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FIBRATIONS WITH FEW RATIONAL POINTS

D. LOUGHRAN AND A. SMEETS

Abstract. We study the problem of counting the number of varieties in
families which have a rational point. We give conditions on the singular
�bres that force very few of the varieties in the family to contain a rational
point, in a precise quantitative sense. This generalises and uni�es existing
results in the literature by Serre, Browning�Dietmann, Bright�Browning�
Loughran, Graber�Harris�Mazur�Starr, et al.
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1. Introduction

Given a family of varieties over a number �eld k, a natural question is the
following: how �many� varieties in the family contain a rational point? To
make this question more precise, we shall use height functions.
Let X be a variety over k equipped with a dominant morphism π : X → Pnk .

Consider Pnk with its usual height: given x = (x0 : · · · : xn) ∈ Pn(k), we de�ne

H(x) =
∏
v

max{|x0|v, . . . , |xn|v}

where the product is over all places v of k and | · |v denotes the normalised
v-adic absolute value. One is then interested in studying the quantity

N(π,B) = #{x ∈ Pn(k) : x ∈ π(X(k)), H(x) ≤ B}, (1.1)
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2 D. LOUGHRAN AND A. SMEETS

as B → ∞, which counts those varieties in the family with a rational point.
In this paper, we focus on the function

Nloc(π,B) = #{x ∈ Pn(k) : x ∈ π(X(Ak)), H(x) ≤ B}, (1.2)

counting those varieties in the family which are everywhere locally solvable.
The goal of this paper is to obtain upper bounds for the latter quantity, the
primary motivation being to give upper bounds for the counting function (1.1).
This will allow us to deduce that 0% of the varieties in certain families admit
a rational point, by proving the stronger statement that 0% of the varieties
are everywhere locally solvable. The counting functions (1.1) and (1.2) have
been studied for various special families by numerous authors, see e.g. [7], [21],
[24], [25], [31], [37] and the more recent papers [1], [2], [6], [9] and [29].
Let us �rst state a special case of our results, which illustrates the kind of

behaviour observed in this paper:

Theorem 1.1. Let X be a proper, smooth irreducible algebraic variety over
a number �eld k, equipped with a dominant morphism π : X → Pnk with
geometrically integral generic �bre. If the �bre over some codimension one
point of Pnk is irreducible, but not geometrically integral, then

Nloc(π,B) = o(Bn+1).

Thus a simple geometric condition implies that �almost all� varieties in the
family are not everywhere locally solvable; indeed, recall that by [35], there is
some ck > 0 such that #{x ∈ Pn(k) : H(x) ≤ B} ∼ ckB

n+1 as B →∞.
To state our main results, we need more notation. Following Skorobogatov

[44, Def. 0.1], a scheme over a �eld k is said to be split if it contains a geomet-
rically integral open subscheme, and non-split otherwise. Let π : X → Pnk be
as above and choose some model π : X → Pnk for π over Ok,S for some �nite
set of primes S of k (denoted again by π). We de�ne

∆(π) := lim
B→∞

∑
p⊂Ok,S
N(p)≤B

#{xp ∈ Pn(Fp) : π−1(xp) is non-split}∑
p⊂Ok,S
N(p)≤B

N(p)n−1
, (1.3)

where the sums are taken over the non-zero prime ideals p of Ok,S. We will
show that this limit exists, and give a formula to calculate it in terms of the
splitting behaviour of the �bres of π over codimension one points. This will
reduce the calculation of ∆(π) to a problem in group theory.
To describe this formula, letD be a codimension one point of Pnk with residue

�eld κ(D). The �bre of π over D is a possibly reducible κ(D)-scheme. Let
ID(π) be its set of geometric irreducible components of multiplicity one, i.e. the

irreducible components of π−1(D) ⊗κ(D) κ(D) which are generically reduced.

Choose a �nite group ΓD(π) through which the action of Gal(κ(D)/κ(D)) on
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ID(π) factors; this corresponds to a choice of splitting �eld for these irreducible
components, cf. �3.2 for more details. If ID(π) is non-empty, we set

δD(π) :=
#{γ ∈ ΓD(π) : γ acts with a �xed point on ID(π)}

#ΓD(π)
. (1.4)

This de�nition is independent of the choice of ΓD(π). If ID(π) is empty, we
set δD(π) = 0. If π−1(D) is split, then it is simple to see that δD(π) = 1,
since then one element of ID(π) is �xed by all elements of ΓD(π). However the
converse does not hold in general; see Example 5.9 for a counterexample.
We now come to the main result of this paper:

Theorem 1.2. Let X be a proper, smooth algebraic variety over a number
�eld k, equipped with a dominant morphism π : X → Pnk with geometrically
integral generic �bre. Then the limit (1.3) exists and we have

∆(π) =
∑

D∈(Pnk )(1)

(1− δD(π)) .

Moreover, we have the upper bound

Nloc(π,B)� Bn+1

(logB)∆(π)
.

This result illustrates the philosophy developed in [29, �1.3], namely that
the behaviour of Nloc(π,B) should be determined by the non-split �bres over
codimension one points. Note that no assumptions are made on the smooth
�bres. Theorem 1.2 allows us to recover and extend numerous existing results.
For example, we generalise results of Serre [37] on conic bundles, and improve
upon work of Browning�Dietmann [7] on Fermat curves and work of Graber�
Harris�Mazur�Starr [19] on genus 1 �brations, cf. �5.
If ∆(π) > 0, then Theorem 1.2 implies that 0% of the varieties in the family

are everywhere locally solvable. Our next result shows that the converse is also
true. Hence we obtain a complete description of when a positive proportion
of the varieties in a family are everywhere locally solvable.

Theorem 1.3. Let X be a proper, smooth algebraic variety over a number
�eld k, equipped with a dominant morphism π : X → Pnk with geometrically
integral generic �bre. Assume that X(Ak) 6= ∅ and ∆(π) = 0. Then

lim
B→∞

Nloc(π,B)

#{x ∈ Pn(k) : H(x) ≤ B}
exists, is non-zero and is a product of local densities.

The proof of this result is an adaptation of the proof of [6, Thm. 1.3], and
uses the sieve of Ekedahl [15]. Examples of families for which the product of
local densities has been explicitly computed can be found in [3], [4] and [6].
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Theorem 1.3 yields the following corollary:

Corollary 1.4. Let X be a proper, smooth algebraic variety over a number
�eld k, equipped with a dominant morphism π : X → Pnk with geometrically
integral generic �bre. Assume that ∆(π) = 0 and that, outside of a thin subset
of Pn(k), the smooth �bres of π over rational points satisfy the Hasse principle.
Then X satis�es the Hasse principle.

We use the term �thin set� in the sense of Serre [39, �9.1]. The result follows
immediately from Theorem 1.3, as thin sets have density zero [39, Thm. 13.1.3].
There is a large industry of proving results like Corollary 1.4 via the �bration

method (see e.g. [22] for a recent highlight). One usually requires that very
few �bres over codimension one points are non-split, or that non-split �bres
only occur over linear subspaces. In Corollary 1.4 however, we allow arbitrarily
many non-split �bres over arbitrary codimension one points D, provided that
each such D satis�es δD(π) = 1. It would be interesting to construct new
examples of �brations with non-split �bres over codimension 1 points and
∆(π) = 0, beyond those already studied by Colliot-Thélène in [11].
Our last result is a version of Theorem 1.2 for integral points. Let us write

k∞ = Ok ⊗Z R, and let ‖ · ‖ be an R-vector space norm on kn∞. We identify
Onk with its image in kn∞, viewed as a full rank sublattice. Given π : X → An

k ,
de�ne

Nloc(π,B) = #{x ∈ Onk : x ∈ π(X(Ak)), ‖x‖ ≤ B}. (1.5)

Theorem 1.5. Let X be a smooth algebraic variety over a number �eld k,
equipped with a proper, dominant morphism π : X → An

k with geometrically
integral generic �bre. Then

Nloc(π,B)� Bn

(logB)∆(π)
, where ∆(π) =

∑
D∈(Ank )(1)

(1− δD(π)) .

Here δD(π) is de�ned in a manner similar to (1.4). The analogue here of
Theorem 1.3 does not hold in general, due to possible obstructions at the real
places (for example if πv(X(kv)) is bounded for some real place v).
The proofs of our results require input from geometry and analytic number

theory. The key geometric ingredient (building on ideas of Wittenberg) is
Theorem 2.8. Given π as above and a �nite place v of k, this theorem gives
su�cient conditions under which the �bre of π above a closed point, which
is v-adically close to a closed point with non-split �bre, has no kv-point; one
should see this as certain local points being �sparse� close to a non-split �bre.
An easy example illustrating this type of behaviour (used by Serre in [37])
is the following: let a ∈ k∗ be a non-square and let v be a �nite place not
dividing 2 such that a 6∈ k∗2v . Consider the family of conics

C : ax2 + ty2 = z2 (1.6)
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over A1
k. If t has valuation 1 with respect to v, then Ct has no kv-point. It is

precisely this type of observation which we will generalise in �2.
As for the analytic input, the criterion provided by Theorem 2.8 is ideal for

an application of the large sieve. In order to perform the sieve, we will use
versions of the Chebotarev density theorem for arithmetic schemes proven by
Serre [42, �9]. This builds on the method of Serre for conic bundles [37].
We end with the following conjecture:

Conjecture 1.6. Let π : X → Pnk be as in Theorem 1.2. Assume that at least
one �bre of π is everywhere locally solvable and that the �bre of π over every
codimension one point of Pnk has an irreducible component of multiplicity one.
Then the bounds given in Theorem 1.2 are sharp.

This conjecture is known to hold in some special cases, e.g. for some families
of conics [21], [24], [25], [47], Severi�Brauer varieties [29] and norm one tori
[8] (see �5.2). Moreover, when ∆(π) = 0, Theorem 1.3 proves that Conjecture
1.6 holds; this result supersedes various special cases, e.g. [31, Thm. 3.6].
This conjecture builds on the conjectural framework of the �rst-named author
began in [29, �1.3]. Note that Theorem 1.2 will certainly not be sharp as soon
as there are many codimension one points D for which π−1(D) contains no
irreducible component of multiplicity one. In such cases far fewer �bres tend
to be everywhere locally solvable (see [12] for examples of this phenomenon).
Sieves do not yield good upper bounds in such cases; for example, the large
sieve gives very poor upper bounds for counting squareful integers.
We end this introduction with an overview of the paper. In �2, we prove

the sparsity criterion for local points needed for the sieving process. Some
basic properties of the splitting densities appearing in our results are proven
in �3. The main results will be proven in �4. Finally, in �5, we give examples
showing that our results generalise and improve upon known special cases in
the literature, together with new applications.

Notation. If Y is a noetherian scheme, the set of codimension i points will
be denoted by Y (i), and the set of closed points by Y . For y ∈ Y , we denote
the residue �eld of y by κ(y). A variety over a �eld k is a reduced, separated
scheme of �nite type over k. If k is a number �eld, by a prime (or �nite place)
p of k we mean a prime ideal of the ring of integers Ok. The completion of k
at p will be denoted by kp, with local ring Op and residue �eld Fp. By Ak, we
mean the ring of adèles (whereas An

k will denote a�ne n-space over k).
Given a scheme X, the multiplicity of an irreducible component Z of X is

de�ned to be the length of the local ring of X at the generic point of Z (see [17,
�1.5]). In particular, an irreducible component of multiplicity 1 is one which is
generically reduced.
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2. Sparsity of local points around non-split fibres

We gather some facts on the notion of submersivity of a morphism of schemes
in �2.1. This paragraph is based on unpublished notes of Olivier Wittenberg,
who generously shared his thoughts with us. In �2.2, we prove the crucial
�sparsity criterion� for local points around non-split �bres, needed in �4.

2.1. Submersive morphisms and regularity.

De�nition 2.1. A morphism of schemes f : X → Y is submersive at a point
x ∈ X if the natural map TxX → TyY ⊗κ(y) κ(x) is surjective, where y = f(x);
here TxX denotes the tangent space of X at x. We say that f is submersive
if it is submersive at every point of X.

The following lemma is trivial.

Lemma 2.2. Let f : X → Y and g : Y → Z be morphisms of schemes. If f
is submersive at x ∈ X and g is submersive at f(x), then g ◦ f is submersive
at x. In particular, if f and g are submersive, then g ◦ f is submersive.
Conversely, if g ◦ f is submersive at x ∈ X, then g is submersive at f(x).

In particular, if g ◦ f is submersive and f is surjective, then g is submersive.

The following result is well-known:

Proposition 2.3. Smooth morphisms are submersive.

Indeed, any smooth morphism f : X → Y factors locally as the composition
of an étale morphism h : X → An

Y (for some n) and the projection map
g : An

Y → Y . It is not hard to check that both g and h are submersive. The
result then follows from the previous lemma.

Proposition 2.4. Let Y be an integral scheme with generic point η such that
charκ(η) = 0. Let f : X → Y be a morphism of �nite type. Then there exists
a dense open subscheme U ⊆ Y such that fU : XU → U is submersive.

The hypothesis on the characteristic is necessary for such a statement to be
true; consider for example Y = Spec(k[t, 1

t
]) and X = Spec(k[t, 1

t
, x]/(xp− t)),

where k is an algebraically closed �eld of characteristic p > 0. Then X → Y
is submersive at the unique point of the generic �bre, but nowhere else.
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Proof. By Lemma 2.2, we can assume that X is reduced and, shrinking Y
if necessary, that X is �at over Y . We will induct on the dimension of the
generic �bre Xη of f . As f is �at and �nitely presented, it is open. Therefore
if Xη = ∅ then X = ∅; thus in this case there is nothing to prove.
So assume that Xη 6= ∅. Let V ⊆ X be the smooth locus of f and denote

by W its complement, seen as a reduced closed subscheme of X. Since κ(η)
is a �eld of characteristic zero and Xη is reduced, we have dimWη < dimXη.
We can therefore assume, using the induction hypothesis, and shrinking Y if
necessary, that the composition W ↪→ X → Y is submersive. The second half
of Lemma 2.2 then implies that f is submersive at the points in W ; hence f
is submersive globally, since it is even smooth at the points in V . �

Given a regular scheme X and two regular, closed subschemes Z1 and Z2 of
X, we say that Z1 and Z2 intersect transversally at x if TxZ1 + TxZ2 = TxX
as κ(x)-subspaces of the vector space TxX.

Proposition 2.5. Let f : X → Y be a �at morphism of �nite type between
regular schemes. Let Z1 and Z2 be regular closed subschemes of Y meeting
transversally. Assume that f is smooth above Y \ Z1 and that the induced
morphism f : X ×Y Z1 → Z1 is submersive. Then X ×Y Z2 is regular.

Proof. It su�ces to prove that XZ2 := X ×Y Z2 is regular above the points in
Z1 ∩Z2. Let x ∈ XZ2 be such a point, i.e. y = f(x) ∈ Z1 ∩Z2. We claim that
there is a short exact sequence of κ(x)-vector spaces

0→ TxXZ2 → TxX → (TyY/TyZ2)⊗κ(y) κ(x)→ 0. (2.1)

Only right exactness of the above sequence is non-trivial. This follows from the
following simple observations: the image of TyZ1 generates TyY/TyZ2, by the
transversality assumption; and the map TxXZ1 → TyZ1⊗κ(y)κ(x) is surjective,
since f : XZ1 → Z1 is submersive. Next, the exactness of (2.1) implies that

dimκ(x) TxXZ2 = dimOX,x − dimOY,y + dimOZ2,y

since X, Y and Z2 are regular. Since X is �at over Y , [20, Thm. 14.2.1] gives

dimOX,x = dimOY,y + dimOXy ,x
where Xy is the �bre of f above y. Hence (again by [20, Thm. 14.2.1])

dimκ(x) TxXZ2 = dimOXy ,x + dimOZ2,y = dimOXZ2
,x.

It follows that XZ2 is regular at x, as required. �

2.2. Sparsity of local points. We start with a trivial observation:

Lemma 2.6. Let X be a scheme of �nite type over a �eld k. If X admits a
smooth rational point, then X is split.
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Proof. Any smooth point admits a smooth, connected open neighbourhood.
If the smooth point is a rational point, then this neighbourhood is in fact
geometrically connected, and hence geometrically integral. �

We will also need the following elementary geometric fact.

Lemma 2.7. Let f : X → Y be a dominant morphism of �nite type between
integral noetherian schemes. If Y is regular in codimension 1, there exists a
closed subscheme F ⊆ Y , of codimension at least 2 in Y , such that if U = Y \F ,
then the induced morphism f−1(U)→ U is �at.

Proof. Without the condition on the codimension of F , this is well-known
(�generic �atness�). The fact that one can take F to be of codimension at
least 2 if Y is regular in codimension 1 follows from [23, Prop. 3.9.7]. �

Let us now state the main result of this section, which will be fundamental
for the sieving process carried out in �4:

Theorem 2.8. Let k be a number �eld. Let f : X → Y be a proper, dominant
morphism of smooth, geometrically integral k-varieties. Choose a �nite set of
�nite places S for which there exist regular Ok,S-models X and Y for X and
Y respectively, and such that f extends to a proper morphism X → Y. Let T
be any reduced divisor on Y which contains the locus where this morphism is
not smooth.
Enlarging S if needed, one can �nd a closed subset Z of T containing the

singular locus of T and of codimension 2 in Y, satisfying the following property.
Let p 6∈ S be a �nite place of k and choose P ∈ Y(Op) such that the image

of the morphism P : SpecOp → Y meets T transversally outside of Z and
such that the �bre above P mod p ∈ T (Fp) is non-split. If P ∈ Y (kp) denotes
the generic �bre of P, then f−1(P ) does not have any kp-points.

As an example, take Y = P1
k and let P ∈ P1

k(kp) \ {∞} for a �nite place p
which is su�ciently large, with coordinates (tP : 1) for some tP ∈ Op. Assume
that the �bre above P mod p ∈ P1

Ok(Fp) is non-split. If tQ ∈ Op satis�es
vp(tP − tQ) = 1 then the �bre above the point Q ∈ P1

k(kp) with coordinates
(tQ : 1) does not have a kp-point. In particular, in the special case of conic
bundles over P1

k given by (1.6), we recover Serre's observation used in [37].
We now prove the theorem:

Proof. Let T1, T2, . . . , Tr be the irreducible components of T . Enlarging S if
necessary, we can assume that each Ti = Ti ⊗Ok,S k is non-empty and hence a
divisor on Y . Then by Lemma 2.7, each Ti contains a strict closed subset Fi
such that if F =

⋃r
i=1 Fi, then f is �at over Y \ F . Denoting by F (resp. Fi)

the closure of F (resp. Fi) in T (resp. Ti) and enlarging S if necessary, we may
assume that X → Y is �at away from the codimension 2 subset F .
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For each i = 1, 2, . . . , r, there exists a strict closed subset Si ⊆ Ti such that
f |Ti is submersive over Ti \ Si, by Proposition 2.4. Enlarging Si if necessary,
we may assume that Ti \ Si is regular. Enlarging S if necessary, we may now
assume that the induced morphism X ×Y (T \S)→ T \S is submersive, where
S :=

⋃r
i=1 Si is a closed subset of codimension at least two in Y .

We now take Z = F ∪ S to be the required subset of codimension 2 in Y ,
and choose P ∈ Y(Op) as in the statement of the theorem. Proposition 2.5
implies that the �bre product X ×Y P is a regular Op-scheme. If its generic
�bre f−1(P ) were to have a kp-point, then X ×Y P would have an Op-point by
properness, which then has to specialise to a rational point in the smooth locus
of its special �bre; this observation crucially uses the regularity of X ×Y P ,
cf. [10, Prop. 3.1.2]. By Lemma 2.6, this would imply that the �bre above
P mod p is split, contradicting our assumptions. This �nishes the proof. �

3. Splitting densities

The aim of this section is to study the fundamental properties of the quantity
∆(π) de�ned in (1.3). We will show that it is a well-de�ned birational invariant
of the generic �bre (in a sense we will make precise in Lemma 3.11) and give
a closed formula which calculates its value (Proposition 3.10).

3.1. Frobenian sets. We �rst recall the notion of frobenian sets on arithmetic
schemes, following Serre's treatment in [42, �9.3].
Let Y be a �at integral scheme of �nite type over Z of dimension n+ 1, so

that the generic �bre Y = Y ⊗Z Q has dimension n. Recall that we denote
the set of closed points of Y by Y . The norm of closed point y ∈ Y is de�ned
to be N(y) = #κ(y). The degree deg(y) of a closed point y is the degree of its
residue �eld κ(y) over its prime sub�eld. Let K be the function �eld of Y .

De�nition 3.1. A frobenian set is a subset F ⊂ Y with the following proper-
ties. There exist a non-Zariski-dense subset S ⊂ Y , a �nite Galois extension
L/K with Galois group Γ and a subset C ⊂ Γ such that:

(1) C is stable under conjugation;
(2) the normalisation of Y in L is �nite étale over the points in Y \ S;
(3) for all y ∈ Y \ S, we have y ∈ F if and only if Froby ∈ C.

Here Froby ∈ Γ denotes the Frobenius element at y ∈ Y , cf. [42, 9.3.1.3].
We de�ne the mean of F to be m(F ) = |C|/|Γ| (this is easily seen to be
independent of the choice of Γ and C).

Example 3.2. Let E/K be a �nite extension of number �elds. Then the set
of all prime ideals of OK which split completely in E is a frobenian set.
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To see this, in the notation of De�nition 3.1 one takes Y = OK , the �eld L
to be the Galois closure of E/K, the set C to consist of the identity element
of Γ, and S the set of those primes of K which ramify in L/K.

A generalisation [42, Thm. 9.1] of the prime number theorem to higher-
dimensional arithmetic schemes states that

#{y ∈ Y : N(y) ≤ B} ∼ Li(Bn+1), as B →∞, (3.1)

where

Li(x) =

∫ x

2

dt

log t
.

Hence we de�ne the density of a subset F ⊂ Y to be

dens(F ) = lim
B→∞

#{y ∈ F : N(y) ≤ B}
Li(Bn+1)

,

if the limit exists. The set of closed points of Y of degree greater than 1
satis�es [42, Lem. 9.3]

#{y ∈ Y : N(y) ≤ B, deg y > 1} � Bn+1/2, (3.2)

in particular, it has density zero. We also require the following weak version
of the Lang�Weil estimate:

Y(Fp)� N(p)n. (3.3)

A generalisation of the Chebotarev density theorem (see [42, Thm. 9.11]) says
that if F ⊂ Y is a frobenian set, then the density dens(F ) exists and

dens(F ) = m(F ), (3.4)

where m(F ) is the mean as de�ned in De�nition 3.1. This implies that a
frobenian set has positive density if and only if it is Zariski dense (see [42,
�9.3.2, �9.3.3] for details).
We require a strengthening of (3.4). The following lemma is probably known

to experts; we give a proof for completeness.

Lemma 3.3. Let n = dimY , let F ⊂ Y be a frobenian set and let

ζF (s) =
∏
y∈F

(
1− 1

N(y)s

)−1

, Re s > n+ 1.

Then ζF (s) admits a holomorphic continuation to the half-plane Re s ≥ n+ 1,
apart from possibly at the point s = n+ 1, where we have

ζF (s) ∼ cF
(s− n− 1)m(F )

for some cF 6= 0, as s→ n+ 1.
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Proof. We recall that the usual zeta function of Y is de�ned to be

ζY(s) =
∏
y∈Y

(
1− 1

N(y)s

)−1

,

and that this is holomorphic and absolutely convergent on Re s > n + 1, cf.
[36, �9.1.7]. That ζF (s) is holomorphic on Re s > n+ 1 is thus clear.
Choose C, Γ and S as in De�nition 3.1. Let idC : Γ→ {0, 1} be the indicator

function of C. As this is invariant under conjugation, it may be written as a
sum idC =

∑
χ λχχ over the set Irr(Γ) of irreducible characters of Γ, for some

λχ ∈ C (see [18, Prop. 2.30]). It follows that

ζF (s) =
∏
y∈Y\S

(
1−

∑
χ λχχ(Froby)

N(y)s

)−1 ∏
y∈F∩S

(
1− 1

N(y)s

)−1

. (3.5)

As S is not Zariski dense, the second Euler product is holomorphic on Re s > n.
For the �rst one, we appeal to the theory of Artin L-functions on arithmetic
schemes (see [36, �2.2]). For an irreducible character χ of Γ, we let

LS(χ, s) =
∏
y∈Y\S

det

(
1− ρχ(Froby)

N(y)s

)−1

, Re(s) > n+ 1,

be the associated Artin L-function, where ρχ is the irreducible representation
corresponding to χ. Using the power series expansion of log, we obtain

logLS(χ, s) =
∑
y∈Y\S

χ(Froby)

N(y)s
+ g(s), Re(s) > n+ 1, (3.6)

where g(s) is holomorphic on Re(s) > n+ 1/2.
If χ is not the trivial character 1, then LS(χ, s) is holomorphic without

zeros on the half-plane Re s ≥ n+ 1, whereas LS(1, s) admits a meromorphic
continuation to Re s ≥ n + 1 without zeros and a single pole of order 1 at
s = n + 1. When n = 0, this is a classical result for the usual Artin L-
functions of number �elds. For general n, details can be found in [36, �2.6]
and [16, �2.1].
Returning to (3.5), for Re s > n+ 1 we have

log
∏
y∈Y\S

(
1−

∑
χ λχχ(Froby)

N(y)s

)−1

=
∑

χ∈Irr(Γ)

λχ
∑
y∈Y\S

χ(Froby)

N(y)s
+ h(s),

where h(s) is holomorphic on Re s > n + 1/2. Comparing with (3.6) and
exponentiating, we obtain

ζF (s) = G(s)
∏

χ∈Irr(Γ)

LS(χ, s)λχ , Re s > n+ 1, (3.7)
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where G(s) is holomorphic and non-zero on Re s > n + 1/2. The right-hand
side of (3.7) admits a holomorphic continuation to the half-plane Re s ≥ n+1,
except for a possible branch point singularity at s = n + 1 coming from the
trivial character 1. The result then follows from the fact that λ1 = m(F ). �

3.2. δ-invariants. We now study the δ-invariants given by (1.4). Let k be a
perfect �eld and let X be a scheme of �nite type over k. Denote by I the set of
geometric irreducible components of multiplicity 1, i.e. irreducible components
of X ⊗k k of multiplicity 1.
The Galois group Gal(k/k) acts on I in a natural way. One can construct

an explicit �nite group Γ through which this action factors, as follows. De-
note by K1, . . . , Kr the algebraic closures of k inside the function �elds of the
irreducible components of X over k of multiplicity 1. Then Γ may be taken
to be the Galois group of the Galois closure of the compositum of these �-
nite extensions, and I can be identi�ed with the Γ-set corresponding to the
étale k-algebra

∏r
i=1Ki; we refer to [5, Prop. 10.12, p. A.V.76] for the usual

correspondence between Γ-sets and étale k-algebras. If I 6= ∅, we de�ne

δ(X) :=
#{γ ∈ Γ : γ acts with a �xed point on I}

#Γ
. (3.8)

Note that this de�nition is independent of the choice of Γ. If I = ∅, we instead
de�ne δ(X) = 0. The quantity δ(X) measures �how non-split� X is. For many
arithmetic applications, schemes with δ(X) = 1 will turn out to be as good as
split schemes. We �rst gather some basic properties of these invariants.

Lemma 3.4. Suppose that δ(X) 6= 0. Then we have

1

#Γ
≤ δ(X) ≤ 1,

with Γ as constructed above. If X is split, then δ(X) = 1.

Proof. The �rst part is trivial. The second part follows from the observation
that if X is split then every element of Γ acts with a �xed point on I. Indeed,
the algebraic closure of k inside the function �eld of a geometrically integral
component is equal to k itself. �

Remark 3.5. If Γ is cyclic, then clearly δ(X) = 1 implies that X is split. If Γ
is non-cyclic, however, then this implication fails in general. Indeed, let K/k
be a Galois extension with Galois group Γ (if one exists). Then the scheme

X :=
⊔

k(L⊂K

SpecL

satis�es δ(X) = 1, but is non-split.

One cannot expect �simple� formulae for δ(X) in general. However, we have:
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Lemma 3.6. If X is irreducible but not geometrically integral, then δ(X) < 1.
If X is integral and the algebraic closure K of k in k(X) is Galois, then

δ(X) =
1

[K : k]
.

Proof. If δ(X) = 0 then the �rst part is clear. If δ(X) 6= 0 then the result
follows from a theorem of Jordan [40, Thm. 4]: for a group Γ acting transitively
on a �nite set I with #I ≥ 2, there is some γ ∈ Γ which acts without a �xed
point. The second statement is clear, as in this case Γ also acts freely on I. �

3.3. δ-invariants in families. Given a morphism of schemes π : X → Y of
�nite type and a (not necessarily closed) point y ∈ Y with κ(y) perfect, de�ne

δy(π) := δ(π−1(y)). (3.9)

We denote by Γy(π) and Iy(π) the associated Galois group and Γy(π)-set, as
de�ned in the previous section. If the generic �bre of π is split, then there
exists a dense open subset over which each �bre is split. This follows from
the constructible nature of geometric integrality [20, Thm. 9.7.7]. In the case
where the generic �bre is non-split, we now study the extent to which this
non-splitness spreads out in the arithmetic setting.

Proposition 3.7. Let X and Y be schemes which are of �nite type and �at
over Z, with Y integral, and let π : X → Y be a dominant morphism. Let η
denote the generic point of Y. Then the set

{y ∈ Y : π−1(y) is non-split} (3.10)

is frobenian with density 1− δη(π).

Proof. If π−1(η) has no irreducible component of multiplicity 1, then the same
holds on a dense open subset of Y (see [20, Lem. 9.7.2]). Hence the complement
of (3.10) is not Zariski dense and therefore has density 0. As in this case
δη(π) = 0 by de�nition, the result clearly holds.
Assume now that π−1(η) has at least one irreducible component of multi-

plicity 1. Removing multiple components if necessary, we may assume that
every irreducible component of π−1(η) has multiplicity 1. As strict closed
subsets have density 0, we may also replace Y by a dense open subset, if re-
quired. Hence we may assume that the �bre over every y ∈ Y has no multiple
components, since being geometrically reduced is a constructible property [20,
Thm. 9.7.7].
Let IrrX/Y be the �functor of open irreducible components of X/Y�, de�ned

by Romagny in [34, Déf. 2.1.1]. Shrinking Y if necessary, from [34, Lem. 2.1.2]
and [34, Lem. 2.1.3] we see that IrrX/Y is representable by a quasi-compact
étale algebraic space over Y . The generic �bre of IrrX/Y → Y �nite: it is the
�nite étale κ(η)-scheme corresponding to the Γη(π)-set Iη(π). In particular,
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shrinking Y if necessary, we may assume that IrrX/Y is �nite étale over Y ,
hence IrrX/Y is a scheme by Knutson's criterion [27, Cor. II.6.16].
Let y ∈ Y . By the de�nition of IrrX/Y , the �bre π

−1(y) is split if and only if
the �bre of IrrX/Y over y has a κ(y)-point. By the usual Galois correspondence
for �nite étale schemes, this occurs if and only if Froby ∈ Γη(π) acts with a
�xed point on Iη(π). Hence the set (3.10) is frobenian, and by the Chebotarev
density theorem (3.4) it has density 1− δη(π), as required. �

From the above proposition and the Chebotarev density theorem (3.4), we
deduce the following corollary, which will be used in the proof of Theorem 1.3.

Corollary 3.8. Under the assumptions of Proposition 3.7, assume further-
more that δη(π) = 1. Then the set

{y ∈ Y : π−1(y) is non-split}
is not Zariski dense in Y.

We now give an alternative interpretation of the δ-invariant for a variety
over a number �eld, suggested to us by Alexei Skorobogatov:

Lemma 3.9. Let X be a smooth variety over a number �eld k. Then the set
{p ⊂ Ok : X(kp) 6= ∅} is frobenian with density δ(X).

Proof. Let S be a su�ciently large �nite set of primes of k for which there
exists a smooth model X → SpecOk,S for X. The proof of Proposition 3.7
shows that by enlarging S if necessary, we may also assume that IrrX/Ok,S is
representable by a �nite étale scheme over SpecOk,S.
By Proposition 3.7, the set

{p ⊂ Ok,S : XFp is split}
is frobenian with density δ(X). If XFp is split and p is su�ciently large, the
Lang�Weil estimates and Hensel's lemma together imply that X(kp) 6= ∅. If
XFp is non-split and p 6∈ S, then IrrX/Ok,S(Fp) = IrrX/Ok,S(kp) = ∅, hence Xkp

is non-split as well. Lemma 2.6 then implies that X(kp) = ∅, as required. �

We now relate the �δ-invariants� to the quantity ∆(π) de�ned in (1.3). Let
π : X → Y be a morphism of varieties over a number �eld k with geometrically
integral generic �bre, with Y integral. Fix a model for π over Ok,S, for a �nite
set of primes S, i.e. a morphism of �at schemes of �nite type X → Y over
SpecOk,S (again denoted by π), such that the induced morphism X ⊗Ok,S k →
Y ⊗Ok,S k is identi�ed with the original morphism π. De�ne

∆(π) := lim
B→∞

∑
p⊂Ok,S
N(p)≤B

#{yp ∈ Y(Fp) : π−1(yp) is non-split}∑
p⊂Ok,S
N(p)≤B

N(p)n−1
, (3.11)
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where n = dimY . This de�nition is easily seen to be independent of the choice
of S and the corresponding model. We now show that the limit (3.11) exists
and calculate it; this will prove the �rst part of Theorem 1.2.

Proposition 3.10. The limit in (3.11) exists and we have

∆(π) =
∑

D∈Y (1)

(1− δD(π)).

Proof. Since the generic �bre of π is geometrically integral, there exists a strict
closed subset T of Y such that the �bre above each y ∈ Y \ T is split. Thus
by Lemma 3.4, the sum above can be taken over the points D in Y (1) ∩ T .
Let T denote the Zariski closure of T in Y . Enlarging S if necessary, we

�nd that for all p /∈ S, if the �bre over y ∈ YFp is non-split, then y ∈ T . Hence

∆(π) = lim
B→∞

∑
p⊂Ok,S
N(p)≤B

#{yp ∈ T (Fp) : π−1(yp) is non-split}∑
p⊂Ok,S
N(p)≤B

N(p)n−1
. (3.12)

If T has no irreducible component of codimension 1 then the limit (3.12) is
zero by (3.3), so the proposition trivially holds. Similarly, the intersection of
any two irreducible components of T of codimension 1 does not contribute to
(3.12). As prime ideals p of degree greater than 1 do not a�ect the limit (3.12),
we therefore obtain

∆(π) =
∑

D∈Y (1)∩T

dens
(
{y ∈ TD : deg(y) = 1, π−1(y) is non-split}

)
,

where TD denotes the closure of D in T . As the set of closed points of degree
larger than 1 has density zero (3.2), the result then follows from applying
Proposition 3.7 to each of the TD appearing in the above sum. �

We �nish by showing that the δ-invariants are birational invariants of the
generic �bre, under suitable conditions. For technical reasons, we work with
the class of almost smooth morphisms, as de�ned in [29, Def. 2.1].
Let R be a discrete valuation ring with perfect residue �eld. A separated

morphism of �nite type π : X → SpecR with smooth generic �bre is said to
be almost smooth if for any étale R-algebra R′, each R′-point of X lies in the
smooth locus of X. The canonical example of such a morphism is a domi-
nant morphism π with X regular [10, Prop. 3.1.2]. The extra �exibility given
by working with such morphisms sometimes comes in useful for applications,
cf. the proof of Theorem 5.10.

Lemma 3.11. Let π1 : X1 → SpecR and π2 : X2 → SpecR be proper, almost
smooth morphisms with X1 and X2 integral. Let D be the closed point of
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SpecR. If there exists a birational map X1 99K X2 compatible with π1 and π2,
then we have

δD(π1) = δD(π2).

Proof. The proof is a minor adaptation of the proof of [46, Cor. 17.3].
Let us �rst assume that δD(π1) = 0, i.e. that π−1

1 (D) does not have an irre-
ducible component of multiplicity 1. Then π−1

2 (D) also has no such component
by [29, Lem. 2.2], hence δD(π2) = 0 as required.
Let us now assume that δD(π1) 6= 0, hence δD(π2) 6= 0. Choose a splitting

�eld, with Galois group ΓD, for the irreducible components of π−1
1 (D) and

π−1
2 (D). The irreducible components of π−1

i (D) of multiplicity 1 admit a
natural ordering: for two such components c1 and c2, we say that c1 ≤ c2 if
the algebraic closure of κ(D) in the function �eld of c1 is a sub�eld of the
algebraic closure of κ(D) in the function �eld of c2.
Let min{ID(πi)} ⊂ ID(πi) be the set of geometric irreducible components

of π−1
i (D) of multiplicity 1 which are minimal for this ordering. An element

of ΓD acts with a �xed point on ID(πi) if and only if it acts with a �xed point
on min{ID(πi)}. It therefore su�ces to show that min{ID(πi)} is a birational
invariant, i.e. that

min{ID(π1)} ∼= min{ID(π2)} (3.13)

as ΓD-sets. Under the additional assumption that each Xi is regular, the
claim (3.13) is [46, Cor. 17.3]. The proof of this goes through if one works
with almost smooth morphisms as in [29, Lem. 2.2]: it su�ces to replace the
assumption that the total space is regular in the third paragraph of the proof
of [46, Prop. 17.2] by the assumption that the morphism is almost smooth.
This completes the proof. �

4. Proof of results

We now prove the main results stated in the introduction.

4.1. Proof of Theorem 1.3. The proof of Theorem 1.3 is a minor adaptation
of the proof of [6, Thm. 3.8]. The key new input is the following generalisation
of [6, Cor. 3.7]:

Proposition 4.1. Let π : X → Y be a dominant morphism of varieties over a
number �eld k with geometrically integral generic �bre and Y integral. Assume
that ∆(π) = 0. Then there exist a �nite set of primes S of k, a model X → Y
for π over Ok,S (again denoted by π) and a closed subset Z ⊂ Y of codimension
at least two, such that the induced map

(X \ π−1(Z))(Op)→ (Y \ Z)(Op)

is surjective for all primes p /∈ S.
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Proof. Choose a �nite set of primes S of k and a model π : X → Y for π over
Ok,S. As in the proof of Proposition 3.10, enlarging S if necessary, there is a
strict closed subset T ⊂ Y such that for all p /∈ S and all points yp ∈ YFp \TFp ,
the �bre π−1(yp) is split (here T denotes the closure of T in Y).
We claim that, assuming ∆(π) = 0 and enlarging S if necessary, there is a

closed subset Z ⊂ T ⊂ Y of codimension at least two in Y , such that for all
p /∈ S and all closed points yp ∈ YFp

\ ZFp
, the �bre π−1(yp) is split.

The claim is trivial if T itself has codimension at least two. If not, let D
be an irreducible component of T which has codimension 1 in Y and denote
by TD the closure of D in T . As δD(π) = 1, Corollary 3.8 yields a dense open
subscheme U ⊂ TD such that the �bre over all u ∈ U is split. Applying this
to all such components D of T proves the claim.
Hence, as in the proof of [6, Lem. 3.6] and [6, Cor. 3.7] and enlarging S if

necessary, we may apply Deligne's estimates [13, Thm. 1] to deduce that the
�bre π−1(yv) over every point yp ∈ Y(Fp) \ Z(Fp) contains a smooth Fp-point.
The conclusion then follows from Hensel's lemma. �

Let π : X → Pnk be as in Theorem 1.3, and Z ⊂ PnOk as in Proposition 4.1.
For each place v of k, let µv be a choice of Haar measure on kn+1

v , normalised
so that µp(On+1

p ) = 1 for all primes p of k. We wish to apply the version of
the sieve of Ekedahl given in [6, Prop. 3.4], taking

Ωv = π(X(kv)),

for any place v of k in the notation of loc. cit.
First consider the a�ne cone Ωaff

v ⊂ kn+1
v of Ωv. It follows from [6, Lem. 3.9]

that Ωaff
v is measurable with respect to µv and has boundary of measure zero.

Moreover, our assumption X(Ak) 6= ∅ implies that µv(Ω
aff
v ) > 0 for all v (again

see [6, Lem. 3.9]). This shows that our Ωv satisfy the conditions µv(∂Ωaff
v ) = 0

and µv(Ω
aff
v ) > 0 of [6, Prop. 3.4]. Next, it follows from Proposition 4.1 that

{x ∈ Pn(Op) : x mod p 6∈ Z(Fp)} ⊂ π(X(kp))

for all but �nitely many primes p. Combining this with [6, Lem. 3.5] we see
that the hypothesis (3.5) of [6, Prop. 3.4] is also satis�ed. We may therefore
apply [6, Prop. 3.4] to deduce that

lim
B→∞

Nloc(π,B)

#{x ∈ Pn(k) : H(x) ≤ B}
=
∏
v|∞

µv({x ∈ π(X(kv))
aff : maxi |xi|v ≤ 1})

µv({x ∈ kn+1
v : maxi |xi|v ≤ 1})

×
∏
p

µp({x ∈ π(X(kp))
aff ∩ On+1

p }),

and that this limit is non-zero. This completes the proof of Theorem 1.3. �
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4.2. Proof of Theorem 1.5. We now prove Theorem 1.5, by applying the
large sieve to the criterion from Theorem 2.8. We will prove Theorem 1.2 using
Theorem 1.5 in the next section. We let π : X → An

k be as in Theorem 1.5
and choose an R-vector space norm ‖ · ‖ on kn∞. We choose a su�ciently large
set of primes S of k and a model π : X → An

Ok,S for π over Ok,S; in the proof
we allow ourselves to enlarge S if necessary.

4.2.1. The large sieve. De�ne µ multiplicatively on ideals of Ok via
µ(p) = −1, µ(pm) = 0, m > 1,

for any prime ideal p. We will need the following version of the large sieve,
cf. [6, Lem. 6.2]:

Proposition 4.2. Let m,n ∈ N, let B ≥ 1 and let Ω ⊂ Onk . For each prime
ideal p, assume that there exists ω(p) < 1 such that the image of Ω in (Ok/pm)n

has at most (1− ω(p))(N p)mn elements. Then

#{x ∈ Ω : ‖x‖ ≤ B} � Bn

L(B1/(2m))
, where L(B) =

∑
a⊂Ok

N(a)≤B

|µ(a)|
∏
p|a

ω(p)

1− ω(p)
.

Proof. When k = Q, this is given in [37, �6]. The extension to number �elds is
standard and follows a strategy similar to the version given in [39, �12.1]. �

4.2.2. The sieving set. Choose a square-free polynomial

f ∈ Ok,S[x1, . . . , xn]

such that the closed subscheme T = {f = 0} of An
k contains the non-smooth

locus of π. Let T be the closure of T in An
Ok,S . We now apply Theorem 2.8 to

obtain a criterion which is amenable to the large sieve. In the next statement,
we write p‖f(x) to mean that p | f(x) (as ideals), but p2 - f(x).

Proposition 4.3. Enlarging S if necessary, there exists g ∈ Ok,S[x1, . . . , xn]
which is coprime to f such that

Nloc(π,B) ≤ #{x ∈ Onk : ‖x‖ ≤ B,x mod p2 /∈ A(p) for all p /∈ S},
where

A(p) = {x ∈ (Op/p
2)n : p‖f(x), p - g(x), π−1(x mod p) is non-split}. (4.1)

Proof. Enlarging S if necessary, we can choose a closed subset Z ⊂ T of
codimension 2 in An

Ok,S which satis�es the conditions of Theorem 2.8. Let us

also choose a polynomial g ∈ Ok,S[x1, . . . , xn] which vanishes on Z and such
that g is coprime to f , i.e. so that g = 0 contains no component of T .
Theorem 2.8 then implies that for p /∈ S and x ∈ An(Ok), if p | f(x), p - g(x)

and π−1(x mod p) is non-split, and if moreover x intersects T transversally
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above p, then π−1(x) has no kp-point. However, if p‖f(x) then a simple local
computation shows that x meets T transversally above p, cf. the argument
given in the proof of Proposition 4.3 in [6, �6]. This completes the proof. �

We now calculate the cardinality of the excluded residues (4.1). Let

r(p) = #{t ∈ T (Fp) : π−1(t) is non-split}.

Lemma 4.4. We have

|A(p)| = r(p) N(p)n +O(N(p)2(n−1)), as N(p)→∞.

Proof. We claim that

#{x ∈ (Op/p
2)n : f(x) ≡ 0 mod p2} � N(p)2(n−1). (4.2)

Under the additional assumption that f is homogeneous, this is [6, Lem. 6.3].
To deduce (4.2), we apply [6, Lem. 6.3] to the homogenisation F of f to �nd
that

#{(x, y) ∈ (Op/p
2)n+1 : F (x, y) ≡ 0 mod p2} � N(p)2n, (4.3)

where F (x, 1) = f(x). Considering the usual diagonal action of the unit group
(Op/p

2)∗ and using (4.3), we obtain

#{x ∈ (Op/p
2)n : f(x) ≡ 0 mod p2}

= #({(x, y) ∈ (Op/p
2)n+1 : y ∈ (Op/p

2)∗, F (x, y) ≡ 0 mod p2}/(Op/p
2)∗)

� N(p)2n/#(Op/p
2)∗

� N(p)2(n−1),

which proves (4.2). Applying (3.3) and (4.2), we �nd that

|A(p)| =#{x ∈ (Op/p
2)n : f(x) ≡ 0 mod p, π−1(x mod p) non-split}

+O(N(p)2(n−1))

=#{x ∈ Fnp : f(x) = 0, π−1(x) is non-split}N(p)n +O(N(p)2(n−1))

=r(p) N(p)n +O(N(p)2(n−1)). �

4.2.3. Application of the large sieve. We now apply Proposition 4.2 withm = 2
and

ω(p) =
|A(p)|
N(p)2n

.

The following lemma gives a lower bound for L(B).

Lemma 4.5. Let ∆(π) be as in (1.3). Then∑
a⊂Ok

N(a)≤B

|µ(a)|
∏
p|a

ω(p)

1− ω(p)
� (logB)∆(π).
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Proof. As ω(p) ≤ 1, it su�ces to show that∑
a⊂Ok

N(a)≤B

|µ(a)|
∏
p|a

ω(p) ∼ C(logB)∆(π), (4.4)

for some C > 0. To do this, consider the associated Dirichlet series

Ψ(s) =
∑
a⊂Ok

|µ(a)|
∏

p|a ω(p)

N(p)s
=
∏
p

(
1 +

ω(p)

N(p)s

)
, Re s > 0.

By Lemma 4.4 we have

Ψ(s) = g(s)
∏
p

(
1 +

r(p)

N(p)s+n

)
, (4.5)

where g(s) is holomorphic on Re s > −1/2. To continue, for each D ∈ T (0) let
TD (resp. TD) denote the closure of D in T (resp. T ). Let

FD = {t ∈ TD : π−1(t) is non-split}, rD(p) = #{t ∈ FD ∩ TD(Fp)}.

Note that FD is frobenian of density 1 − δD(π) by Proposition 3.7. By (3.3),
the contribution from the intersection of any 2 of the TD is negligible. Hence
from (4.5) we obtain

log Ψ(s) =
∑
p

r(p)

N(p)s+n
+ g1(s)

=
∑

D∈T (0)

∑
p

rD(p)

N(p)s+n
+ g2(s)

=
∑

D∈T (0)

∑
t∈FD∩TD(Fp)

1

N(t)s+n
+ g2(s),

where each gi is holomorphic on Re s > −1/2. Since the contribution of closed
points of degree greater than 1 is negligible (3.2), on exponentiating we �nd

Ψ(s) = G(s)
∏

D∈T (0)

ζFD(s+ n), Re s > 0,

where G(s) is holomorphic and non-zero on Re s > −1/2, and ζFD is as in
Lemma 3.3 (note that dimTD = n− 1). Hence from Lemma 3.3 and Proposi-
tion 3.10 we �nd that Ψ(s) has a holomorphic continuation to Re s ≥ 0, apart
from at s = 0 where

Ψ(s) ∼ c

s∆(π)
for some c > 0, as s→ 0.

A Tauberian theorem (e.g. [48, �II.7.3, Thm. 8]) yields (4.4), as required. �
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Using Proposition 4.3 and Lemma 4.5, the large sieve gives the upper bound
required for Theorem 1.5. Recalling Proposition 3.10 completes the proof. �

4.3. Proof of Theorem 1.2. We prove the result using Theorem 1.5. Let
π : X → Pnk be as in Theorem 1.2. Let Xc be the variety obtained as the �bre
product

Xc

��

πc // An+1
k \ {0}

ψ

��
X

π // Pnk .
where ψ is the obvious map. The morphism πc is still proper, but in order to
apply Theorem 1.5 the base needs to be An+1

k . We therefore choose an open

immersion Xc ⊂ X̃ where X̃ is a smooth, integral k-variety equipped with a
proper map π̃ : X̃ → An+1

k such that π̃|Xc = πc; this is possible by Nagata's
compacti�cation theorem and Hironaka's theorem. The diagram

Xc� _

��

πc // An+1
k \ {0}

� _

��

X̃
π̃ // An+1

k .

commutes. For any P ∈ An+1
k \ {0}, we have an isomorphism

π̃−1(P ) ∼= π−1(ψ(P ))⊗κ(ψ(P )) κ(P ). (4.6)

It follows that for all non-zero x ∈ An+1
k (k) we have

ψ(x) ∈ π(X(Ak)) ⇐⇒ x ∈ π̃(X̃(Ak)). (4.7)

We next compare the ∆-invariants.

Lemma 4.6. In the above notation we have

∆(π) = ∆(π̃). (4.8)

Proof. There are two types of codimension one points D in An+1
k :

(I) ψ(D) is the generic point η of Pnk ,
(II) ψ(D) has codimension 1 in Pnk .
Since the generic �bre of π is geometrically integral, using (4.6) we see that

π̃−1(D) is also geometrically integral for points D of type (I). Hence

δD(π̃) = 1

for such points. For a point D of type (II), we have

κ(D) = κ(ψ(D))(t)
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where t is purely transcendental over κ(D), and hence (again by (4.6))

δD(π̃) = δψ(D)(π).

The result then follows from Proposition 3.10, since ψ induces a bijection
between (Pnk)(1) and the set of codimension one points of An+1

k of type (II). �

Consider now the counting function Nloc(π̃, B) from (1.5), for some choice
of norm ‖ · ‖. By the proposition in [39, �13.4], there exists a constant C > 0
such that every point x ∈ Pn(k) has a choice of coordinates x ∈ On+1

k with

||x|| ≤ CH(x).

It follows from this and (4.7) that

Nloc(π,B) ≤ Nloc(π̃, CB).

Applying Theorem 1.5 and recalling Lemma 4.6 completes the proof. �

4.4. Proof of Theorem 1.1. This follows immediately from Theorem 1.2
and Lemma 3.6. �

5. Examples and applications

The aim of this section is to illustrate our results with a few examples and
applications.

5.1. Preliminaries. Let us gather some preliminary de�nitions and results.

De�nition 5.1. Let k be a �eld. If π : X → Pnk is a dominant morphism
of k-varieties with smooth, geometrically integral generic �bre, we say that
ψ : Y → Pnk is a good compacti�cation of π if ψ is proper, Y is smooth over k,
and the generic �bre of ψ contains the generic �bre of π as an open subvariety.

Good compacti�cations always exist if k is a �eld of characteristic zero: this
follows from Nagata's compacti�cation theorem and resolution of singularities.

Lemma 5.2. Let k be a number �eld. Let π : X → Pnk and ψ : Y → Pnk be
as in De�nition 5.1. Then the sets π(X(Ak)) ∩ Pn(k) and ψ(Y (Ak)) ∩ Pn(k)
di�er by a non-Zariski-dense set of rational points. In particular, we have

Nloc(π,B) = Nloc(ψ,B) +O(Bn+1/2+ε) (5.1)

for any ε > 0.

Proof. There exists an open subset U ⊆ Pnk such that the induced morphism
ψ−1(U)→ U is smooth, and π−1(U) is an open subset of ψ−1(U). If x ∈ U(k)
is a rational point and v is a place of k, then ψ−1(x) has a kv-point if and
only if π−1(x) has a kv-point; indeed, on a smooth, connected kv-variety, the
set of rational points is either empty or Zariski dense. This proves the �rst
statement. The claim (5.1) then follows from [39, Thm. 13.1.3]. �
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This lemma is important for applications: often, one wants to study a family
of varieties given by an explicit set of a�ne equations. However, the morphism
π in Theorem 1.2 is assumed to be proper; this assumption is necessary, cf.
Example 5.8. Hence one needs a good compacti�cation of π to apply the result.
Lemma 3.11 and Lemma 5.2 imply that the bounds provided by Theorem 1.2
are independent of the choice of such a compacti�cation. It is not always
necessary to construct a good compacti�cation explicitly in order to apply
Theorem 1.2; see e.g. �5.2 for a case where this can be avoided.
Before listing examples and applications, we will present a non-example,

showing that the smoothness hypothesis in Theorems 1.1 and 1.2 is crucial:

Example 5.3 (Necessity of assumptions, I). Consider the conic bundle

π : X → A1
Q = SpecQ[t]

given by

x2 + y2 = t2z2.

Even though the �bre over t = 0 is irreducible but not geometrically integral,
there is a section, so the conclusion of Theorem 1.1 does not hold here; the issue
is that total space of this family is singular at t = 0 and (x, y, z) = (0, 0, 1).

5.2. Torsors under multinorm tori. Our �rst application of Theorem 1.2
concerns families of torsors under multinorm tori. Let k be a number �eld and
let E/k be a �nite étale k-algebra. Consider the family

π : X → A1
k = Spec k[t]

given by

NE/k(x) = t. (5.2)

Away from t = 0, the �bres are torsors under the multinorm torus R1
E/kGm. In

order to apply Theorem 1.2 and to calculate the δ-invariants, we need a good
compacti�cation as in De�nition 5.1. However, it is not necessary to construct
such a compacti�cation explicitly; the following lemma su�ces:

Lemma 5.4. Let K be a �eld of characteristic zero. Let E =
∏r

i=1 Ki be an
étale K-algebra, where the Ki/K are �nite �eld extensions of degree ni. Let
X be the K((t))-variety given by the equation

NE/K(x) = tm, for some m ∈ Z.

Let X be a regular scheme equipped with a proper morphism ψ : X → SpecK[[t]]
whose generic �bre is smooth, geometrically integral, and contains X as an
open subscheme. Then the special �bre Xs is split if and only if

gcd(n1, . . . , nr) | m.
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Proof. We prove the result using [44, Lem. 2.2].
If gcd(n1, . . . , nr) | m, then ψ has a section. Indeed, pick s1, . . . , sr ∈ Z with

n1s1 + · · · + nrsr = m. Then a section is given by t 7→ (ts1 , . . . , tsr). As X is
regular and π is proper, the special �bre is split by [44, Lem. 2.2(b)].
Conversely, assume that Xs is split. Then [44, Lem. 2.2(a)] implies that

there is an unrami�ed extension of discrete valuation rings K[[t]] ⊆ A such
that A is complete, K is algebraically closed in the residue �eld of A, and
X (A) 6= ∅. Hence the generic �bre of X has a K(A)-point.
Recall that K(A) is a so-called large �eld by [32, �1.A.2]: this means that

every irreducible curve over K(A) with a smooth rational point has in�nitely
many rational points. The generic �bre of K(A) is smooth and irreducible;
hence, as K(A) is large, the rational points are Zariski dense by [32, Prop. 2.6].
In particular the a�ne patch of the generic �bre given by

NE/K(x) =
r∏
i=1

NKi/K(xi) = tm

has a K(A)-point (z1, . . . , zr). Taking valuations yields
r∑
i=1

nivA(zi) = vA(tm) = m.

Hence gcd(n1, . . . , nr) | m, as required. �

We now apply Theorem 1.2 to the family (5.2). De�ne δE/k to be the density

δE/k = dens

({
p ∈ SpecOk

∣∣∣∣∣ gcd
kp⊂Lp⊂Ep

[Lp : kp] = 1

})
. (5.3)

Here Ep = E⊗k kp, and the greatest common divisor is taken over all sub�elds
Lp of Ep containing kp. That this density exists follows from Chebotarev's
density theorem (3.4), as will be clear from the proof of the following result:

Theorem 5.5. Consider the family π given by (5.2). Then

Nloc(π,B)� B2

(logB)2(1−δE/k)
. (5.4)

Proof. Let ψ : Y → P1
k be a good compacti�cation of π. By Lemma 5.4, any

non-split �bre must lie over t = 0 or t =∞. To deduce (5.4) from Theorem 1.2,
it su�ces to prove the equalities

δ0(ψ) = δ∞(ψ) = δE/k. (5.5)

We check this for t = 0, the case t =∞ being similar.
Let p be a prime of k which is unrami�ed in E and let ψp denote the base

change of ψ to kp. Let Γ0(ψ) and I0(ψ) be as in the de�nition (1.4) of δ0(ψ).
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The �bre of ψp over 0 is split if and only if Frobp acts with a �xed point on
I0(ψ). However, by Lemma 5.4, the �bre of ψp over 0 is split if and only if the
greatest common divisor of the degrees [Lp : kp] is equal to 1, where Lp runs
over all sub�elds of Ep which contain kp. The claim (5.5) then follows from
the Chebotarev density theorem. �

Remark 5.6. When k = Q and E is a number �eld, the family (5.2) was
studied by Browning�Newton. In [8, Thm. 1.3], they obtained asymptotic
formulae for the counting functions (1.1) and (1.2). They proved that

Nloc(π,B) ∼ cE/Q
B2

(logB)2(1−δE/Q)
(5.6)

for some cE/Q > 0. Theorem 5.5 hence gives a sharp upper bound in this case.

Remark 5.7. For any given étale k-algebra E, it is possible to calculate δE/k
using the Chebotarev density theorem, though one should not expect simple
expressions in general when E/k is not Galois. One nice case is when E/k is
a �eld extension of prime degree p whose Galois closure has Galois group Sp;
a simple exercise shows that δE/k = 1− 1/p in this case.

We now give an example of a family of torsors under a torus which illustrates
that the properness assumption in Theorem 1.2 is crucial:

Example 5.8 (Necessity of assumptions, II). Let K (resp. L) be a quadratic
(resp. cubic) �eld extension of a number �eld k and consider the family (5.2)
for E = K × L. It has the equation

NK/k(x) NL/k(y) = t.

The �bre of π over 0 is non-split and δ0(π) < 1, hence ∆(π) > 0. The map
t 7→ (t−1, t) de�nes a rational section, and every �bre has a rational point. This
does not contradict Theorem 1.2: π is not proper, and Lemma 5.4 implies that
the �bres of a good compacti�cation of π are all split.

The next example illustrates that one cannot replace the assumptions in
Theorem 1.1 by the weaker condition that there is a non-split �bre.

Example 5.9 (Necessity of assumptions, III). Let a, b, ab /∈ k∗2 and consider

(5.2) with E = k(
√
a)× k(

√
b)× k(

√
ab). It has the equation

Nk(
√
a)/k(x) Nk(

√
b)/k(y) Nk(

√
ab)/k(z) = t.

This family was studied by Colliot-Thélène in [11]. Let ψ : Y → P1
k be a

good compacti�cation in the sense of De�nition 5.1. The �bres over t = 0 and
t = ∞ are non-split by Lemma 5.4. However, the �bre over every rational
point is everywhere locally solvable by [11, Prop. 5.1]. Hence the existence of
a non-split �bre is not enough to deduce the conclusion of Theorem 1.1.
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This example is compatible with Theorem 1.3 however. Indeed, we have
δ0(π) = δ∞(π) = 1, as every element of the Galois group of the polynomial

f(x) = (x2 − a)(x2 − b)(x2 − ab) ∈ k[x]

acts with a �xed point on the roots of f .

5.3. Specialisations of Brauer group elements. Theorem 1.2 allows us to
recover both [37, Thm. 2] and Theorem 8.2 of [38, Ch. II, Appendix]. It also
yields the expected generalisations of these results, already hinted at by Serre
in �8 of [38, Ch. II, Appendix], to �nite collections of Brauer group elements
and to arbitrary number �elds k.
Let U ⊂ Pnk be a dense open subset and let B ⊂ BrU be a �nite subset.

De�ne

N(B, B) = #{x ∈ U(k) : H(x) ≤ B, b(x) = 0 ∈ Br k for all b ∈ B}.

Our generalisation of the above-mentioned results is the following.

Theorem 5.10. We have

N(B, B)� Bn+1

(logB)∆(B)
, where ∆(B) =

∑
D∈(Pnk )(1)

(
1− 1

|∂D(〈B〉)|

)
.

Here ∂D denotes the residue map at D and 〈B〉 the subgroup generated by B.

Proof. Most of the tools needed to translate this to a problem about Severi�
Brauer schemes can be found in [29]. For b ∈ B, let Vb → U denote the
corresponding Severi�Brauer scheme. Let V =

∏
b∈B Vb → U be their �bre

product, taken over U . Fix a good compacti�cation π : X → Pnk of V → U .
Standard properties of Severi�Brauer schemes [29, �2.3] give

N(B, B) = #{x ∈ U(k) : H(x) ≤ B, x ∈ π(X(k))}.

Hence Theorem 1.2 yields

N(B, B)� Bn+1

(logB)∆(π)
.

To complete the proof, it su�ces to show that for all D ∈ (Pnk)(1) we have

δD(π) =
1

|∂D(〈B〉)|
. (5.7)

We shall prove this using Lemma 3.11 and the special models constructed in
[29, Lem. 2.3]. Let R be the local ring at D. By [29, Lem. 2.3] there exists an
integral proper almost smooth scheme

ψ : V → SpecR
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whose generic �bre is isomorphic to the generic �bre of π, with the property
that the algebraic closure of κ(D) in the function �eld of each irreducible
component of ψ−1(D) is isomorphic to the compositum K of the cyclic �eld
extensions determined by the residues ∂D(b) ∈ H1(κ(D),Q/Z) for b ∈ B.
In particular, the set of irreducible components ID(ψ) is isomorphic to the
ΓD(ψ)-set corresponding to the �nite étale scheme (SpecK)n, for some n ∈ N.
As K/κ(D) is Galois of degree |∂D(〈B〉)|, a argument similar to the proof of
Lemma 3.6 yields

δD(ψ) =
1

|∂D(〈B〉)|
.

However, by Lemma 3.11 we have δD(π) = δD(ψ), whence (5.7). �

As a special case, let π : X → Pnk be a conic bundle, with X non-singular.
Then Theorem 1.2 shows that

Nloc(π,B)� Bn+1

(logB)∆(π)
, ∆(π) =

1

2
#{D ∈ (Pnk)(1) : π−1(D) is non-split}.

5.4. Fermat curves. Consider the family of Fermat curves of degree d ≥ 2

X : a0x
d
0 + a1x

d
1 + a2x

d
2 = 0 ⊂ P2

k × P2
k

over a number �eld k, equipped with the natural projection π : X → P2
k to

(a0 : a1 : a2). This family was studied over Q in [7]. When k = Q, [7, Thm. 1]
gives

Nloc(π,B)� B3

(logB)3ψ(d)
, ψ(d) =

1

ϕ(d)

(
1− 1

d

)
(5.8)

where ϕ is Euler's totient function. Theorem 1.2 gives the following result:

Theorem 5.11. For d ≥ 2 and k = Q we have

Nloc(π,B)� B3

(logB)3(1−δ(d))
, (5.9)

where δ is the multiplicative function given by

δ(pm) = 1− p2m − 1

p2m−1(p2 − 1)
,

for any prime p and for any positive integer m.

Proof. The non-split �bres over codimension 1 points lie over the generic points
of the three divisors Di given by ai = 0, for 0 ≤ i ≤ 2. On choosing an
isomorphism κ(Di) ∼= Q(a) for some purely transcendental element a, we see
that the �nite étale κ(Di)-scheme corresponding to each ΓDi(π)-set IDi(π) is
given by the zero locus of the polynomial

fd(x) = xd + a ∈ Q(a)[x].
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The Galois group Γd of the Galois closure of fd is

Γd ∼= Z/dZ o (Z/dZ)×. (5.10)

As X is non-singular, an application of Theorem 1.2 now yields an upper
bound of the shape (5.9) with

δ(d) =
F (d)

dϕ(d)
, (5.11)

where F (d) is the number of elements of Γd which act with a �xed point on the
roots of fd(x). With respect to the isomorphism (5.10), the group Γd acts on
the roots as the group of a�ne linear transformations on Z/dZ, i.e. (s, t) ·n =
s + tn. Hence we need to count the number of pairs (s, t) ∈ Z/dZ× (Z/dZ)×

for which the equation (1− t)n = s has a solution for some n ∈ Z/dZ; this is
the case precisely when gcd(t− 1, d) | s. Therefore we obtain

F (d) = #{(s, t) ∈ Z/dZ× (Z/dZ)× : s ≡ 0 mod gcd(t− 1, d)}. (5.12)

The Chinese remainder theorem now implies that F is a multiplicative function
of d. To determine F (pm) when p is prime and m is a positive integer, we use
(5.12) to �nd that

F (pm) =
m∑
i=0

#{s ∈ Z/pmZ : vp(s) ≥ i} ·#{t ∈ (Z/pmZ)× : vp(t− 1) = i}

= p2m−1(p− 2) + 1 + (p− 1)
m−1∑
i=1

p2(m−i)−1

= p2m−1(p− 2) + 1 +
p(p2(m−1) − 1)

p+ 1

= p2m−1(p− 1)− p2m − 1

p+ 1
.

Combining this with (5.11) completes the proof. �

Comparing Theorem 5.11 with (5.8), we �nd 1−δ(p) = ψ(p) = 1/p. However
our result is stronger, since we have 1− δ(pm) > ψ(pm) for all m ≥ 2.
Note that Conjecture 1.6 is known in this case when d = 2 and k = Q,

by independent work of Hooley [24] and Guo [21]. Other (non-sharp) lower
bounds have been recently obtained by Dietmann and Marmon [14, Lem. 5].
The upper bounds we obtain change as one varies the number �eld. For
example, if µd ⊂ k, then Theorem 1.2 gives the following bound, which is
strictly stronger in general than the bound one obtains over Q:
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Theorem 5.12. If d ≥ 2 and µd ⊂ k, then

Nloc(π,B)� B3

(logB)3(1−1/d)
.

Proof. As µd ⊂ k, the polynomial xd + a over k(a) de�nes a Galois extension
of degree d. On applying Lemma 3.6 and Theorem 1.2, the result follows in a
manner similar to the proof of Theorem 5.11. �

5.5. Genus 1 �brations: a question of Graber�Harris�Mazur�Starr.

Let π : X → P1
k be a pencil of genus 1 curves over a number �eld k. Some ques-

tions on the behaviour of the counting function (1.1) in such cases were raised
by Graber�Harris�Mazur�Starr in [19]. They studied the counting function

N∗(π,B) = #{x ∈ P1(k) : x /∈ π(X(k)), H(x) ≤ B},
which is the complement of (1.1). Question 3 of [19] is the following.

Question 5.13 (Graber�Harris�Mazur�Starr). If π does not admit a section,
then does there exist e > 0 such that

N∗(π,B)� Be ?

If ∆(π) > 0 then Theorem 1.2 answers this question in the a�rmative. In
fact, we obtain the stronger statement that

N∗(π,B) ∼ #{x ∈ P1(k) : H(x) ≤ B}, as B →∞.
In particular, Question 5.13 has a positive answer in such cases with e = 2.
We now give some explicit examples to which our results apply.

5.5.1. Families of quadratic twists. Let us �rst consider the example studied
in [19, �2]. We brie�y recall the construction of genus 1 �brations used in [19].
Let U ⊂ P1

k be a dense open subset and let E be an elliptic scheme over U .
For n ∈ N, Kummer theory yields an exact sequence

0→ E(U)/nE(U)→ H1(U, E [n])→ H1(U, E)[n]→ 0.

Any cocycle with class α ∈ H1(U, E [n]) gives rise to an E-torsor πα : Eα → U ,
which admits no section if α does not lie in the image of E(U)→ H1(U, E [n]).
We now apply this construction with n = 2. Let

E : y2 = f(x)

be the Weierstrass form of an elliptic curve over k. Consider the family of
quadratic twists

E : ty2 = f(x) (5.13)

over U = Gm,k = Spec k[t, 1
t
]. Let α ∈ H1(k,E[2]) be non-zero. Note that we

have E [2] ∼= E[2] ×k U as group schemes over U . In particular, α naturally
gives rise to an element of H1(U, E [2]).



30 D. LOUGHRAN AND A. SMEETS

When k = Q and f is irreducible, Graber�Harris�Mazur�Starr [19, �2] used
deep results on modular forms due to Ono�Skinner [30] and Kolyvagin [26], to
deduce that

N∗(πα, B)� B

logB
. (5.14)

In particular, one may take any e < 1 in Question 5.13 in this case. Our sieve
methods allow us to bypass these deep modularity results, while simultaneously
improving upon (5.14) and obtaining results valid over any number �eld, for
possibly reducible f .

Theorem 5.14. Let E/U be the quadratic twist family of E as in (5.13). Let
α ∈ H1(k,E[2]) be non-zero with associated genus 1 �bration πα : Eα → U .
Then

Nloc(π
α, B)� B2

(logB)1/2
. (5.15)

In particular, Question 5.13 has a positive answer in this case with e = 2.

Proof. We will construct the minimal proper regular model of Eα and show
that there are non-split �bres over 0 and ∞.
Let EN be the Néron model of E over P1

k. By Tate's algorithm, the �bres
over 0 and ∞ have Kodaira type I∗0 . In particular, the geometric �bres over
0 and ∞ are isomorphic to the group scheme (Z/2Z)2 × Ga: the component
group is (Z/2Z)2 by the table in [43, p. 365], and the component group exact
sequence splits as char(k) = 0 [28, Cor. 1.5]. Let EN[2] be the 2-torsion group
scheme of EN over P1

k. From the above, one sees that EN[2] is �nite étale over
P1
k, hence is the base-change of E[2] to P1

k. We identify α with its image in
H1(P1

k, EN[2]).
Next let EN

c be the minimal proper regular model of EN. This admits an
action of EN[2]. In particular, we may twist EN

c by a cocycle with class α to
obtain a genus 1 �bration

πN,α
c : EN,α

c → P1
k,

which is the minimal proper regular model of Eα.
We now consider the singular �bres of πN,α

c . We focus on the �bre over 0,
as the analysis at ∞ is analogous. The group scheme E[2] acts transitively
on the geometric irreducible components of EN above 0. We �nd that the set
I0(πN,α

c ) is an E[2]-torsor with class α. As this is not the trivial torsor, it has
no rational point. This shows that the �bre of πN,α

c above 0 is non-split.
To deduce (5.15) we give a lower bound for ∆(πN,α

c ). Consider an E[2]-torsor
with class α. This is some �nite étale scheme of degree 4 over k, with Galois
action determined by some subgroup of S4 that acts without a �xed point. An
inspection of such subgroups shows that δ0(πN,α

c ) ≤ 3/4. Equality holds for
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SpecK1 t SpecK2 where K1, K2 are di�erent quadratic extensions of k, for
example. Similarly δ∞(πN,α

c ) ≤ 3/4, hence Theorem 1.2 gives the result. �

5.5.2. Quartic surfaces. Any line on a smooth quartic surface gives rise to a
genus 1 �bration. We examine the behaviour obtained for a special family of
surfaces considered by Rams and Schütt [33, Lem. 4.5]. Let Z ⊂ P3

k × A8
k be

the family of all smooth quartics of the form

x3
1x3 + x3

2x4 + x1x2q(x3, x4) + g(x3, x4) = 0 ⊂ P3
k,

where deg q = 2 and deg g = 4. We view this over a suitable dense open subset
Z → U ⊂ A8

k, given by the choice of coe�cients for q and g for which one
obtains a smooth surface. Each such surface contains the line x3 = x4 = 0.
For u ∈ U , we denote the corresponding surface over κ(u) by Zu. We �rst
study the generic surface Zη over the function �eld κ(η) of A8

k.

Lemma 5.15. Let πη : Zη → P1
κ(η) be the generic surface in Z and let P be the

closed point of P1
κ(η) given by q3 + 27x3x4g = 0. The �bre over P is irreducible

and becomes split over a pure cubic extension of κ(P ). The �bre above every
other point of P1

κ(η) is geometrically integral.

Proof. As explained at the end of [33, �4], there are exactly twelve singular
�bres over the algebraic closure of κ(η). Six have type I1, hence are irreducible.
The other six have type I3 and lie above P . This proves the second statement.
To prove the �rst statement, let P0 : x4 = αx3 be a point of P ⊗κ(η) L, where
L = κ(P ), and write q(x3, αx3) = βx2

3 for some β ∈ L. The �bre over P0 takes
the form

αx3
1 + α2x3

2 + αβx1x2x3 − β3x3
3/27 = 0.

This is the norm form of L(α1/3)/L with respect to the basis (α1/3, α2/3,−β/3).
In particular, one easily sees that this scheme is irreducible and contains a line
over L(α1/3). This proves the result. �

We now come to the application of Theorem 1.2.

Theorem 5.16. Let k be a number �eld and let Z be as above. There exists
a thin subset T ⊂ U(k) with the following property. Let u ∈ U(k) \ T and let
πu : Zu → P1

k be the induced genus 1 �bration. Then

Nloc(πu, B)� B2

(logB)∆(πu)
, where ∆(πu) =

{
1/3, µ3 6⊂ k,

2/3, µ3 ⊂ k.

Proof. Consider the map Z → U×P1
k induced by the natural morphism Z → U

and the universal genus 1 �bration Z → P1
k. Let P ∈ P1

κ(η) be as in Lemma 5.15
and let F be the closure of the pull-back of the point η × P to Z. This is a
closed subscheme of Z such that F ∩ Zη is exactly the non-split �bre from



32 D. LOUGHRAN AND A. SMEETS

Lemma 5.15. We see that there exists a dense open subset V ⊂ U such that
F ∩ Zu is a singular �bre of πu for all u ∈ V . An application of Hilbert's
irreducibility theorem [41, Prop. 3.3.1] and Lemma 5.15 moreover imply that,
outside of some thin subset, the scheme F ∩Zu is a non-split �bre of πu which
is irreducible and split by a pure cubic extension. The result then follows from
Theorem 1.2, together with a calculation similar to the one in �5.4. �
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