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Abstract: We develop a non-parametric imputation method for item non-response based on the well-

known hot-deck approach. The proposed imputation method is developed for imputing numerical data 

that ensure that all record-level edit rules are satisfied and previously estimated or known totals are 

exactly preserved. We propose a sequential hot-deck imputation approach that takes into account 

survey weights. Original survey weights are not changed, rather the imputations themselves are 

calibrated so that weighted estimates will equal known or estimated population totals. Edit rules are 

preserved by integrating the sequential hot-deck imputation with Fourier-Motzkin elimination which 

defines the range of feasible values that can be used for imputation such that all record-level edits will 

be satisfied. We apply the proposed imputation method under different scenarios of random and 

nearest-neighbour hot-deck on two data sets: an annual structural business survey and a synthetically 

generated data set with a large proportion of missing data. We compare the proposed imputation 

methods to standard imputation methods based on a set of evaluation measures.  
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1. Introduction 

Missing data form a well-known problem that has to be dealt with by agencies collecting data on 

persons or enterprises. Missing data can arise from unit non-response or item-nonresponse. Unit non-

response occurs when units that are selected for data collection cannot be contacted, refuse or are 

unable to respond altogether, or respond to so few questions that their response is deemed useless for 

analysis or estimation purposes. Unit non-response is usually corrected by weighting the responding 

units (see, e.g., Särndal, Swensson and Wretman 1992 and Särndal and Lundström 2005).  

 

Item non-response occurs when data on only some of the items in a record, i.e. the data of an 

individual respondent, are missing. Persons may, for instance, refuse to provide information on their 

income or on their sexual habits, while at the same time give answers to other, less sensitive questions 

on the questionnaire. Enterprises may not provide answers to certain questions, because they may 

consider it too complicated or too time-consuming to answer these specific questions. The most 

common solution to handle item non-response is imputation, where missing values are filled in with 

plausible estimates. There is an abundance of literature on imputation of missing data. We refer to 

Kalton and Kasprzyk (1986), Rubin (1987), Kovar and Whitridge (1995), Schafer (1997), Little and 

Rubin (2002), Longford (2005), Andridge and Little (2010), De Waal, Pannekoek and Scholtus 

(2011), Van Buuren (2012) and references therein. In this paper we focus on item non-response for 

numerical data, and whenever we refer to missing data in this paper we will be referring to missing 

data due to item non-response, unless indicated otherwise. 

 

In many cases, especially at National Statistical Institutes, data have to satisfy constraints in the form 

of edit restrictions, or edits for short. These edit restrictions constrict the imputation of missing data. 

Examples of such edits are that the profit of an enterprise equals its turnover minus its costs, and that 

the turnover of an enterprise should be at least zero. Records that do not satisfy these edits are 

inconsistent, and are hence considered incorrect. Despite the abundance of literature on imputation, 

imputation of numerical data under edit restrictions is a rather neglected research area. Approaches for 
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imputation of numerical data under edit restrictions have been developed by Geweke (1991), 

Raghunathan et al. (2001), Tempelman (2007), Holan et al. (2010), Coutinho, De Waal and 

Remmerswaal (2011), Coutinho and De Waal (2012), Pannekoek, Shlomo and De Waal (2013) and 

Kim et al. (2013). For categorical data under edit restrictions some work has been done by Winkler 

(2003 and 2008).  

 

A further complication is that numerical data sometimes have to sum up to known or previously 

estimated totals. This situation can arise with a ‘one-figure’ policy, where an agency aims to publish 

only one estimate for the same phenomenon occurring in different tables. Statistics Netherlands 

pursues a ‘one-figure’ policy for the Dutch Census (Statistics Netherlands 2014), as well as for many 

other statistics. As an example, when budgets for municipalities are decided upon by national 

statistics, these statistics must be numerically consistent across all statistical outputs of the agency. 

Therefore, when a ‘one-figure’ policy is pursued estimates need to be calibrated to the previously 

estimated or known totals and this takes precedence over other desired statistical properties.  

 

Cox (1980) proposed the weighted sequential hot deck method, which was designed so that means and 

proportions estimated using the imputed data will be equal in expectation to the weighted mean or 

proportion estimated using respondent data only. This differs from our aim where we want totals for 

the imputed data to be exactly equal to known or previously estimated totals as well as preserve record 

level edit restrictions. 

 

For numerical data, Zhang and Nordbotten (2008) and Zhang (2009) have extended nearest hot deck 

imputation so that totals are (approximately) preserved. There is, however, no guarantee of numerical 

consistency for a ‘one figure’ policy. In addition, these authors do not consider edit restrictions. Also 

for numerical data, Beaumont (2005) has developed a calibrated imputation approach that in principle 

can deal with edit restrictions. This approach is based on solving a mathematical optimization problem 

that can be exceedingly large. Beaumont (2005) only reports results for a simulation study that does 
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not involve edit restrictions. The computational feasibility of the approach for data sets involving edit 

restrictions is as yet unknown. Pannekoek, Shlomo and De Waal (2013) have developed imputation 

methods for numerical data based on regression models with random residuals that ensure that edits 

are satisfied and previously estimated or known totals are preserved. Drawbacks of the methods 

developed by Pannekoek, Shlomo and De Waal (2013) are that they are relatively complex and are 

based on parametric model assumptions. In particular, these methods assume the data to be either 

normally or log-normally distributed. For data that are distributed otherwise these methods may give 

biased results. 

 

Favre, Matei and Tillé (2005) and Coutinho, De Waal and Shlomo (2013) have developed methods for 

categorical data having to satisfy edits and to preserve totals. An obvious difference between those 

methods and our approach is we focus on numerical data. 

 

The aim of this paper is to develop non-parametric imputation methods that lead to satisfied edits and 

preserved totals. In order to avoid problems of model misspecification and reduce the reliance on 

parametric assumptions, we base our approach on well-known hot deck approaches, similar to Zhang 

and Nordbotten (2008) and Zhang (2009). The main objective of our imputation methods is to obtain 

accurate point estimates while satisfying all edits and preserve totals.  

 

The remainder of this paper is organized as follows. Section 2 describes calibrated imputation in 

comparison to calibration via survey weights. Section 3 introduces the edit restrictions and sum 

constraints due to known or previously estimated totals we consider in this paper. Section 4 develops 

sequential hot deck imputation algorithms for our imputation problem. Section 5 describes an 

evaluation study and its results. Finally, Section 6 concludes with a brief discussion. 
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2. Calibrated Imputation versus Calibrated Weighting 

Calibrated weighting is a well-known way of calculating survey weights for survey data which 

benchmarks known or estimated population totals on selected auxiliary variables. Calibration means 

that the weighted sample counts of the auxiliary variables equal the benchmarked population totals. 

Calibrated imputation is the lesser known equivalent of calibrated weighting. When calibrated 

imputation is used, the imputations are selected so that population estimates for selected variables 

obtained from the imputed data are equal to known or previously estimated totals. The survey design 

weights do not need to change.  

 

We will discuss why in some cases it is useful to use calibrated imputation instead of calibrated 

weighting (see also Pannekoek, Shlomo and De Waal 2013). Let us suppose that first a survey �� with 

a numerical variable � becomes available and later a second survey �� with a categorical variable �. 

Figure 1 illustrates the case. In the rows we have the units in �� and �� and in the columns the 

variables in these data sets. The shaded parts in this figure indicate the overlapping records in these 

surveys.  

 

Figure 1. Two partly overlapping surveys 

 Survey �� (�)      
         
       
         
     Survey �
 (�)  
         
       
         
         
         
 

In such a case, one could first use the data in survey �� to estimate the population total of �. When a 

later survey �� becomes available one could use the overlap between surveys �� and �� to estimate the 

population totals of the breakdown of � into categories of �. If a ‘one-figure’ policy is pursued, the 
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total estimate for � based on the overlap of �� and �� should be equal to the original estimate based on 

survey ��. This can be achieved by calibrated weighting (see, e.g., Särndal and Lundström 2005) or by 

applying a calibrated imputation approach as we propose in the current paper. 

 

In the usual sample survey setting, units are randomly selected from a population according to a 

specified sampling design, where each population unit is included in the sample �	with a non-zero 

probability. Estimates of population totals and other parameters of interest are then calculated by using 

survey weights �� 	that are the inverse of the inclusion probabilities adjusted for non-response and 

calibrated to known or estimated population totals. The correction for the unbalanced sample by 

calibrating the weights will affect estimates for all variables.  

  

The situation with item-nonresponse differs from the situation with (only) unit non-response as item 

non-response fractions can vary greatly between variables. Adjustment to unit level weights only is 

therefore no longer an option. To deal with item non-response one usually first imputes the missing 

items for the responding units so that a complete data set is obtained. Next, the responding units are 

weighted to correct for unit non-response. In this weighting step, calibration weighting can again be 

used to ensure that estimates of totals will be equal to the known or estimated population totals.  

 

However, for variables with imputed values, differences between estimated totals and their known 

values are now not only caused by unit non-response, but also by systematic errors in the imputed 

values due to misspecification of the imputation model. We will refer to these errors as imputation 

bias. The weight adjustments due to calibration hence do not correct for an unbalanced selection of 

units only but also for imputation bias in specific variables. There is no compelling reason to let this 

adjustment for imputation bias affect the estimates of all other variables. This makes calibration 

weighting less desirable in the case of item-nonresponse. 
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A drawback of weighting in general is that it can only be applied to so-called monotone missing data 

patterns and not to general missing data patterns. A missing data pattern is called monotone if the 

variables can be ordered such that the values of variables ���� to �� are missing whenever the value 

of variable �� is missing, for all � = 1,… , � − 1, where � is the number of variables. 

  

In this paper we therefore develop a different approach, where we do not change the design weights of 

the responding units. Instead of calibrating the weights we will calibrate the imputations so weighted 

estimates will equal known or estimated population totals.  

3. Constraints on Imputed Data 

Edit rules imply restrictions within records on the values of the variables. Edits for numerical data are 

either linear equations or linear inequalities. We denote the number of variables by �. Edit � (� =
1,… , �) can then be written in either of the two following forms: 

 

������ +⋯+ ������ + "� = 0        (1a) 

 

or 

 

������ +⋯+ ������ + "� ≥ 0        (1b) 

 

where the ��� and the "� are certain constants, which define the edit. In many cases, the "� will be 

equal to zero. 

 

Edits of type (1a) are referred to as balance edits. An example of such an edit is 

 

 %� − &� −'� = 0         (2) 
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where %� is the turnover of an enterprise corresponding to the (-th record (( = 1,… ,)), '� its profit, 

and &� its costs. Edit (2) expresses that the profit of an enterprise equals its turnover minus its costs. 

Edits of type (1b) are referred to as inequality edits. An example of such an edit is 

 

 %� ≥ 0           (3) 

 

expressing that the turnover of an enterprise should be non-negative.  

 

Sum constraints due to known or previously estimated population totals can be expressed as 

 

*������∈,
= ���-� 

 

with �� the survey weights that have been adjusted for unit nonresponse, . the set of respondents and 

���-� the known population total of variable �� .  
4. Sequential Hot Deck Imputation Satisfying Edits and Totals 

4.1 The basic idea 

The imputation methods we apply in this paper are all based on a hot deck approach. When hot deck 

imputation is used, for each record containing missing values, the so-called recipient record, one uses 

the values of one or more other records where these values are observed, the so-called donor record(s), 

to impute the missing values (see Andridge and Little 2010). 

 

Usually, hot deck imputation is applied in a multivariate fashion, that is several missing values in a 

recipient record are imputed simultaneously, using the same donor record. This approach aims to 

preserve the correlation structure in the data. For our problem that approach is often not feasible. If an 
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imputed record failed the edits, all one could do in such an approach is to reject the donor record and 

try another donor record. For a relatively complicated set of edits, one may have to test many different 

potential donor records until a donor record is found that leads to an imputed record satisfying all 

edits. Moreover, for some recipient records one may not be able to find any donor records such that 

the resulting imputed records satisfy all edits, let alone imputed records that at the same time also 

preserve totals. 

 

Our imputation methods, in principle, aim for multivariate hot deck imputation where all imputations 

are taken from the same donor. When that is not possible, our imputation methods automatically 

switch to sequential imputation, where for different variables in a recipient record a different donor 

may be used. In particular, for variables with missing values involved in balance edits it is rare to be 

able to find a donor satisfying all balance edits. This means that for some of those variables our 

imputation methods switch to sequential imputation. Generally, the first missing fields in a record are 

imputed using the same donor, whereas the value of the last variable involved in a balance edit will 

not be based on that donor (or another donor), but will be determined deterministically from the other 

values involved in this balance edit. 

 

The hot deck imputation methods we apply are described in Subsection 4.3. These hot deck imputation 

methods are used to order the potential imputation values for a certain missing field. Whether a value 

is actually used to impute the missing field depends on whether the edits and totals can be satisfied. 

The approach for hot deck imputation that ensures edits and sum constraints is described in Section 

4.2 below. 

4.2 Using a Sequential Approach to Imputation 

In order to be able to use a sequential approach to imputation, we apply Fourier-Motzkin elimination 

(Duffin 1974 and De Waal, Pannekoek and Scholtus 2011). Fourier-Motzkin elimination is a 

technique to project a set of linear constraints involving / variables onto a set of linear constraints 
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involving / − 1 variables. It is guaranteed to terminate after a finite number of steps. The essence of 

Fourier-Motzkin elimination is that two constraints, say 0(���,… , ��,�1�, ��,���, … , ��2) ≤ ��� and 

��� ≤ 4(���,… , ��,�1�, ��,���, … , ��2), where ��� is the variable to be eliminated in a record ( and 

0(���,… , ��,�1�, ��,���, … , ��2) and 4(���,… , ��,�1�, ��,���, … , ��2) are linear expressions in the other 

variables, lead to a constraint 

 

  0(���,… , ��,�1�, ��,���, … , ��2) ≤ 	45���,… , ��,�1�, ��,���, … , ��26  
 

involving these other variables. The main property of Fourier-Motzkin elimination is that the original 

set of constraints involving q variables can be satisfied if and only if the corresponding projected set of 

constraints involving q-1 variables can be satisfied.  

 

Now, suppose we want to impute a record with some missing items. By repeated application of 

Fourier-Motzkin elimination we can derive an admissible interval for one of the values to be imputed 

in this record. The main property of Fourier-Motzkin guarantees that if we impute a value within this 

admissible interval, the remaining missing items in this record can be imputed in a manner consistent 

with the constraints, i.e. such that all constraints are satisfied.  

 

Say we want to impute a variable ��. We consider all the records in which the value of variable �� is 

missing. In order to impute a missing field ���  in a record (, we first fill in the observed and previously 

imputed values (if any) for the other variables in record ( into the edits. This leads to a reduced set of 

edits involving only the remaining variables to be imputed in record (.  
 

Next, we eliminate all equations from this reduced set of edits for record (. That is, we sequentially 

select any equation and one of the variables � (� ≠ ��) involved in the selected equation. We then 

express � in terms of the other variables in the selected equation, and substitute this expression for � 

into the other edits in which � is involved. In this way we obtain a set of edits involving only 
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inequality restrictions for the remaining variables in record	(. Once we have obtained imputation 

values for the variables involved in this set of inequalities, it is guaranteed that we can later find values 

consistent with the edits for the variables that were used to eliminate the equations in record ( by 

means of back-substitution. 

 

From the set of inequality restrictions we eliminate any remaining variables except ��� itself by means 

of Fourier-Motzkin elimination. Using this elimination technique guarantees that the eliminated 

variables can later be imputed themselves such that all edits become satisfied.  

 

After Fourier-Motzkin elimination the restrictions for ��� can be expressed as interval constraints: 

 

 8�� ≤ ��� ≤ 9��,          (4) 

 

where 8�� may be −∞ and 9�� may be ∞..We have such an interval constraint (4) for each record ( in 

which the value of variable �� is missing. Now, the problem for variable �� is to fill in the missing 

values with imputations, such that the sum constraint for variable �� and the interval constraints (4) are 

satisfied. For this we will use one of our sequential imputation algorithms as explained in Sections 4.3 

and 4.4.  

 

In Appendix A we illustrate how a sequential approach can be used. 

 

4.3 Hot deck imputation methods 

In this paper we apply two classes of hot deck imputation methods: nearest-neighbour imputation and 

random hot deck imputation. We describe these methods below. 
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4.3.1 Nearest-neighbour hot deck imputation 

Suppose we want to impute a certain variable �� (� = 1,… , /) in a record (-. In the nearest-neighbour 

approach we calculate for each other record ( for which the value of �� is not missing a distance to 

record (- 	given by some distance function. 

 

Before we calculate these distance functions, we first scale the values. We denote the scaled value of 

variable �� in record ( by ���∗ . We determine the scaled value ���∗  by  

 

 ���∗ = <=>1?@A>B>  

 

where )CD� is the median of the observed values for variable �� and �� the interquartile distance, i.e. 

the difference between the value of the 75% percentile and the 25% percentile of ��. We have used the 

median and the interquartile distance rather than the mean and standard deviation for scaling the 

variables in order to be more robust against possible influential correct observations in the data. Note 

that if one wants to apply outlier-robust imputation in practice, one should use a more complex 

approach that on the one hand prevents influential observations from having too much effect on 

estimates, but on the other hand also ensures that these influential observations are taken into account 

to a sufficient extent (see, e.g., Chambers  and Ren 2004). Since outlier-robust imputation is not the 

topic of the current paper, we have opted for our simple approach. 

 

In our evaluation study we have used the distance function 0� defined by 

 

0�5x�E∗ , x�∗6 = F∑ (��H�∗ − ���∗ )��∈IJB        (5) 
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where x�K∗  is the scaled recipient record and x�∗ a scaled potential donor record. L"� is the set of 

observed variables in the recipient record x�K. 
 

An alternative to using nearest-neighbour imputation would be to apply predictive mean matching 

(see, e.g., Little 1988). We have not examined this option and leave this to future research. 

 

In our implementation of nearest-neighbour imputation, we first apply a standard imputation routine in 

order to obtain a complete data set for calculating the distance function. In this case, we implemented 

the multiple imputation routine in SAS, which we will refer to as “MI-SAS” (see SAS 2015 for details 

on MI-SAS), and obtain a complete data set by averaging the imputations across 10 replicates. MI-

SAS uses a Markov Chain Monte Carlo method for arbitrary missing data patterns assuming 

multivariate normal data. See Schafer (1997) for more details of this method. The reason for selecting 

MI-SAS rather than another imputation method is simply that this is a frequently used imputation 

routine albeit based on parametric assumptions. Alternatively, we could have applied other good 

imputation routines, such as “surveyimpute”, also available in SAS.  

 

Having now a complete dataset after the prior imputation by means of MI-SAS, we can compute 

distances between all pairs of records. Note that the imputation by MI-SAS introduces some 

uncertainty. This uncertainty may influence the order of the potential donor records. However, without 

this prior imputation step we would have had to find a way for dealing with missing values in our 

distance functions which would have increased the complexity.  

 

Further motivations for carrying out the prior imputation step to obtain a complete dataset for 

calculating distance functions are: 

• If the parametric assumptions of the initial imputation step resembles the model for the true data, 

then this step has the potential to improve the final imputations. 
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• The potential donor records for a certain recipient record are ordered in the same way for each 

variable with missing values. This means that, if possible, multivariate imputation, using several 

values from the first potential donor record on the list, is used. Only if a value of the first 

potential donor record is missing or cannot be used because this were to lead to failing edits or a 

non-preserved total, a value from another potential donor record is considered.  

 

The imputed complete data set is only used to compute distances between recipient records and 

potential donor records. Only records with an observed value for the current variable to be imputed are 

considered while calculating these distances, so only actually observed values will be selected for 

actual imputation. 

 

For each recipient record we construct a list of potential donor values in increasing order of the 

distance function (5). To impute a missing value, we will first select the first potential donor value on 

this list, i.e. the potential donor value from the record with the smallest distance to the recipient. If the 

value is allowed according to the edits and totals (see Section 4.4 for when a value is allowed 

according to the edits and totals), we will use it to impute the missing value. If that value is not 

allowed according to the edits or totals, we will try the second potential donor value on the list and so 

on until we find a donor value that is allowed according to the edits and totals.  

4.3.2 Random hot deck imputation 

In our application of random hot deck imputation, we construct a list of potential donor records for 

each record with missing values by randomly drawing (without replacement) potential donor records, 

until all potential donor records have been drawn and put on the list for this recipient record. Note that 

since we construct a list of potential donor records for each recipient record, for each variable with a 

missing value in this recipient record the potential donor records are in the same order. 
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To impute a missing value in a certain recipient record, we follow the same procedure as for nearest-

neighbour imputation. Note that again, if possible, multivariate imputation using several values from 

the first potential donor record on this list will be used.  

4.4 The imputation algorithm 

We now explain how we check whether a potential donor value for a certain record is allowed 

according to the edits and totals. 

 

We first examine the case where all survey weights are equal. When we want to impute a missing 

value for variable �� 	in a record (K we apply the following procedure. 

 

0. Set M ≔ 1. 

1. Select the M-th observed value on the list of potential donor values obtained from one of the hot 

deck methods described in Section 4.3. 

2. We check whether this value lies in the admissible interval for	��H�. If so, we continue with Step 3. 

Otherwise, we set M ≔ M + 1 and go to Step 4. 

3. We check whether the potential donor value would enable us to preserve the total for variable	��. 
If so, we use this potential donor value to impute the missing value. Otherwise, we set M ≔ M + 1 

and go to Step 4.  

4. If M does not exceed the number of potential donor values for variable ��, go to Step 1. Otherwise 

we impute the first potential donor value.  

 

We can efficiently combine the checks in Steps 2 and 3. The check in Step 2 is simply whether	8�H� ≤
��H�A ≤ 9�H�, where ���A  is the potential donor value drawn in Step 1, 8�H� 	is the lower bound according 

to the edits for variable �� in record (K and 9�H� the corresponding upper bound (see Section 4.2). The 

check in Step 3 amounts to checking whether 
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∑ 8�� ≤ ��,�?� − ∑ �O���∈P(�)	�Q�H�∈P(�)�R�H − ��H�A ≤ ∑ 9���∈P(�)�R�H ,     (6) 

 

where S(�) is the set of records with missing values for variable ��, �O�� (( ∈ S(�), ( < (K) are the 

already imputed values, and ��,�?� is the total to be imputed for variable ��. This total to be imputed 

equals the total ���-� minus the sum of the observed values for variable ��.  
 

In words, (6) simply says that the remaining total to be imputed for variable �� should lie between the 

sum of the lower bounds for the remaining records to be imputed and the corresponding sum of upper 

bounds. That this check is necessary and sufficient in order to be able to preserve the total follows 

from the observation that the sum of the lower bounds for the remaining records to be imputed is the 

minimum amount that has to be imputed, and the corresponding sum of upper bounds is the maximum 

that can be imputed. 

 

Check (6) can be rewritten as 

 

U
VW��,�?� − * �O���∈P(�)	�Q�H

− * 9���∈P(�)�R�H X
YZ ≤ ��H�A ≤

U
VW��,�?� − * �O���∈P(�)	�Q�H

− * 8���∈P(�)�R�H X
YZ 

  

The checks in Steps 2 and 3 can be combined into one check: 

 

max^��,�?� −∑ �O���∈P(�)	�Q�H −∑ 9���∈P(�)�R�H , 8�H�_ ≤ ��H�A ≤
min^��,�?� − ∑ �O���∈P(�)	�Q�H − ∑ 8���∈P(�)�R�H , 9�H�_       

   (7) 
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Equation (7) is our check for unweighted totals. 

 

We can easily extend this to the case of unequal sampling weights �� for each record ( 
 

max^��,�?�b −∑ ���O���∈P(�)	�Q�H − ∑ ��9���∈P(�)�R�H , ��H8�H�_ ≤ ��H��H�A ≤ min^��,�?�b − ∑ ���O���∈P(�)	�Q�H −
∑ ��9���∈P(�)�R�H , ��H9�H�_          (8) 

 

Here ��,�?�b = ���-� −∑ ������∈IJB(�) . Equation (8) is our check for weighted totals. 

 

If M exceeded the number of potential donor values for variable �� 	in Step 4 of the algorithm, we adjust 

the imputed value by changing it to the closest boundary of (7) (unweighted) or (8) (weighted) totals.  

 

Note that (7) and (8) imply that the value to be imputed lastly for a certain variable will be equal to the 

known total minus the sum (unweighted in the case of (7) and weighted in the case of (8)) of the 

observed and imputed values of this variable for the other records. The lastly imputed value is 

guaranteed to satisfy the edits. Given that the edits are sufficiently strict, they will offer some 

protection against the imputation of an unreasonable value for the lastly imputed value. 

5. Evaluation Study 

5.1 Methods Evaluated  

We give results for 4 versions of our imputation methods: nearest-neighbour hot deck imputation 

preserving unweighted totals (“NN HD without weights”), nearest-neighbour hot deck imputation 

preserving weighted totals (“NN HD with weights”), random hot deck imputation preserving 

unweighted totals (“Random HD without weights”) and random hot deck imputation preserving 
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weighted totals (“Random HD with weights”). We have both an “unweighted” and a “weighted” 

version of our imputation methods in order to study the effect of using survey weights on our 

evaluation measures.  

 

In our evaluation study we have compared our imputation methods to the MI-SAS imputations that 

were described in Section 4.3.1 to calculate the distance functions. This represents a commonly used 

multivariate parametric imputation procedure. We also compare our methods to standard versions of 

random hot deck (“Standard Random HD”) and nearest-neighbour imputation using distance function 

(6) (“Standard NN HD”) and using imputations obtained from MI-SAS to calculate this distance 

function. For each of our proposed imputation methods, Standard NN HD and Standard Random HD 

we have produced only one imputed data set. The MI-SAS procedure, Standard NN HD and Standard 

Random HD do not take edits or known totals into account. In Standard NN HD and Standard Random 

HD we have, in principle, applied multivariate donor imputation, where the donor is either the nearest 

record or a randomly selected record. If a selected donor record did not have observed values for all 

missing values in a recipient record, additional donors for the remaining missing values were selected. 

We have applied this procedure because of the high number of missing values in evaluation data set 2 

(see Section 5.2 below). 

 

Comparing our imputation methods to MI-SAS, Standard NN HD and Standard Random HD enables 

us to compare our methods to commonly used standard imputation methods, and at the same time to 

some extent examine the effect of taking edits and totals into account. 

5.2 Evaluation Data 

For our evaluation study we have used a data set with observed data from an annual structural business 

survey of Statistics Netherlands from 2003. This data set contains survey weights that differ across 

different (strata of) records. We will refer to this data set as data set 1.  
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To test whether our imputation methods also produce imputations that satisfy edits and totals in 

exceedingly difficult cases, we have applied them to another, more complicated data set. This data set 

was synthetically generated and contained 500 records and 10 variables. The number of missing 

values was higher than typically observed in business surveys. We will refer to this data set as data set 

2. 

 

The main characteristics of the data sets are presented in Table 1. 

 

Table 1. The characteristics of the evaluation data sets 

 data set 1 data set 2 

Total number of records 3,096 500 

Number of records with missing values 544 (17.5%) 490 (98.0%) 

Total number of variables 8 10 

Total number of edits 14 16 

Number of balance edits 1 3 

Total number of inequality edits 13 13 

Number of non-negativity edits 8 9 

 

The actual values for the data in the two data sets are all known. In the completely observed data sets 

values were deleted by a third party, using a mechanism unknown to us. For each of our evaluation 

data sets we have two versions available: a version with missing values and a version with complete 

records. The former version is imputed. The resulting data set is then compared to the version with 

complete records, which we consider as a data set with the true values. 

 

The numbers of missing values and (unweighted) basic statistics of the variables of our data sets are 

given in Tables 2 and 3. The percentages in brackets are the percentages of records with a missing 

value for the corresponding variable out of the total number of 3,096 records for data set 1 and 500 

records for data set 2. The basic statistics are taken over all observations in the complete versions of 
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the data sets. Variable R8 in data set 1 does not contain any missing values and is only used as 

auxiliary variable. In our evaluation study we have a sum constraint due to a known total for every 

variable in the data sets to be imputed. 

 

We have not made an attempt to optimize the order in which the variables are imputed. We have 

simply imputed the variables in reverse order, i.e. for data set 1 we have imputed the missing values 

for variable R7 first and the missing values for variable R1 last, and similarly for data set 2. 

Table 2. The numbers of missing values, mean, median, standard deviation and range in data set 1 

Variable Number of 

missing values 

Mean Median Standard 

deviation 

Range 

R1 76 (2.5%) 11,574.8  1997.5 51,747 [0 ; 1,264,082] 

R2 68 (2.2%) 777.6 242.0 1,723 [0 ; 60,563] 

R3 130 (4.2%) 8,978.7  1070.5 48,857 [0 ; 1,257,348] 

R4
 147 (4.8%) 1,034.1 187.0 3,791 [0 ;152,814] 

R5 79 (2.6%) 10,012.8 1496.0 49,862 [0 ; 1,258,837] 

R6 73 (2.4%) 169.2 0.0 4,885 [0 ; 205,210] 

R7 67 (2.2%) 209.9 7.0 4,927 [0 ; 206,327] 

R8 0 (0.0 %)  37.4  14.0 58 [0 ; 689] 
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Table 3. The numbers of missing values, mean, median, standard deviation and range in data set 2 

Variable Number of 

missing values 

Mean Median Standard 

deviation 

Range 

S1 120 (24%) 97.8 95.0 39 [16 ; 223] 

S2 180 (36%) 175,018.3  159,045.5 101,787 [7,256 ; 550,332] 

S3 240 (48%) 731.0  657.5 503 [0 ; 3,386] 

S4
 120 (24%) 175,749.3  159,627 101,847 [7,496 ; 550,856] 

S5 180 (36%)  154,286.5  140,321 98,117 [1,480 ; 525,490] 

S6 180 (36%) 7,522.3  7,369.0 3,263 [431 ; 1,8061] 

S7 180 (36%) 8,519.7 8,355.0 4,327 [112 ; 21,355] 

S8 180 (36%) 1,277.0  1,206.5 785 [0 ; 3,745] 

S9 120 (24%) 171,605.6 156,868.5 101,435 [10,481 ; 547,168] 

S10 120 (24%) 4,143.8 4,126 3,240 [-5,911 ; 13,563] 

 

 

As explained in Section 4.1, variables with missing values involved in balance edits will only rarely all 

be imputed by means of multivariate imputation. In data set 1 there are 3 variables involved in one 

balance edit, and in data set 2 there are in total 9 variables involved in 3 balance edits. This means that 

our imputation methods will switch to sequential imputation instead of multivariate imputation quite 

regularly. In data set 1, 49% of the records with missing values were imputed by means of multivariate 

imputation and for the remaining 51% our imputation methods switched to sequential imputation. In 

data set 2, where almost all variables are involved in one or more balance edits, 99% of the records 

with missing values were switched to sequential imputation and only 1% were imputed by means of 

multivariate imputation. 

5.3 Evaluation measures 

To measure the performance of our imputation approaches we use a Dc� measure, an )� measure, an 

.D) measure, and the Kolmogorov-Smirnov distance (��). The first two criteria and the 
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Kolmogorov-Smirnov distance have been proposed by Chambers (2003). The Dc� measure is the 

average distance between the imputed and true values defined as  

 

Dc� = ∑ ��|�O�� − ���true	|�∈P(�)∑ ���∈P(�)  

 

where from Section 4.4, �O�� is the imputed value in record ( of the variable �� under consideration and 

���true the corresponding true value. M(j) is the set of records where the value of variable �� is missing. 

 

The )� measure, which measures the preservation of the first moment of the empirical distribution of 

the true values, is defined as  

 

)� = e∑ ��(�O�� − ���true)�∈P(�)∑ ���∈P(�) e 
 

The .D) (relative difference in means) measure has been used in an evaluation study by Pannekoek 

and De Waal (2005), and is defined as 

 

.D) = ∑ ���O���∈P(�) −∑ �����true	�∈P(�)∑ �����true�∈P(�)  

 

The .D) measure is the weighted bias due to imputation. 

 

Finally, we use the �� Kolmogorov-Smirnov distance to compare the empirical distribution of the 

original values to the empirical distribution of the imputed values. For weighted data, the empirical 

distribution of the true values is defined as 
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f<>(M) = * g5����� ≤ M6 |S(�)|⁄
�∈P(�)

 

 

with |S(�)| the number of records with missing values for variable �� and g the indicator function. 

Similarly, we define f<O>(M). The �� distance is defined as 

 

�� = max� |f<>(M�) − f<O>(M�)|, 
 

where the M� values are the 2|S(�)| jointly ordered true and imputed values. 

 

We also evaluate how well the imputation measures preserve medians. For this we use the percent 

relative absolute difference defined by 

 

'j(�) = 100 × lmorig− mimplmorig
 

 

where m denotes the median of the variable under consideration, morig its value in the original 

complete data set calculated using survey weights, and mimp its value in the imputed data set for the 

imputation method under consideration again calculated using survey weights.  

 

Smaller absolute values of the evaluation measures indicate better imputation performance. 

5.4 Evaluation results 

The evaluation results for data set 1 are presented in Tables 4 to 8. As variable R8 does not have any 

missing values in data set 1, no evaluation results for R8 are presented in the tables. The column 

“Average” in Tables 4 to 7 is the average of the absolute results over all 7 variables, however in Table 

8 “Average” is over 6 variables not including R6 which has a median value of 0.  
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Table 4. Results for the Dc� measure for data set 1 

 R1 R2 R3 R4 R5 R6 R7 Average 

NN HD without weights  2,607 215 115 171 154 19 13 98 

NN HD with weights 2,236 125 120 110 16 3 19 56 

Random HD without weights 6,147 404 121 181 167 17 34 132 

Random HD with weights 3,374 199 117 111 50 3 17 71 

MI-SAS 1,073 230 360 347 21 17 26 143 

Standard NN HD 438 81 232 266 234 2 16 181 

Standard Random HD 25,199 819 4,454 587 4,703 7 49 5,117 

 

Table 5. Results for the )� measure for data set 1 

 R1 R2 R3 R4 R5 R6 R7 Average 

NN HD without weights  288 74 11 72 132 16 2 44 

NN HD with weights 0 0 0 0 0 0 0 0 

Random HD without weights 3,138 240 6 73 143 14 21 71 

Random HD with weights 0 0 0 0 0 0 0 0 

MI-SAS 127 84 123 126 21 17 12 55 

Standard NN HD 72 5 122 186 14 1 5 58 

Standard Random HD 22,691 622 2,366 412 2,172 4 21 4,041 
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Table 6. Results for the rdm measure for data set 1 

 R1 R2 R3 R4 R5 R6 R7 Average† 

NN HD without weights  -13.00 0.44 -0.01 0.44 0.08 12.96 -0.12 3.86 

NN HD with weights 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Random HD without weights 1.47 1.41 0.00 0.45 0.08 11.36 1.25 2.29 

Random HD with weights 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MI-SAS -0.06 -0.49 -0.08 0.78 0.01 13.10 0.69 2.17 

Standard NN HD -0.03 0.03 -0.08 1.15 0.01 -0.72 -0.29 0.33 

Standard Random HD  10.62 3.65 1.59 2.55 1.24 3.44 1.23 3.48 

† “Average” in this table denotes the average over the absolute values 

 

Table 7. Results for the KS measure for data set 1 

 R1 R2 R3 R4 R5 R6 R7 Average 

NN HD without weights  0.72 0.20 0.03 0.32 0.03 0.21 0.40 0.17 

NN HD with weights 0.46 0.20 0.05 0.40 0.03 0.09 0.51 0.18 

Random HD without weights 0.21 0.25 0.05 0.39 0.03 0.25 0.22 0.17 

Random HD with weights 0.33 0.38 0.05 0.41 0.04 0.09 0.42 0.20 

MI-SAS 0.16 0.25 0.12 0.17 0.03 0.13 0.12 0.12 

Standard NN HD 0.02 0.07 0.02 0.11 0.06 0.92 0.16 0.19 

Standard Random HD 0.52 0.26 0.42 0.18 0.54 0.92 0.28 0.44 
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Table 8. Results for medians for data set 1 (“*” denotes that the median in the original, complete data 

set is zero, and hence the percent difference is undefined) 

 R1 R2 R3 R4 R5 R6 R7 Average♯ 

NN HD without weights  2.41 0.67 0.04 1.19 0.00 *  4.30 1.03 

NN HD with weights 1.41 0.52 0.04 1.80 0.28 * 4.31 1.16 

Random HD without weights 0.75 1.14 0.00 1.74 0.13 *  1.85 0.81 

Random HD with weights 1.41 2.00 0.00 2.31 0.28 * 4.31 1.48 

MI-SAS 0.00 0.03 0.00 1.86 0.13 *  0.41 0.41 

Standard NN HD 0.23 0.00 0.00 4.28 0.00 * 0.00 0.75 

Standard Random HD 0.98 0.83 0.61 1.60 0.80 *  0.00 0.80 

♯ Average taken over 6 variables. 

 

NN HD with weights performs especially well with respect to evaluation measures Dc� (Table 4), )� 
(Table 5) and rdm (Table 6), which all measure how well totals and individual values are preserved. 

MI-SAS performs especially well for evaluation measure KS (Table 7) and the preservation of the 

medians (Table 8), which both measure how well the statistical distribution is preserved. Standard 

Random HD performs worst for measures Dc�, )� and KS (Tables 4, 5 and 7), indicating that this 

method is not good in preserving either individual values or the statistical distribution of data set 1.  

 

The bad results of Standard Random HD are partly caused by outliers in the data. For instance, in one 

record with a relatively large survey weight a very large value is imputed for variable R1, whereas the 

true value is small. Excluding this outlier, Dc� for R1 drops to 5,370, )� to 2,862 and rdm to 1.34. 

These numbers are still quite large, but better than Random HD without weights.  

 

Comparing the unweighted versions of our imputation methods to the weighted versions with respect 

to evaluation measures Dc� (Table 4), KS (Table 7) and preservation of the median (Table 8), the 

unweighted versions perform worse for Dc�, but perform better on KS and the preservation of the 

median. The weighted versions by design perform better on )� and rdm (Tables 5 and 6).  
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Comparing NN HD with weights and Random HD with weights to Standard NN HD and Standard 

Random HD, we see that taking edits and known totals into account leads to better preservation of 

totals and individual values (Tables 4 to 6). NN HD with weights and Random HD with weights also 

appear to perform better with respect to the KS measure, but this is partly caused by outliers in the 

data. For instance, the large values for the KS measure for variable R6 for Standard NN HD and 

Standard Random HD are caused by a missing field that has an unusually large value in the true data. 

Variable R6 equals zero in most records, and both Standard NN HD and Standard Random HD impute 

zero in the corresponding record. Medians (Table 8) seem to be better preserved by the Standard NN 

HD and Standard Random HD than by our proposed methods.  

 

The general conclusion we can draw is that standard multivariate hot deck imputation appears to 

preserves distributional aspects better, whereas our sequential imputation approach preserves point 

estimates better. MI-SAS performs best with respect to distributional aspects. With respect to point 

estimates MI-SAS performs slightly better than Standard NN HD (except for rdm, see Table 6) and 

much better than Standard Random HD. It performs worse than the weighted versions of our 

imputation methods with respect to point estimates. 

 

For the more complex data set 2, the statistical distribution was less well preserved by our imputation 

methods than by MI-SAS. This can be seen in Table 9 where we compare NN HD with weights to MI-

SAS. The numbers in this table are the unweighted averages over all 10 variables in the data set. For 

evaluation measures )� and rdm, NN HD with weights by design performs better than MI-SAS for all 

variables. For MI-SAS, )� ranged from 4.5 to 1860.6, and the absolute value of rdm from 0.005 to 

0.058. NN HD with weights has )� and rdm equal to zero for all variables. 
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Table 9. Comparison of NN HD with weights to MI-SAS for data set 2 

 NN HD with weights MI-SAS 

Dc�  1,930 1261 

)�  0.0 637.5 

rdm 0.00 0.01 

KS 0.10 0.06 

median 17.25 11.43 

 

In Appendix B we examine the preservation of correlations.  

  

Our imputation methods have been designed to satisfy edits and preserve known (weighted) totals. As 

can be seen from the evaluation measures )�	and rdm in Tables 5 and 6 the weighted versions of our 

imputation indeed succeed in taking the weighted totals into account. Our imputation methods also 

succeed in satisfying edits. Of the two data sets examined, none of the records had violated edits.  

 

Besides violating known totals (and hence means), which can be seen from evaluation measures 

)�	and rdm in Tables 5 and 6, MI-SAS, Standard NN HD and Standard Random HD also violate 

edits. The number of violated edits and violated records, i.e. records in which at least one edit is 

violated, is given in Table 10. In this table we see that Standard NN HD and Standard Random HD 

violate a relatively large number of edits and records. MI-SAS performs better in this respect as the 

multivariate regression ensures that balance restrictions are satisfied after imputation. Still 2.5% of the 

records of data set 1 and 5% of the records of data set 2 are violated when MI-SAS is used. 
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Table 10. Numbers of violated edit rules and records in both data sets 

 data set 1 data set 2 

 violated edits  violated records violated edits  violated records 

NN HD without weights 0 0 0 0 

NN HD with weights 0 0 0 0 

Random HD without weights 0 0 0 0 

Random HD with weights 0 0 0 0 

MI-SAS 123 77 (2.5%) 25 25 (5.0%) 

Standard NN HD 313 267 (8.6%) 1,125 485 (97.0%) 

Standard Random HD 419 331 (10.7%) 1,256 488 (97.6%) 

6. Discussion 

In this paper we have extended standard hot deck imputation methods so that the imputed data satisfy 

edits and preserve known totals, while taking survey weights into account. The hot deck imputation 

methods we have considered are random hot deck and nearest neighbour hot deck. To ensure that edits 

are satisfied and known totals are preserved after imputation, we have applied these hot deck 

imputation methods in a sequential manner and have used a check based on Fourier-Motzkin 

elimination for determining admissible intervals for each value to be imputed. Strong aspects of our 

imputation methods are their simplicity and that they are non-parametric, which make them attractive 

from a practical point of view. For data sets that are approximately normally, or log-normally, 

distributed we may opt to use model-based imputation methods developed by Pannekoek, Shlomo and 

De Waal (2013). 

 

In our evaluation study we have used two evaluation data sets. More evaluation studies on other data 

sets are required before firm conclusions can be drawn. The results of our evaluation study are 

indicative that our imputation methods may give acceptable results. Obviously, our imputation 

methods give perfect results with respect to preservation of means and totals as they have been 

designed to do so according to the ‘one-figure’ policy.  
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NN hot deck with weights in particular gives good results for most of the evaluation measures we have 

examined, while satisfying edits and preserving known totals at the same time. An exception is the 

preservation of the median. NN hot deck with weights gives only mediocre results in that respect, and 

is outperformed by the MI-SAS imputation. Future work will investigate how the imputations can be 

controlled in such a way as to have a better preservation of the median as well as the mean.  

 

Taking edits and known totals into account while imputing missing data improves the preservation of 

individual values and, obviously, of means and totals. However, taking edits and known totals into 

account may lead to a deterioration of the preservation of the joint statistical distribution. A practical 

advantage of taking edits into account is that this offers some protection against outliers in the data. 

Some results for Standard NN HD and Standard Random HD were quite bad due to such outliers. In 

our imputation methods, the edit rules often will not allow clearly outlying values to be imputed, 

simply since this would lead to edit violations. 

 

In Section 4.4 we noted that the value to be imputed lastly for a certain variable will be equal to the 

known total minus the sum (unweighted in the case of (7) and weighted in the case of (8)) of the 

observed and imputed values for this variable for the other records. If this would lead to an 

unreasonable value for the lastly imputed value, one could try some simple approaches to remedy this, 

such as adding some additional edits or subdividing the data into several groups, each with an 

estimated group total, and impute these groups separately. As the group totals are smaller than the 

overall total, an unreasonable value for the variable to be imputed lastly is less likely to occur. 

 

As mentioned in Section 5.2 we have not made an attempt to optimize the order in which the variables 

are imputed. As the results of our imputation methods depend on this order, optimizing the order is an 

interesting research topic for future research. As a practical guideline, we suggest to impute the 

variables that are considered to be important first and the less important variables last.  
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In this paper we have not considered the issue of estimating the correct variance after imputation, 

including the variance due to nonresponse and imputation. In addition, if estimated totals are used for 

the benchmarking instead of known totals, there will be an additional component to be added to the 

variance. In order to estimate variance correctly after imputation we can consider the extension of our 

approach to multiple imputation (see Rubin 1987) or use resampling techniques such as the bootstrap 

or jackknife adapted to account for the fact that we are dealing with a finite population (see e.g. 

Mashreghi, Haziza and Léger 2016).  

 

A drawback of a sequential imputation method is that optimal choices for individual variables to be 

imputed may not lead to overall optimality for all variables. An imputation method that imputes all 

variables in each record simultaneously while taking edits, totals and survey weights into account 

would be preferable to sequential imputation. Further research is required to develop such 

simultaneous imputation methods that are computationally tractable and easy to apply in practical 

situations. 
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Appendix A 
We illustrate how a sequential approach can be used with a simple example taken from Coutinho, De 

Waal and Remmerswaal (2011). We consider a case where we have |.| records with four variables, % 

(turnover), ' (profit), & (costs), and n (number of employees in fulltime equivalents). The edits are 

given by:  

%� − &� −'� = 0        (A.1) 

%� ≥ 0          (A.2) 

'� ≤ 0.5%�         (A.3) 

−0.1%� ≤ '�         (A.4) 

%� ≤ 550n�         (A.5) 

n� ≥ 0          (A.6) 

&� ≥ 0          (A.7) 

 

We impute the variables in the following order: n, %, & and '. We assume that variable n has already 

been imputed and that we now want to impute variable %. 

 

Suppose that in a certain record (K n = 5. This value may either have been observed or been imputed 

before. The values of of %, & and ' in record (K are missing. We eliminate %, & and ' in reverse order 

of imputation. We first fill in	n into the edits. This gives us the edit set (A.1), (A.2), (A.3), (A.4), 

(A.7) and  

 

 %�H ≤ 2,750         (A.8) 

 

We use equation (A.1) to express ' in terms of % and &, and use that expression to eliminate variable 

' from edits (A.2), (A.3), (A.4), (A.7) and (A.8). This gives us the edit set (A.2), (A.7), (A.8), 

 

%� − &� ≤ 0.5%�         (A.9) 
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and 

 

−0.1%� ≤ %� − &�        (A.10) 

 

To eliminate variable & from the edit set (A.2), (A.7), (A.8), (A.9) and (A.10), we first copy the edits 

not involving & (edits (A.2) and (A.8)) and then eliminate & from the other edits. Eliminating & from 

(A.7), (A.9) and (A.10) gives us edits that are equivalent to (A.2). So, the edit set after elimination of 

& is given by (A.2) and (A.8). The admissible interval for % for record (K is hence given by  

 

 0 ≤ %�H ≤ 2,750. 

 

Similarly, we can derive admissible intervals for %� for all records ( (( = 1,… , |.|) in which the value 

of % is missing. Once we have derived these admissible intervals, we impute values for %� in all these 

records by means of one of our sequential imputation algorithms (see Sections 4.3 and 4.4). 

 

After variable % has been imputed in all records in which its value was missing, we derive admissible 

intervals for variable	&, and later variable ', in a similar manner. The main property of Fourier-

Motzkin elimination guarantees that the original edits will be satisfied, if we select donor values lying 

inside these admissible intervals. 
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Appendix B 
In Table B.1 we examine the effect of taking edits and known totals into account on (weighted) 

correlations between variables. In this table we give the average absolute deviation of the correlations 

in the imputed data from the correlations in the true data taken over all pairs of different variables for 

NN HD with weights and Standard NN HD. That is, for data set 1 we take the average absolute 

deviation of the correlations over 28 pairs of different variables and for data set 2 over 45 pairs of 

different variables. Between brackets we give the average of the absolute percent differences between 

the correlations in the true data and in the imputed data. 

 

Table B.1. Average absolute deviation from true correlations 

 Data set 1 Data set 2 

NN HD without weights 0.0047 (1.19%) 0.1090 (42.77%) 

NN HD with weights 0.0037 (0.90%) 0.0861 (26.09%) 

Random HD without weights 0.0072 (0.66%) 0.1083 (35.63%) 

Random HD with weights 0.0044 (1.13%) 0.0866 (26.84%) 

SAS-MI 0.0007 (0.20%) 0.0142 (13.80%) 

Standard NN HD 0.0015 (0.45%) 0.0167 (9.49%) 

Standard Random HD 0.0528 (10.58%) 0.2151 (51.78%) 

 

From Table B.1 we conclude that MI-SAS performs best with respect to preservations of correlations 

due to the multivariate imputation procedure under the MCMC approach. For data set 1 NN HD 

without weights, NN HD with weights, Random HD without weights, Random HD with weights, and 

Standard NN HD also give good results for practical purposes. The correlations after imputation are 

very close to the original correlations for these methods. For data set 2 all imputation methods, even 

SAS-MI, perform quite badly. 


