317 267 (8.€%) 1,12¢ 48E (97.(%)
Standard Random HD 419 331 (10.7% 1,256 488 (97.6%
6. Discussion

In this paper we have extended standard hot deglatation methods so that the imputed data satisfy
edits and preserve known totals, while taking symweights into account. The hot deck imputation
methods we have considered are random hot deckeardst neighbour hot deck. To ensure that edits
are satisfied and known totals are preserved @figutation, we have applied these hot deck
imputation methods in a sequential manner and hagd a check based on Fourier-Motzkin
elimination for determining admissible intervals &ach value to be imputed. Strong aspects of our
imputation methods are their simplicity and thaytlare non-parametric, which make them attractive
from a practical point of view. For data sets & approximately normally, or log-normally,
distributed we may opt to use model-based imputatiethods developed by Pannekoek, Shlomo and

De Waal (2013).

In our evaluation study we have used two evaluadiaia sets. More evaluation studies on other data
sets are required before firm conclusions can bevdr The results of our evaluation study are
indicative that our imputation methods may giveegtable results. Obviously, our imputation
methods give perfect results with respect to puadiem of means and totals as they have been

designed to do so according to the ‘one-figureigyol
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NN hot deck with weights in particular gives goegults for most of the evaluation measures we have
examined, while satisfying edits and preservingikmaotals at the same time. An exception is the
preservation of the median. NN hot deck with wesglives only mediocre results in that respect, and
is outperformed by the MI-SAS imputation. Futurerkvaill investigate how the imputations can be

controlled in such a way as to have a better pvatien of the median as well as the mean.

Taking edits and known totals into account whil@iting missing data improves the preservation of
individual values and, obviously, of means andlsotdowever, taking edits and known totals into
account may lead to a deterioration of the presienvaf the joint statistical distribution. A précal
advantage of taking edits into account is thataffisrs some protection against outliers in theadat
Some results for Standard NN HD and Standard Rarididorwere quite bad due to such outliers. In
our imputation methods, the edit rules often wit allow clearly outlying values to be imputed,

simply since this would lead to edit violations.

In Section 4.4 we noted that the value to be ingbidsetly for a certain variable will be equal teth
known total minus the sum (unweighted in the cdg&)and weighted in the case of (8)) of the
observed and imputed values for this variableHerdther records. If this would lead to an
unreasonable value for the lastly imputed value, @uld try some simple approaches to remedy this,
such as adding some additional edits or subdivithieglata into several groups, each with an
estimated group total, and impute these groupgaegha As the group totals are smaller than the

overall total, an unreasonable value for the véeiab be imputed lastly is less likely to occur.

As mentioned in Section 5.2 we have not made amaft to optimize the order in which the variables
are imputed. As the results of our imputation mdthdepend on this order, optimizing the order is an
interesting research topic for future researchasactical guideline, we suggest to impute the

variables that are considered to be important dinst the less important variables last.
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In this paper we have not considered the issustofating the correct variance after imputation,
including the variance due to nonresponse and iatiput In addition, if estimated totals are used fo
the benchmarking instead of known totals, theréheilan additional component to be added to the
variance. In order to estimate variance corredtlgramputation we can consider the extension of ou
approach to multiple imputation (see Rubin 1987)s# resampling techniques such as the bootstrap
or jackknife adapted to account for the fact thatase dealing with a finite population (see e.qg.

Mashreghi, Haziza and Léger 2016).

A drawback of a sequential imputation method i$ titimal choices for individual variables to be
imputed may not lead to overall optimality for ediriables. An imputation method that imputes all
variables in each record simultaneously while tgladits, totals and survey weights into account
would be preferable to sequential imputation. Ferrtiesearch is required to develop such
simultaneous imputation methods that are compuraliyptractable and easy to apply in practical

situations.
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Appendix A
We illustrate how a sequential approach can be wédda simple example taken from Coutinho, De
Waal and Remmerswaal (2011). We consider a caseewye havgr| records with four variable§,

(turnover),P (profit), C (costs), andV (number of employees in fulltime equivalents). Tduits are

given by:
T,—C;—P;=0 (A1)
T, >0 (A.2)
P, < 0.5T; (A.3)
—0.1T; < P; (A.4)
T; < 550N; (A.5)
N; =0 (A.6)
C; =0 (A7)

We impute the variables in the following ordat:T, C andP. We assume that variablehas already

been imputed and that we now want to impute vaeigbl

Suppose that in a certain recégdV = 5. This value may either have been observed or mepated
before. The values of @f, C andP in recordi, are missing. We eliminat®, ¢ andP in reverse order
of imputation. We first fill inV into the edits. This gives us the edit set (A(®).2), (A.3), (A.4),

(A.7) and

T;, < 2,750 (A.8)

We use equation (A.1) to expreRsn terms ofT andC, and use that expression to eliminate variable

P from edits (A.2), (A.3), (A.4), (A.7) and (A.8).hls gives us the edit set (A.2), (A.7), (A.8),

T, — C; < 0.5T; (A.9)
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and

—01T; < T, - C; (A.10)

To eliminate variabl€ from the edit set (A.2), (A.7), (A.8), (A.9) and.@0), we first copy the edits
not involving C (edits (A.2) and (A.8)) and then eliminaiefrom the other edits. Eliminating from
(A.7), (A.9) and (A.10) gives us edits that areieglent to (A.2). So, the edit set after eliminatiof

C is given by (A.2) and (A.8). The admissible intrfor T for recordi,, is hence given by

0 < T, < 2750.

Similarly, we can derive admissible intervals Torfor all records (i = 1, ..., |r]) in which the value
of T is missing. Once we have derived these admisibdevals, we impute values f@f in all these

records by means of one of our sequential imputatigorithms (see Sections 4.3 and 4.4).

After variableT has been imputed in all records in which its valias missing, we derive admissible
intervals for variabl€, and later variablé®, in a similar manner. The main property of Fourier
Motzkin elimination guarantees that the originakedill be satisfied, if we select donor valuemty

inside these admissible intervals.
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Appendix B

In Table B.1 we examine the effect of taking editsl known totals into account on (weighted)
correlations between variables. In this table we ¢ive average absolute deviation of the correlatio

in the imputed data from the correlations in the tdata taken over all pairs of different varialites

NN HD with weights and Standard NN HD. That is, fimta set 1 we take the average absolute
deviation of the correlations over 28 pairs of eliéint variables and for data set 2 over 45 pairs of
different variables. Between brackets we give therage of the absolute percent differences between

the correlations in the true data and in the imgulita.

Table B.1. Average absolute deviation from truegelations

Data set 1 Data set 2

NN HD without weights 0.0047 (1.19%) 0.1090 (42.37%
NN HD with weights 0.0037 (0.90%) 0.0861 (26.09%)
Random HD without weights 0.0072 (0.66%) 0.1083€3%0)
Random HD with weights 0.0044 (1.13%) 0.0866 (2634
SAS-MI 0.0007 (0.20%) 0.0142 (13.80%)
Standard NN HD 0.0015 (0.45%) 0.0167 (9.49%)
Standard Random HD 0.0528 (10.58%) 0.2151 (51.78%)

From Table B.1 we conclude that MI-SAS performg néth respect to preservations of correlations
due to the multivariate imputation procedure uritdlerMCMC approach. For data set 1 NN HD

without weights, NN HD with weights, Random HD watlt weights, Random HD with weights, and
Standard NN HD also give good results for practizaposes. The correlations after imputation are
very close to the original correlations for thesetmods. For data set 2 all imputation methods, even

SAS-MI, perform quite badly.
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