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Foundations of a
Bicoprime Factorization Theory

Mihalis Tsiakkas, Member, IEEE and Alexander Lanzon, Senior Member, IEEE

Abstract—Bicoprime factorizations (BCFs) are a generalization
of the well known coprime factorizations commonly used in
control theory. However they have received negligible attention
from the academic community so far. This paper lays the
foundations of a BCF theory. The theory is built from the ground
up, starting with the basic characteristics of such factorizations
before moving on to state space parameterizations of BCFs
and internal stability. Some advantages of BCFs are outlined
including the possibility of reduced dimension internal stability
tests. An uncertainty structure induced by BCFs is also examined
and the associated robust stability analysis tests provided. In
multiple instances it is shown how coprime factor results have
their roots in the more abstract, and more general, BCFs.

Index Terms—Coprime factorizations, bicoprime factoriza-
tions, robust stability, feedback systems, internal stability, sta-
bility margin.

I. INTRODUCTION

COPRIMENESS is a useful property widely exploited in
many areas of control theory. Left coprime factorizations

(LCFs) and right coprime factorizations (RCFs) find extensive
use in various fields of robust control such as H∞ loop-
shaping [1] and distance measures [2, 3]. The notion of matrix
coprimeness is a generalization on that of integers having a
greatest common denominator of 1. The polynomial case of
this problem was studied by Bézout who showed that two
polynomials a and b have greatest common divisor d if there
exist polynomials x and y such that the linear Diophantine
equation ax + by = d is satisfied. Such an equation is now
commonly referred to as Bézout’s identity, a version of which
is used as a coprimeness test for polynomial matrices.

A coprime factorization is one where a rational object
is decomposed into two factors that satisfy the coprimeness
condition over some set, usually RH∞. One of the most
important features of coprime factorizations is the fact that
every object in R admits a coprime factorization over RH∞.
Hence, any coprime factor results can be directly applied to a
wide class of systems.

Bicoprime factorizations (BCFs) are a generalization of
the aforementioned coprime factorizations. They were briefly
introduced in [4] with only a handful of results given. Two
motivating points given therein for the study of BCFs are
that they naturally arise in closed loop transfer matrices and
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the simple fact that a minimal state space representation of
a plant is itself a BCF over the ring of polynomials. In fact,
such factorizations do arise in many areas of interest such as
J-spectral factorizations [5] and chain scattering theory [6].

The relation between a special set of BCFs (where one of the
factors is assumed to be zero — though this condition is lifted
for some of the results) and classical coprime factorizations
was studied in [7]. A set of simple preliminary results were
derived including internal stability for the feedback intercon-
nection of a plant given as a BCF and controller expressed as
a RCF or LCF. Those results were extended in [8] and given
a decentralized control context.

It has also been shown that BCFs can be useful in the study
of decentralized or distributed control problems. For example,
in [9], BCFs are used to characterize the location of fixed
transmission zeros of a plant which then allows one to deduce
whether a decentralized controller exists or not. Furthermore,
BCFs are used in the design of a decentralized stabilizing
controller for a plant in [10].

BCFs bear many similarities to the polynomial methods
extensively studied in the 60’s and 70’s, particularly the work
of Rosenbrock [11] relating to polynomial matrix descriptions
(PMDs) of the plant. This seminal work gave rise to state space
methods and coprime factor theory both of which proved to be
tremendously important and successful in many control related
problems. The material developed in this paper can be viewed
as a combination of these two fields of control theory, dealing
with the aspects of Rosenbrock’s work that were sidelined
in favor of the above and thus not advanced in the past few
decades.

This paper provides the foundations to the general study
of BCF theory and its applicability to various control related
problems. The results presented herein cover a range of topics
including internal stability in terms of BCFs of the plant and
controller, state space parameterizations of BCFs for a given
system and BCF uncertainty characterization. Although BCFs
are not a substitute for LCFs or RCFs in control theory, it will
become apparent through the course of this paper that their use
can be beneficial.

II. PRELIMINARIES

The sets R and C are defined as the real and complex
numbers respectively. C+ = {s ∈ C : <(s) > 0} is used
to denote the open right half of the complex plane while
C̄+ = C+ ∪ jR.

Let A ∈ Cm×n, then A∗ denotes its complex conjugate
transpose, while its rank is denoted by rankA. If m = n, Λ(A)
denotes the spectrum of A and detA its determinant. The
geometric multiplicity of λi ∈ Λ(A) is denoted by γA(λi).
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The operators diag (·) and adiag (·) define block diagonal
and anti-diagonal matrices starting from the top left and top
right respectively.

R denotes the set of all real-rational, proper transfer ma-
trices. The subset of R containing all stable transfer matrices
is given by RH∞ and the set of units in RH∞ is given by
GH∞ (f ∈ GH∞ ⇔ f, f−1 ∈ RH∞).

Let P ∈ R, then P =

[
A B

C D

]
is shorthand notation for

the state space realization P = C (sI −A)
−1
B +D.

The normal rank of a transfer matrix P (s) ∈ R is defined
as maxs∈C rankP (s) and is denoted by nrankP .

Let H ∈ R and ∆ ∈ R, then the lower and upper
linear fractional transformations (LFTs) of H with respect
to ∆ are denoted by Fl(H,∆) and Fu(H,∆) respectively.
Furthermore, the Redheffer star product of H and ∆ is denoted
by (H ?∆). See [12] for definitions and details.

As mentioned previously, coprime factorizations are an
important part of control theory. The following definition
presents, in a formal way, right coprimeness over RH∞ as
well as RCFs of a plant over RH∞.

Definition 1 ([12] Definition 5.3): The ordered pair {N,M}
is right coprime (RC) in RH∞ if N,M ∈ RH∞ and there
exist Yr, Zr ∈ RH∞ such that ZrM+YrN = I . Furthermore,
the pair is a RCF of a plant P ∈ R over RH∞ if, additionally,
M is square, detM(∞) 6= 0 and P = NM−1.
Left coprimeness and LCFs of a plant are dually defined.

Definition 2: The set of all RC (resp. LC) pairs in RH∞ is
defined as Cr (resp. Cl). Similarly, the set of all RCFs (resp.
LCFs) of a plant P ∈ R over RH∞ is defined as Cr(P )
(resp. Cl(P )).

The following lemma gives necessary and sufficient condi-
tions for well-posedness and internal stability of a standard
positive feedback interconnection.

Lemma 1 ([12] Lemma 5.3): Consider the standard pos-
itive feedback interconnection of a plant P ∈ R and con-
troller C ∈ R. Then [P,C] is well-posed if and only if
det (I − CP )(∞) 6= 0. Furthermore, [P,C] is internally stable
if and only if it is well-posed and[

I −C
−P I

]−1

∈ RH∞. (1)

III. BICOPRIME FACTORIZATION FUNDAMENTALS

BCFs over RH∞ first appeared in literature in [4] where
their existence was acknowledged with no significant results
given. In the original definition, BCFs of a plant were pre-
sented as a quad of objects in RH∞ as follows.

Definition 3 ([4] Definition 4.3.1): The ordered quad
{N,M,L,K} is bicoprime (BC) in RH∞ if {L,M} ∈ Cl,
{N,M} ∈ Cr and K ∈ RH∞. Furthermore, the quad is a
BCF of a plant P ∈ R over RH∞ if, additionally, M is
square, detM(∞) 6= 0 and P = NM−1L+K.

Similar to LC and RC pairs and factorizations, the following
definition presents the notation used for the sets of all BC
quads and BCFs of a plant.

Definition 4: The set of all BC quads in RH∞ is defined
as B. The set of all BCFs of a plant P ∈ R over RH∞ is
defined as B(P ).

It is often convenient to pack a BC quad into a matrix as
in the following definition.

Definition 5: The set Bm is defined as

Bm =

{[
M −L
N K

]
: {N,M,L,K} ∈ B

}
When representing a BCF of a plant P ∈ R, the notation
Bm(P ) will be used.

Objects in Bm(P ) will henceforth be referred to as the BCF
symbols of P . This naming is chosen to parallel the graph
symbols encountered in classical coprime factorizations.

Note that the BCF symbols of a plant are also system
matrices as defined by [11], often referred to as Rosenbrock
matrices. Thus a BCF is also a PMD of the plant; specifically
of the third form. As such, BCF symbols inherit many of the
properties of PMDs and thus much of the theory developed
in the past for such objects can be readily adapted to BCF
theory. However, imposing the bicoprimeness property onto
the factors yields additional advantages.

It is a well known result [4, Theorem 4.3.12] that any plant
P ∈ R with a RCF {N,M} ∈ Cr(P ) is stable if and only
if M ∈ GH∞. The following lemma presents an equivalent
result for BCFs.

Lemma 2: [4, Theorem 4.3.12] Let P ∈ R have a BCF
{N,M,L,K} ∈ B(P ). Then P ∈ RH∞ ⇔M ∈ GH∞.

The following lemma relates the transmission zeros of a
plant to those of its BCF symbols.

Lemma 3: Let P ∈ R and G ∈ Bm(P ). Then z0 ∈ C̄+

is a transmission zero of P if and only if it is a transmission
zero of G.

Proof: Let the BCF of P associated with G be given
by {N,M,L,K} ∈ B(P ). Furthermore let {Ñ , M̃} ∈
Cl(NM−1) and suppose that Yr and Zr is the Bézout factor
pair associated with {N,M}. Then[

Zr Yr
−Ñ M̃

] [
M −L
N K

]
=

[
I YrK − ZrL
0 M̃P

]
,

which implies that G and M̃P share any transmission zeros.
The result then follows by noting that {ÑL + M̃K, M̃} ∈
Cl(P ) [7, Proposition 2.5].

The first advantage of imposing bicoprimeness is now
revealed as the properties given by Lemmas 2 and 3 do
not hold for Rosenbrock matrices in general. A special case
for which these results do hold is when the PMD defines
a minimal state space realization of the plant. However, as
suggested by [4], this is equivalent to the factorization being
BC over the ring of polynomials.

A. Internal Dimension

It is simple to show that the dimensions of the coprime
factors of a plant are constant. Suppose that {N,M} ∈ Cr(P )
where P ∈ Rp×q , then it follows trivially from the definition
of RCFs that N ∈ RH p×q

∞ and M ∈ RH q×q
∞ .

Such a restriction does not apply to BCFs. Let P ∈ R
and suppose that {N,M,L,K} ∈ B(P ). Furthermore, define
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Ñ =
[
N 0

]
, M̃ = diag (M, I) , L̃ =

[
L∗ 0

]∗
. Then it is

easy to show that {Ñ , M̃ , L̃,K} ∈ B(P ) is also a BCF of P
with arbitrarily inflated factor dimensions. This fact gives rise
to the following definition.

Definition 6: The internal dimension of a BC quad
{N,M,L,K} ∈ B is defined as the number of rows/columns
of M . The set of all BC quads of internal dimension r > 0 is
defined as Br (or Br(P ) if the quad is a BCF of P ∈ R).

An interesting case arises when the additive term of a BCF
is set to zero, as outlined in the following lemma.

Lemma 4: Let P ∈ Rp×q and suppose that {N,M,L, 0} ∈
Br(P ). Then nrankP ≤ r.
Before proving the above lemma we need the following result.

Lemma 5: Let P1 ∈ Rp×n and P2 ∈ Rn×q with n ≤
min{p, q}. Then nrank(P1P2) = n if and only if nrankP1 =
nrankP2 = n.

Proof:
(⇒) Suppose that nrank(P1P2) = n, then for some s0 ∈
C rank(P1(s0)P2(s0)) = n and the result follows from
Sylvester’s rank inequality [12, Lemma 2.3].
(⇐) Suppose that nrank(P1P2) < n while nrankP1 =
nrankP2 = n, then for all s ∈ C rank(P1(s)P2(s)) < n.
This implies that for all s0 ∈ C where rankP1(s0) = n,
rankP2(s0) < n and vice versa. By noting that a system can
only have a finite number of transmission zeros a contradiction
arises which concludes the proof.

Proof of Lemma 4: Suppose on the contrary that r <
nrankP and note that nrankM = r since by definition
detM(∞) 6= 0. Then, using Lemma 5, nrank(NM−1L) ≤
r < nrankP which is a contradiction since P = NM−1L
and hence the proof is complete.

Note that as a consequence of Lemma 4, it follows that
a BCF can always be chosen to have internal dimension no
greater than min{p, q}. Now using Lemma 4, a lower bound
on the achievable internal dimension for the BCFs of a plant
can be stated as in the following theorem.

Theorem 6: Let P ∈ R and suppose that {N,M,L,K} ∈
Br(P ). Then inf P̃∈RH∞

nrank(P − P̃ ) ≤ r.
Proof: Since {N,M,L, 0} ∈ Br(P − K) it follows

from Lemma 4 that nrank(P − K) ≤ r. Now suppose that
r < inf P̃∈RH∞

nrank(P − P̃ ). Then nrank(P − K) <

inf P̃∈RH∞
nrank(P − P̃ ) which is a contradiction since

K ∈ RH∞ and the proof is complete.

B. BCF Parameterization
All LCFs or RCFs of a plant can be simply parameterized by

pre- or post-multiplication of the factors by an object in GH∞.
For example, let P ∈ R and suppose that {N,M} ∈ Cr(P ),
then it is easy to show that {NQ,MQ} ∈ Cr(P ) for any
Q ∈ GH∞ of compatible dimensions.

On the other hand, parameterizing BCFs is not as simple.
The following lemma uses a strict system equivalence [13] to
parameterize a set of BCFs for a plant P ∈ R.

Lemma 7: Let P ∈ R have the BCF {N,M,L,K} ∈
Bn(P ). Then[
M̃ −L̃
Ñ K̃

]
=

[
Ql 0
Rl I

] [
M −L
N K

] [
Qr −Rr
0 I

]
∈ Bm

n (P )

for all Ql, Qr ∈ GH∞ and Rl, Rr ∈ RH∞ with compatible
dimensions.

Before proving the above lemma we need the following
result. This gives sufficient conditions for a BC quad to retain
its bicoprimeness under stable perturbations of the factors.

Lemma 8: Let {N,M,L,K} ∈ B, Q,R, S, T ∈ RH∞ and
U, V ∈ GH∞. Then {(N −QM)U, V (M − LSN)U, V (L−
MR),K + T} ∈ B if [Q,LS] and [SN,R] are internally
stable.

Proof: Since U, V ∈ GH∞ it follows that they can always
be absorbed into the Bézout factors, hence

{(N −QM)U, V (M − LSN)U} ∈ Cr

⇔ ∃Ỹr, Z̃r ∈ RH∞ : Z̃r(M − LSN) + Ỹr(N −QM) = I

⇔ ∃Ỹr, Z̃r ∈ RH∞ :
[
Z̃r Ỹr

] [ I −LS
−Q I

] [
M
N

]
= I

⇐
[
I −LS
−Q I

]
∈ GH∞

⇔ [Q,LS] is internally stable.

The fact that {V (L−MR), V (M−LSN)U} ∈ Cl if [SN,R]
is internally stable can be proven similarly. Finally, since K+
T ∈ RH∞ the conclusion follows.

Proof of Lemma 7: Using Lemma 8 it can be shown
that {Ñ , M̃ , L̃, K̃} ∈ B and then P = ÑM̃−1L̃+ K̃ follows
from [11, Theorem 3.1].

Observe that the parameterization of Lemma 7 does not
allow for variation in the internal dimension of the BCFs, it
is therefore immediate that it does not cover the entire set of
BCFs for a given plant.

IV. STATE SPACE FORMULAE AND CHARACTERIZATIONS

Coprime factorizations can be easily obtained from a state
space realization of the plant using the formulae of [14]. A
trivial method of obtaining a BCF of a plant is to construct
a LCF or RCF and set the remaining factors accordingly. For
example, let P ∈ R and choose {N,M} ∈ Cr(P ) then it
follows trivially that {N,M, I, 0} ∈ B(P ). However, a more
systematic state space approach is needed. This problem is
addressed in this section.

The following theorem gives a parameterization of BCFs of
a plant based on state space data, that generalizes the formulae
given by [14].

Theorem 9: Let P ∈ Rp×q have a stabilizable and de-

tectable state space realization P =

[
A B

C D

]
. Furthermore,

suppose that Q ∈ Rn×r, S ∈ Rr×r and R ∈ Rr×n are such
that A + QSR is Hurwitz, where det(S) 6= 0. Finally, let
DN ∈ Rp×r and DL ∈ Rr×q be arbitrarily chosen matrices
and define[

M −L
N K

]
=


A+QSR QS B+QSDL

SR S SDL

C+DNSR DNS D+DNSDL

. (2)

Then {N,M,L,K} ∈ Br(P ).
Proof: First, it is easy to show that P = NM−1L+K.

Let F ∈ Rq×n and H ∈ Rn×p be such that A + BF and
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A + HC are Hurwitz. Then the following holds after some
simple albeit tedious linear algebra

[
M −L

]
A+BF Q

−(R+DLF ) S−1

F 0

 = I and

[
A+HC −(Q+HDN ) H

R S−1 0

][
M

N

]
= I,

which completes the proof.
The BCF presented in Theorem 9 will henceforth be referred

to as the QR-BCF parameterization
Remark 1: The QR-BCF parameterization given in Theo-

rem 9 reduces to the standard LCF and RCF parameterizations
of [14] by an appropriate selection of Q, S, R, DN and DL.
For example, let P ∈ R and {N,M,L,K} ∈ B(P ) given
by (2) with Q = B, S = I , DN = D and DL = −I . Then
L = I , K = 0 and {N,M} ∈ Cr(P ). �

Remark 2: The matrices Q, S and R satisfying the con-
ditions of Theorem 9 exist regardless of the stabilizability
and detectability of the given state space realization of the
plant. However, the assumption is necessary for the resulting
factorization to be BC. This can be seen as follows. The pair
{N,M} is RC if and only if the associated graph symbol has
no transmission zeros in C̄+ or equivalently

rank

[
M
N

]
= r ∀s ∈ C̄+

⇔ rank

A+QSR− sI QS
SR S

C +DNSR DNS

 = n+ r ∀s ∈ C̄+

⇔ rank

A− sI Q
0 I
C DN

 = n+ r ∀s ∈ C̄+

⇔ rank

[
A− sI
C

]
= n ∀s ∈ C̄+

⇔ (C,A) is detectable,

where n denotes the order of the plant or equivalently the
dimension of A. Hence, the detectability of (C,A) is necessary
for the QR-BCF parameterization to generate a valid BCF of
the plant. It can similarly be shown that {L,M} ∈ Cl if and
only if (A,B) is stabilizable. �

An interesting question that arises from the BCF char-
acterization of Theorem 9 is “what is the smallest internal
dimension achievable using the QR-BCF parameterization?”.
This is equivalent to finding the smallest dimension Q such
that (A,Q) is stabilizable. This question is answered by the
following lemma.

Lemma 10: Let A ∈ Rn×n, then there exists a matrix
B ∈ Rn×q such that (A,B) is controllable if and only if
maxλi∈Λ(A) {γA(λi)} ≤ q.

Proof: This is a consequence of [15, Theorem 1.2].
Then, by a direct application of the above result, it

becomes apparent on using Theorem 9 that the mini-
mum BCF internal dimension achievable is given by r =
maxλi∈Λ(A)∩C̄+

{γA(λi)}.

V. INTERNAL STABILITY

As is the case for RCFs and LCFs, BCFs can be used to
establish the internal stability of the feedback interconnection
of two systems. Some internal stability results based on BCFs
of the plant and controller are presented in the following
theorem.

Theorem 11: Consider the standard positive feedback inter-
connection of a plant P ∈ Rp×q and controller C ∈ Rq×p.
Let {N,M,L,K} ∈ Br(P ) and {U, V,W,X} ∈ Br̂(C),
with GP ∈ Bm

r (P ) and GC ∈ Bm
r̂ (C) being the associated

BCF symbols. Then the following statements are true:

(a) [P,C] is internally stable if and only if[
GP −diag (0r×r̂, Ip)

−diag (0r̂×r, Iq) GC

]
∈ GH∞. (3)

(b) Suppose that [K,X] is internally stable. Then [P,C] is
internally stable if and only if

GP ?

(
adiag (Iq, Ir̂)GC adiag (Ir̂, Ip)

)
∈ GH∞. (4)

(c) Suppose that X = 0. Then [P,C] is internally stable if
and only if [

M −LU
−WN V −WKU

]
∈ GH∞. (5)

(d) Suppose that [K,C] is internally stable. Then [P,C] is
internally stable if and only if

M − LC (I −KC)
−1
N ∈ GH∞. (6)

Before proving the above theorem, the following useful
result is provided.

Lemma 12: Let A =
[
A11 A12

A21 A22

]
∈ RH∞ and suppose

that A22 ∈ GH∞. Then A ∈ GH∞ if and only if A11 −
A12A

−1
22 A21 ∈ GH∞.

Proof: The proof follows trivially via a Schur complement
decomposition of A.

Proof of Theorem 11: Define

G[P,C] =


0 M L 0
V 0 0 W
U 0 I −X
0 N −K I

 (7)

and note that G[P,C] ∈ Bm(
[
I −C
−P I

]
). It then follows from

Lemmas 1 and 3 that [P,C] is internally stable if and only if
G[P,C] ∈ GH∞. The theorem statements can then be proven
via consecutive applications of Lemmas 2 and 12 in addition
to some elementary row/column permutations to (7).

To prove (d) it is also necessary to note that given
{U, V,W, 0} ∈ B(C), then {U, V − WKU,W, 0} ∈
B(C (I −KC)

−1
). However the supposition that X = 0 is

not necessary as the term can always be absorbed into the
other BC factors of C.

Remark 3: It follows from Theorem 11 that the internal
stability tests induced by classical coprime factorizations [12,
Lemma 5.10] are special cases of their BCF counterparts. �
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Fig. 1. Perturbed plant block diagram with BC factor uncertainty.

VI. UNCERTAINTY AND ROBUST STABILITY CONDITIONS

Just like RCFs and LCFs, BCFs can be used to define an
uncertainty structure and by extent a robust stability margin.
In this section, stable additive perturbations on the BC factors
of a plant are examined. Following coprime factor convention,
a BCF perturbed plant can be defined as

P∆ = (N+∆N ) (M+∆M )
−1

(L+∆L)+(K+∆K). (8)

Figure 1 shows a block diagram representation of the
proposed BCF uncertainty structure given by (8). As expected,
the uncertainty structure induced by a plant BCF contains
elements from both LCF and RCF uncertainty. Therefore, like
coprime factor uncertainty, BCF uncertainty is suitable for
capturing low frequency parameter errors, neglected high fre-
quency dynamics and uncertain C̄+ poles and zeros. Another
interesting fact about this structure is that it closely resembles
the standard four-block problem commonly studied in robust
control as is evident from Figure 1.

Given a coprime factorization of a plant, any perturbations
on the coprime factors of the plant must preserve coprimeness,
otherwise the perturbed plant is not robustly stabilizable [16,
Remark 4.4]. A similar condition will be imposed herein with
{N+∆N ,M+∆M , L+∆L,K+∆K} ∈ B(P∆).

From the very definition of BCF uncertainty it is obvious
that this structure will always be at least as good as classical
coprime factor uncertainty at capturing modeling errors. This
follows by noting that the former forms a superset of the
latter. Consider for example the LCF of a plant {L,M} ∈
Cl(P ) being perturbed to PLCF∆ = (M + ∆M )−1(L + ∆L).
Now, if we were to allow uncertainty on the induced BCF
{I,M,L, 0} ∈ B(P ), the resulting perturbed plant would be
given by PBCF∆ = (I + ∆N )(M + ∆M )−1(L + ∆L) + ∆K

which allows for capturing output multiplicative and additive
modeling errors [12, Table 9.1] in addition to the coprime
factor errors normally represented by LCF uncertainty. Thus
it becomes apparent that LCF and RCF uncertainty is a special
structured case of BCF uncertainty.

A central part in the study of any uncertainty structure
is the construction of a generalized plant. In the case of
BCF uncertainty this can be obtained as follows. Define
z = ( z∗2 z∗1 )

∗ and w = (w∗1 w
∗
2 )
∗. Then from Figure 1 a

generalized plant Π : (w∗ u∗ )
∗ 7→ ( z∗ y∗ )

∗ and uncertainty
matrix ∆ : z 7→ w can be defined as

Π =


M−1 0 M−1L

0 0 I

NM−1 I P

 and (9)

∆ =

[
−∆M ∆L

∆N ∆K

]
. (10)

It is straightforward to confirm that using the above Π and ∆
yields P∆ = Fu(Π,∆).

Though a BCF robust stability margin can be obtained by
directly calculating ‖Fl(Π, C)‖−1

∞ (see [17] for details), the
procedure is simplified when a BCF of the controller is used.
This robust stability result is given in the following theorem.

Theorem 13: Consider the standard positive feedback in-
terconnection of a plant P ∈ R and stabilizing controller
C ∈ R and suppose that {N,M,L,K} ∈ B(P ) and
{U, V,W, 0} ∈ B(C). Furthermore, define ∆ ∈ RH∞ as
in (10), P∆ = Fu(Π,∆) with Π as in (9) and suppose that
{N + ∆N ,M + ∆M , L + ∆L,K + ∆K} ∈ B(P∆). Then
[P∆, C] is internally stable for all ‖∆‖∞ < γ if and only if∥∥∥∥∥

[
I 0
0 U

] [
M −LU
−WN V −WKU

]−1 [
I 0
0 W

]∥∥∥∥∥
∞

≤ 1

γ
.

Proof: First, define S =
[

M −LU
−WN V−WKU

]
which from

Theorem 11 (c) belongs to GH∞ since [P,C] is internally
stable. Then, using the same result again, [P∆, C] is internally
stable if and only if[

M + ∆M −(L+ ∆L)U
−W (N + ∆N ) V −W (K + ∆K)U

]
∈ GH∞

⇔
(
S −

[
I 0
0 W

] [
−∆M ∆L

∆N ∆K

] [
I 0
0 U

])−1

∈ RH∞

⇔
([
I 0
0 I

]
−
[
I 0
0 U

]
S−1

[
I 0
0 W

]
∆

)−1

∈ RH∞.

The conclusion then follows from the small gain theorem.

VII. NUMERICAL EXAMPLE

A numerical example is provided in this section to illustrate
how the results presented in this paper can be used in a
practical setting.

Before providing the numerical example we briefly discuss a
BCF based controller parameterization . Suppose that a plant
P ∈ R has the BCF {N,M,L,K} ∈ B(P ). Since K ∈
RH∞, using the Youla parameterization [18] a set of stabiliz-
ing controllers for K is given by {C = U (I +KU)

−1
: U ∈

RH∞,det(I + KU)(∞) 6= 0} so that C (I −KC)
−1

= U .
Then using Theorem 11 (d), a set of stabilizing controllers for
P can be defined as C(P ) = {C = U (I +KU)

−1
: U ∈

RH∞,det(I +KU)(∞) 6= 0,M − LUN ∈ GH∞}.
Consider the plant P ∈ R given by

P =


1 0 1 1
0 −2 1 1
1 2 0 0
2 1 0 0

 =

[
3s

(s+2)(s−1)
2s+1

(s+2)(s−1)
3(s+1)

(s+2)(s−1)
5s+7

(s+2)(s−1)

]
.
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Then with Q = [ 1 0 ]
∗, S = I , R = [−4 0 ], DN = 0 and

DL = 0, a BCF of P is obtained via Theorem 9 as[
M −L
N K

]
=


s−1
s+3 − 4

s+3 − 8
s+3

1
s+3

3s+8
(s+3)(s+2)

4s+10
(s+3)(s+2)

2
s+3

3s+7
(s+3)(s+2)

5s+11
(s+3)(s+2)

∈Bm
1 (P ).

A controller can now be synthesized for P using the procedure
described above. Since the internal dimension of the given
BCF is 1, this is a simple scalar problem; a solution to which
given by U = − s+3

s+4 diag (1, 1/8). This yields the controller

C = − 1

d(s)

[
8s3+67s2+182s+159 4s2+22s+30

3s2+16s+21 s3+6s2+9s

]
∈ C(P ),

where d(s) = 8s3 + 51s2 + 68s− 35.
Now consider the reverse problem. That is, given P and C,

establish whether or not [P,C] is internally stable. Then using
BCF theory, specifically Theorem 11 (d), internally stability
can be established by inspection of the transmission zeros of a
scalar transfer function [19]. As a comparison, using a coprime
factor result would require the inversion of a 2× 2 matrix at
best. Such a scalar test is possible for any P ∈ Rp×q for
which B1(P ) 6= ∅, regardless of the magnitudes of p and
q. One could hence easily imagine benefits in a variety of
control problems; for example multi-agent systems, such as
those motivated in [20] and [21].

VIII. CONCLUSIONS

The foundations of a BCF theory are developed in this
paper. Many fundamental, yet important, results such as
state space parameterization and internal stability tests are
presented. It is also demonstrated that many RCF or LCF
results can be obtained from the more general BCFs via
the appropriate restrictions. The QR-BCF parameterization is
presented which is shown to capture the standard coprime
factor parameterizations given by [14]. Finally, the uncertainty
structure induced by a BCF is defined and shown to have an
appealing nature that encompasses the classical LCF and RCF
uncertainty structures.
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