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Abstract

In this study, the progression of tension-tension fatigue (R=0.1) damage in a uni-

directional (UD) composite made from a non-crimp glass fibre fabric used for wind

turbine blades is investigated using multi-scale 3D X-ray computed tomography (CT).

Initially, a representative volume is examined at one specific damage level. UD fibre

fractures are only observed close to the supporting thin transverse backing layers. Fur-

thermore, UD fibre fractures are only observed at locations where backing fibre bundles

intersect one another and are at the same time locally close to a UD bundle. In addi-

tion, to study the progression of damage as a function of stiffness degradation at higher

resolution four samples are subjected to different numbers of cycles before examination

by CT. One sample is examined during the initial stiffness drop, two samples during

stable stiffness degradation, and one close to final failure. Damage is observed to oc-

cur as chains of individual fibre breaks or clusters of fibre fractures rather than large

fracture planes. Our work indicates how fracture of UD fibres initiates from intersect-

ing ±80◦ backing bundles extending progressively further into the UD layer. The fibre

fracture zone becomes more diffuse further from the backing layer. Our work supports
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a scheme explaining stiffness degradation in terms of UD fibre damage accumulation

and demonstrates the importance of 3D and ideally time-lapse imaging studies.

Keywords: A. Polymer Matrix Composites (PMCs), A. Glass fibres, B. Fracture, D.

Non-destructive testing, Micro-tomography

1. Introduction

With increasing global focus on sustainability, the amount of energy produced from

wind turbines has been increasing in recent years [1], and this is expected to continue.

However, the challenge of making wind energy cost-competitive relative to fossil fuels

remains. Since the power output scales with the swept rotor area (i.e. blade length

squared), increasing the blade length decreases the cost of energy of the wind turbine.

One of the main challenges when designing long blades is material fatigue. During a

wind turbine’s life-time of around 20-30 years, it experiences a high number of load

cycles (in the range of 108 − 109 cycles) [2]. The blade is subjected to repeated flap-

wise bending from the wind and repeated edge-wise bending from the blade weight

combined with the rotation [3]. The main load carrying parts of a wind turbine blade

consist of uni-directional (UD) glass fibre composite materials made from non-crimp

fabrics (NCF). In addition to the fatigue life-time, the stiffness degradation observed

during fatigue loading can become a problem in relation to tower clearance. It is

therefore of great interest to understand and describe the fatigue damage mechanisms

on a micro-structural level for this material, in order to be able to make more fatigue

resistant designs and/or to understand how to reduce cost without compromising the

fatigue resistance.

1.1. Fatigue of composites

The progression of fatigue damage in fibre composites, and how to design against

fatigue, has received a great amount of focus in the literature. Particularly within the

aerospace industry the initiation of off-axis cracks been the focus of many studies [4–

10]. Fewer studies (e.g. [9–12]) have considered damage progression in terms of fibre
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fractures that occur after the initiation of transverse cracking.

Reifsnider and Jamison [9] examined the fatigue mechanisms in both cross-ply and

quasi-isotropic carbon fibre/epoxy composites. In both cases the stiffness degradation

during fatigue was observed to include three main stages: a steep initial stiffness reduc-

tion stage (stage I), a stable degradation stage (stage II), and an unstable stage with

final failure (stage III). They found that for both the cross-ply and quasi-isotropic lami-

nates the initial reduction in stiffness seemed to primarily relate to transverse cracking.

The stiffness degradation in stage II was said to decrease stably as a consequence of

subcritical element damage such as matrix cracking, matrix splitting along fibre direc-

tions, fibre/matrix debonding, and delamination causing the stresses in the laminate to

redistribute. The damage would then localise and lead to damage in critical elements

such as the 0◦ plies. This would then soon be followed by final failure of the laminate

[9, 10].

Wind turbine blade materials are subjected to a much higher number of load cy-

cles than aerospace and other composite material applications. In addition, because

of the specific loading conditions, UD composites are used to carry the main fatigue

loads in a wind turbine blade, whereas quasi-isotropic composites are commonly used in

the aerospace industry. Therefore, the material design challenges are rather different,

because of the need to tolerate UD fibre damage during operation. The UD NCF com-

posites used for wind turbine blades have a bundle structure and experience slightly

different damage mechanisms compared to cross-ply and quasi-isotropic composites.

However, the shape of the stiffness degradation curve is similar. A previous study by

Zangenberg et al. [11] considered tension-tension fatigue damage in a composite mate-

rial used for wind turbine blades. The study considered a UD NCF glass fibre/polyester

composite with thin supporting off-axis backing layers. In their study a fatigue damage

evolution scheme was established as discussed below.
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Figure 1: Simplified version of the tension-tension fatigue damage accumulation scheme postulated by

Zangenberg et al [11] for a UD composite comprising UD fabric with transverse fibre backing layers.

1.2. Tension-tension fatigue damage accumulation scheme

Zangenberg et al. [11] postulated a tension-tension fatigue damage accumulation

scheme on the basis of destructive examination techniques (particularly scanning elec-

tron microscope (SEM) observations) for the same type of material as considered in the

current study (further elaborated later in section 2.1). Fig. 1 shows a simplified version

of this scheme (for details see [11]), which also shows the usual shape of the stiffness

degradation during fatigue (R = 0.1) for this material type. In the scheme, the damage

is taken to initiate as transverse cracks in the thin backing layer of criss-crossed bundles

of off-axis fibres. These cracks are believed to initially appear in locations where the

backing bundles intersect. However, since the initial stiffness drop was found to fit well

with the loss of stiffness contributed by the backing layers [11], the transverse cracks

are believed to saturate everywhere in the bundles prior to UD fibre damage occur-

ring. After crack saturation the cracks propagate into the UD fibre bundles, causing

debonding and fibre fractures. During a stage where the stiffness degrades stably (II

in Fig. 1), a steadily increasing number of UD fibre fractures are believed to cause the

stiffness degradation. At some point, the number of fibre fractures will have increased

the load on the remaining fibres sufficiently to cause rapid static failure. Zangenberg

et al [11] also burned off the resin and observed interlaminar failure (longitudinal split-
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ting) penetrating 20-40% into the UD bundles in the thickness direction. Nevertheless,

the destructive nature of their method meant that it was only possible to look at one

moment in time, and only to consider 2D surface views, which is partly why the scheme

still remains a postulate.

1.3. X-ray CT of damage in composites

In recent years, the resolution of non-destructive 3D X-ray computed tomography

(CT) has improved significantly. This is opening up a range of new opportunities for the

use of X-ray CT for material science purposes [13–15]. In X-ray CT, the sample is placed

between an X-ray source and a detector. X-rays emitted from the source pass through

the sample and on to the detector, leaving a projection image (as for conventional

medical 2D radiography). The sample is then rotated in steps, for each of which a

projection image is acquired. A reconstruction algorithm is then used to reconstruct a

3D image of the considered volume. The contrast in the images is dependent on the

difference in material density. Therefore, in relation to composite materials, X-ray CT

is particularly well suited for glass fibre/polymer composites due to the relatively large

difference in material density (around a factor of 2).

Several recent studies have considered micro-structural damage of composite materi-

als using synchrotron radiation computed tomography. Wright et al. [16, 17] considered

static damage in notched carbon fibre reinforced plastic (CFRP) specimens, visualising

fibre fractures, intra-laminar delamination and matrix cracking in 3D. Scott et al. [18]

performed in-situ static loading of a double notched CFRP specimen, visualising the

accumulation of damage for an increasing static load. Synchrotron CT was also used in

studies by Garcea et al. [19, 20], to evaluate the fatigue damage evolution of a similar

specimen during in-situ start-stop fatigue experiments. All these studies considered

samples of a few millimetres in size to obtain high resolution. Synchrotron radiation is

particularly suited to short in-situ experiments since the fast scan times makes it pos-

sible to capture changes over time. On the downside however, synchrotron facilities are

often remotely located, beam time is difficult to access and experiments are typically
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limited to a few days at most, precluding many longer fatigue studies.

The latest laboratory X-ray CT systems can offer micro- and even sub-micron [21]

resolution CT comparable to synchrotron systems. These systems make it easier to

perform multiple longer timescale studies, albeit using much longer scan times compared

to synchrotron CT. Since laboratory X-ray CT systems capable of micro resolution

have only recently emerged, only a few studies to date [12, 22–25] have used laboratory

systems to study material damage at the micro-structural level. The studies have tended

not to consider individual fibre fractures because of insufficient resolution (e.g. [22]).

As for synchrotron radiation CT, studies of fibre fractures have examined sample sizes

of only a few millimetres (e.g. [12]). Some studies have used staining techniques to

increase the visibility of the damage thereby lessening the resolution requirements. In

a recent study by Yu et al. [23], the fatigue damage progression of matrix cracks and

delaminations in a larger test specimen (16x2mm in cross-section) was studied for a 3D

woven carbon fibre composite at 10.7 micron voxel size by staining with contrast agent.

For that case the contrast agent was found to properly penetrate into material [24].

However, in order for staining to be effective, all the damage must be interconnected to

the outer surfaces. This might not be the case for the UD NCF used for wind turbine

blades, since the off axis layers are thin compared to the UD layer thickness and there

are resin rich regions, which are large compared to the backing bundles. Furthermore,

the damage at the surface is likely to be caused by edge effects and the focus of the

current study is on what is happening a distance away from the edges.

The new advances within laboratory X-ray CT make it possible to move from de-

structive 2D testing to visualising damage in 3D and by extension over time. In this

paper, we study the axial tension-tension fatigue damage progression in a UD glass

fibre composite in 3D. Based on qualitative observations, the proposed damage accu-

mulation scheme [11] is evaluated with a focus on the three dimensional arrangement

of the damage features. Initially, the general locations of fatigue damage regions are

investigated using a field of view (FoV) large enough to contain several regions of the

backing where the fibre bundles intersect, however with limited resolution. Based on

6



the knowledge obtained on the nature of the damage regions, scans have then been

performed at higher resolution on a systematic set of four samples each subjected to a

different number of fatigue load cycles.

2. Material and methods

2.1. Composite material system

The composite material is a UD glass fibre/polyester composite made from a non-

crimp fabric. The composite consists of layers of UD fabric stacked on top of each other

and infused with resin using the vacuum assisted resin transfer moulding (VARTM)

infusion technique. For each layer of fabric, parallel UD fibre bundles are stitched

to supporting off-axis backing bundles, giving it a fabric-like structure. The stitching

thread is made from polyester, hence it has the same density as the matrix material and

will not be visible in the performed X-ray CT scans. The dry fabric is shown in Fig. 2,

which also illustrates the stitching pattern used to stitch the UD and backing bundles

together. The backing bundles are present to keep the UD bundles in place, and do not

have a significant effect on the material axial stiffness and strength properties, though

they do slightly contribute to the transverse stiffness.

(a)
Weft (y)

W
ar

p 
(x

)

Axial fibre bundles
Stitching yarns

Backing bundles
Axial stitching

(b)

Figure 2: Photographs of UD1322 UD fabric viewed from (a) the UD bundle side and (b) the backing

side.

Fig. 3 shows a 3D rendering of the fibre architecture obtained by laboratory X-

ray CT. It is seen that the backing bundles are quite unevenly spaced as a result of

the stitching pattern, and intersect in some locations. In this paper, the term ”backing

layer” denotes the space between the layers of parallel UD bundles in the final composite,
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as also indicated in Fig. 4. These layers contain both backing bundles and resin-rich

regions as indicated in Fig. 3.

Backing fibre 
bundles

UD fibre 
bundles

Weft (y)

Warp (x) Thickness (z)

+-80
o

~4mm

Ds

Ds

Resin rich region

Figure 3: 3D tomograph of the glass fibre/polyester composite micro-structure obtained by X-ray CT

(9.7µm voxel). The matrix has been rendered transparent by thresholding.

The composite layup has 4 layers of UD fabric in the stacking sequence [b/0,b/0]s

where ”b/0” symbolises a layer of fabric with ”b” denoting the (±80◦) backing layer

and ”0” the axial (0◦) UD layer of the fabric. Fig. 4 shows a schematic of the stack-

ing sequence and the fabric specification is summarised in Table 1. The matrix is a

proprietary unsaturated polyester. It has been cured for more than 24 hours at room

temperature followed by a post curing sequence at 40◦C in an oven for more than 16

hours. This is a curing sequence resulting in a fully cured laminate.

Backing layer

Uni-directional layer

Weft (y)Warp (x)

Thickness (z)

Figure 4: Schematic showing the composite stacking sequence. The UD fibre direction is out of the

plane.

Fig. 5 shows a 3D rendering of a higher resolution laboratory CT scan where the

matrix material has again been rendered invisible. The approximate dimensions of the

UD and backing layers in the final composite are indicated in the figure, which also
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Table 1: Fabric specification (UD1322)

Category Unit Axial fibres Backing fibres Stitching thread

Material - H+ glass E-glass Polyester

Area density [g/m2] 1322 60 15

Linear density [tex] 2400 68 7.6

Avg. filament dia. [µm] 17 or 24 9 N/A

shows that the backing layers are considerably thinner than the UD layers. In addition,

the thickness of the backing layer varies quite a lot as the backing bundles lie on top of

one another and cross-over in some locations, whereas in other locations there are no

fibres at all.

Backing fibre 
bundles

UD fibre bundles

~
0.
9m
m

50-150mm

df=17-24mm
df=~9mm

y

z
x

Figure 5: 3D reconstructed image recorded with the MR settings in Table 2 (3.37µm voxel size). The

matrix and stitching has been rendered invisible to show the fibre architecture.

2.2. Fatigue testing

Two rectangular plates of the composite outlined in section 2.1 were manufactured

and cut into butterfly shaped fatigue test specimens as shown in Fig. 6. The but-

terfly geometry is a special optimized geometry for testing UD composite materials

[26], as standard plane specimen geometries tend to fail in the grip area instead of

the gauge area. It is reported [26] to give longer fatigue life-times than the standard

plane ISO specimens (ISO 527) [27]. The tests were performed at a Servo hydraulic

9



Ds Ds

TAB TABGAUGE

~
5m

m

~9mm

UD fibre direction

410mm

~
4m

m

~110mm

Cutout-B Cutout-A

25
0m

m

x

y

Figure 6: Butterfly specimen geometry (full length of 410mm) showing approximate cut-out locations

and dimensions. The photo in the top-right corner shows the cut-out A sample glued to an aluminium

pin for easy mounting in the scanner.

Instron test machine under load control with a sinusoidal waveform. The stress ratio

was R=0.1, the frequency 5 Hz and the strain was monitored by two extensometers

([25mm/±2.5mm]). The maximum fatigue load was 30% of the static strength of the

composite. At this stress level the composite is damaged progressively during fatigue

testing as also discussed by Talreja [28].

To examine the damage at different stages during the fatigue life several tests were

interrupted prior to failure. A total of 9 tests were carried out and are listed below.

• Two samples were interrupted at 2,000 cycles (during the initial stiffness drop

region marked by ”I” in Fig. 1).

• Two samples were interrupted at 55,000 cycles (during the stable stiffness degra-

dation regime marked by ”II” in Fig. 1).

• One sample was interrupted at 85,000 cycles (during the stable stiffness degrada-

tion regime marked by ”II” in Fig. 1).

• One sample was interrupted at 95,000 cycles (where the stiffness starts to drop

drastically marked by ”III” in Fig. 1).

• Three samples were tested to failure.
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2.3. X-ray computed tomography

All the samples prepared for X-ray CT in this study were cut using a diamond

blade cutter, and two types of cut-out geometries were used (See Fig. 6). The cutout-

A geometry was glued to an aluminium pin, which makes it simple to repeatedly mount

the sample in the scanner in the same way, even if taken out of the holder. For the

cutout-B geometry it is possible to perform further fatigue testing on the down sized

sample, which is of interest for future time-lapse studies.

The X-ray CT scans were carried out on a Zeiss Xradia Versa 520 scanner with a

2000x2000 pixel detector and a bit depth of 16. Two different sets of scan settings la-

belled ”MR” (medium resolution) and ”HR” (high resolution) were used (see Table 2).

Data visualisation and segmentation was done using the commercial software ”Avizo

9.0” from FEI, and image reconstruction was done using the software ”XMReconstruc-

tor - Cone Beam 10” from Zeiss.

The MR scan settings considers a larger FoV than HR, and is performed with a

binning of 2, which means that the X-ray counts from 2x2 pixels on the detector are

combined giving a higher image intensity making it possible to decrease the exposure

time (see [29] for more detailed information on X-ray CT). This means that the total

scan time is shorter, however, at the compromise of resolution since the detector reso-

lution is binned from e.g. 2000x2000 to 1000x1000 pixels. Nonetheless, it is much more

challenging to process the data from a binning 1 scan, since the file-size is much larger

(see Table 2). However, when looking for small features compromising the resolution

over scan time and file-size might result in loss of important detail.

An overview of the scans performed in this study can be found in Table 3, and the

purpose of these scans is explained in the following sections. The datasets MR3, HR2,

HR3, and HR4 along with videos related to Fig. 9 and 11 can be found online [30].1

1The datasets for MR3 and HR2-4 along with videos of ROI from Fig. 9 and 11 are available

at: http://doi.org/10.5281/zenodo.154714 [30]. The data sets can be loaded using the open source

software ”ImageJ”. For use of these data, please make a reference to this paper.
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Table 2: Versa 520 X-ray CT imaging conditions

Category MR HR

Optical

Magnification

3.98(4X) 3.98(4X)

Source to sample

distance

15 mm 11 mm

Detector to sample

distance

15 mm 20 mm

Exposure time 3 s 6 s

No. of projections 3201 3201

Accelerating Voltage 80 keV 60 keV

Binning of pixels 2 1

Pixel size 3.37 µm 1.2 µm

Field of view on

detector

3370 µm 2400 µm

Avg. reconstructed

file size

2 GB 16 GB

2.3.1. Medium resolution scans: Locating damage regions

In X-ray CT, the resolution decreases with increasing size of the FoV, which means

that a small FoV is necessary to obtain high resolution. In previous studies [11, 26]

the UD fibre fracture regions were found to be local phenomena and therefore locating

these regions can be difficult if the FoV is too small. To identify where the damage

regions typically occur, a cut-out of ∼4x5x10mm was initially studied with a voxel size

of 3.37µm and cylindrical FoV of ∼3.4mm in diameter and ∼3.4mm in height (”MR3”

in Table 3).

The scanned sample was cut-out from the test specimen subjected to 85,000 cycles

where damage is expected to be present. The FoV of the scans encompassed almost

the full width of the sample, but excluded the backing layers at the sample surface

12



Table 3: Performed X-ray CT scans. The datasets MR3, HR2, HR3, and HR4 can be found online [30].

Sample Dataset Cycles Geom. Note

S3 MR3 85,000 Cutout-A 3 overlapping scans along length

S1 HR1 2,000 Cutout-B Initial stiffness drop regime

S2 HR2 55,000 Cutout-B Stable stiffness degradation regime

S3 HR3 85,000 Cutout-A Stable stiffness degradation regime

S4 HR4 95,000 Cutout-B Damage localisation

in the thickness direction. Three overlapping scans were performed along the sample

length covering a total length of ∼6.2mm. This was done in order to include several

regions prone to damage in the scanned volume. The scan settings were chosen with

a FoV judged to be as large as possible, while still being able to see fibre fractures.

Because of the limited resolution, however, segmentation of individual fibre fractures

would include a considerable amount of uncertainty. Therefore higher resolution scans

were subsequently performed when studying the damage regions in detail.

2.3.2. High resolution scans: damage regions in several samples

To study the damage at different stages of the fatigue life, the samples subjected to

2,000, 55,000, 85,000 and 95,000 cycles were examined at high resolution. The related

scan settings and cut-out geometry used for these scans were previously outlined in

Table 3. The scans were performed with a pixel size of 1.2 µm and a cylindrical FoV

of ∼2.4mm diameter x 2.4mm height. By utilizing the knowledge of the location of the

damage regions obtained from the MR scan, it was possible to locate regions prone to

damage despite the small FoV by examining the 2D projection images when setting up

the scan.
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3. Results and discussion

3.1. Fatigue tests

The S-N curve for the composite is shown in Fig. 7, which also shows the tests that

were stopped before failure for X-ray CT inspection. It should be noted that the fitted

curve is based on only 5 points and normally a minimum of 10 points is required for

a well defined curve. Fig. 8 shows the stiffness degradation curves for all the fatigue

tests performed at ε/ε0 = 0.3, where ε0 is the static strain to failure, and highlights

the curves for the four test specimens examined using X-ray CT. In Fig. 8 it is seen

that the initial stiffness drop is similar for all the tests, but there is some scatter in

the gradient in stage II. For the considered strain level, ε/ε0 = 0.3, only three tests in

total were continued all the way to failure and the number of cycles to failure are seen

to vary considerably. It is a known problem that the lifetime from tests of this UD

composite can vary as much as by a decade. In part this is due to the fact that some of

the samples fail outside the gauge region - even when using the butterfly geometry [26].

Since the slope of the curves is generally similar (particularly for the four highlighted

tests), it makes more sense to focus on the percentage stiffness drop relative to the

absolute number of load cycles and not the percentage of total life.
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Figure 7: S-N curve including the interrupted tests S1-4.
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S1

S2

S3

S4

Figure 8: The degradation in stiffness occurring at an imposed strain amplitude ε/ε0 = 0.3 during

tension fatigue testing. The symbols denote the stiffness degradation curves for the interrupted test

samples imaged by X-ray CT at high resolution. The dashed lines show all the tests. The numbers of

cycles at which the tests (S1-S4) were interrupted are marked by arrows.

3.2. Location of damage regions

Fig. 9 shows a stitched 2D view of the three medium resolution scans making

up the MR3 dataset. Three regions of interest (ROI) contained load carrying UD

fibre fractures and were located locally close to the thin off-axis backing layers (also

previously discussed in [31]). For ROI 1 and ROI 3 in Fig. 9, damage was observed on

both sides of the backing. For ROI 2, however, damage was only observed on the side

to which the backing bundles were stitched. However at this location a layer of matrix

was present in between the backing and the UD bundles. Videos slicing through the

ROIs in the x-y plane along with the full data sets can be found online [30]. Based on

the observations of this volume, damage was found to be present only where both of

the following criteria are met (see also Fig. 10):

• there is no visible distance between the backing and the UD bundles.

• the backing bundles intersect.

Similar mechanisms where damage initiate at bundle cross-over regions has also previ-

ously been observed for ceramic matrix composites (e.g. [32, 33]).
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Figure 9: Stitched virtual interior slice comprising the three CT scans that make up the scan region

for the MR3 dataset. The ROI’s marked are the only locations where damage was observed. The inset

shows broken UD fibres close to the backing layer.

Fig. 9 also shows an example of the observed broken fibres, and in this location the

UD fibres are seen to be misaligned (5-10 ◦) to the loading direction. However, this was

not the case for the other damage regions and therefore, as discussed previously [31], it

is not believed have much influence. The main damage characteristics are listed below.

• UD fibre fractures are typically observed as a row of fibre breaks likely emanating

from transverse cracking in the matrix of the nearby backing fibres.

• The fibre fracture zone spreads out further from the backing layer, and after

85,000 cycles, no damage was observed beyond approximately 300 microns from

the backing.
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Figure 10: Simplified sketch of one layer of fabric in the composite showing the difference between

critical and less critical cross-over regions. The critical cross-over regions are where both ±80◦ and a

UD bundle cross over and touch each other.

3.3. Observed damage at different stages of life

For the scans performed at high resolution (”HR” in Table 2), it was possible to

see some additional damage features compared to the medium resolution scan (MR3).

These additional damage features were previously outlined in [34], and include:

1. Matrix/interface cracks parallel to the UD fibres.

2. Matrix cracks extending through the backing bundles into the matrix rich regions

between the UD bundle.

3. Matrix cracks in backing bundles (observed rarely).

Of the above mentioned damage features, 1 and 2 are not believed to significantly

influence the stiffness degradation, as only a few broken UD fibres were observed near

these damage features. Matrix cracks in the backing (point 3) however, are believed to

be the cause of the initial stiffness drop observed in the fatigue tests. In addition, they

are believed to be the initiator of UD fibre fractures and therefore are of considerable

interest. In some locations however, the resolution was not sufficient to detect matrix

cracks in the backing bundles as the existing transverse cracks most likely became closed

with the load removed.

Fig. 11 shows a virtual slice taken from the high resolution ROI scan performed on

the cutout-A sample (HR3). A transverse matrix crack in the backing spans the entire
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backing layer, and broken UD fibres are observed locally near the matrix crack. The

matrix crack is seen to span two layers of backing at this location. A video showing all

the slices through the full volume of Fig. 11 can be found online [30].
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Figure 11: Virtual slice showing a matrix crack through two intersecting backing bundles and adjacent

UD fibre fractures (HR3 scan). A video slicing through the volume can be found online [30]

3.3.1. Damage during initial stiffness drop, stage I

For the initial stiffness drop sample (S1), only subjected to 2,000 cycles, it was not

possible to identify any damage in the scans performed at 1.2µm voxel resolution. It is

believed however, that matrix cracks are present in the backing layers at this stage, and

that they cause the small initial stiffness drop as discussed in section 1.2. It is possible

that the crack opening is small due to a small amount of damage in the sample. Further

studies are ongoing in order to confirm the presence and locations of matrix cracks at

this stage e.g. by applying static tension to the sample during CT scanning to keep

open any cracks.

3.3.2. Damage while stiffness degrades stably, stage II

For the sample subjected to 55,000 cycles (S2) only one small damage region was

found in the observed volume (∼2.4mm diameter x 2.4mm height). The broken UD

fibres were segmented manually using the Avizo software. The distribution of fibre
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fractures (represented by red discs) in the UD bundles is shown in Fig 12. As was also

seen in section 3.2, the damage in Fig. 12 occurs where the backing bundles intersect

and there is no visible distance between the UD and backing bundles. The damage

region is quite small, but it is possible that larger damage regions are present at other

locations in the sample because the FoV associated with the scans only cover a small

portion of the test sample.
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Figure 12: a) 3D visualisation and b) top view of fibre fractures for the high resolution scan of S2

(dataset HR2). The fibre fractures are marked as red discs, the thin off-axis backing bundles are

marked in green, and the UD fibres have been rendered transparent for clarification.

Similarly, Fig. 13 shows the segmentation of individual UD fibre fractures for the

high resolution scan (HR3) performed on the test specimen subjected to 85,000 cycles

(at ROI 1 in Fig. 9). It is evident that the fibre fractures next to the backing are

aligned with the backing fibre direction (for more cases see also [31]), which could be

an indication of damage initiation from a matrix crack as suggested by Fig. 11. A bit

further from the backing, the UD fibre fractures are more dispersed forming a damaged

volume where the fibre damage does not necessarily follow the direction of the backing
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fibres. Within this volume, both single chains of fibre fractures, small clusters, and

small planes of fibre fractures were observed. The chains of single fibre breaks are not

necessarily straight nor entirely perpendicular to the load direction. From Fig. 13 it is

also clear that the damage mechanism is a local 3D phenomenon, and considering this

problem in 2D may give misleading conclusions.

(b) Top view(a) 3D view
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Figure 13: a) 3D visualisation and b) top view of fibre fractures for the high resolution scan of S3

(dataset HR3). The fibre fractures are marked as red discs, the thin off-axis backing bundles are

marked in green, and the UD fibres have been rendered transparent for clarification.

3.3.3. Damage as stiffness starts to fall drastically, stage III

At the onset of drastic damage (S4) a larger damage region is observed (Fig. 14).

As observed for S2 and S3, the fibre fractures closest to the backing are seen to line

up with the orientation of the backing fibres (see Fig. 15). As also observed for S2

and S3, the UD fibre fractures are spread out into a damaged zone further away from

the backing. In this region, the fractures seem to form chains and clusters rather than

fracture planes, whereas the damage in Fig. 13 appeared to be arranged in planes to

a higher extent. From the top view in Fig. 14, it can be seen that the damage zone

extends less than halfway into the UD bundle (∼370µm), while from the 3D view it
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is seen that it extends quite far (∼2 mm) along the UD fibre direction. This was not

observed as significantly for the other loading stages.
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Figure 14: 3D visualisation and b) top view of fibre fractures for the high resolution scan of S4 (dataset

HR4). The fibre fractures are marked as red discs, the thin off-axis backing bundles are marked in

green, and the UD fibres have been rendered transparent for clarification.

4. Discussion of the proposed damage progression scheme

In the following, the process of damage progression postulated by Zangenberg et al.

[11] outlined earlier in section 1.2 will be discussed in the light of the X-ray CT results.

From our results it was seen that fibre fractures were only present where the backing

bundles intersect and there is no visible distance between the backing and the UD

bundles. In the original damage scheme, UD fibre damage was taken to appear mainly

at intersecting backing bundles, and in the current study damage was only observed

at these intersecting regions. However, in the study by Zangenberg et al.[11], small

damage regions were also present at other locations such as near the stitching thread.

At this point, it cannot be ruled out that the fibre fractures also exist at these locations
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Figure 15: Broken UD fibres just next to the backing for S4. It is seen that the fibre fractures align

with the backing fibre orientation.

in the samples considered using CT. That is, it is possible that the crack opening is

smaller in these regions, as the damage zone is likely to be smaller. If the opening

between fibre fractures is smaller (the cracks are closed), it might not be possible to

visualise at 1.2µm voxel size. In addition, the locations of the stitching are difficult

to identify, since the stitching thread and matrix have similar densities. This could

be investigated by applying tension to the sample during scanning, which is currently

on-going work.

During the stage (II) where the stiffness degrades steadily, the damage scheme (Fig.

1) suggests that UD fibre fracture damage zones gradually increase in size as a function

of the load cycles. When considering the absolute number of cycles, the size of the

observed damage regions is seen to increase with the number of load cycles as shown

in Table 4. The penetration depth into the UD bundle is estimated by assuming an

average bundle thickness of 0.9mm. The results in Table 4 support the hypothesis that

a gradual loss of stiffness is caused by an increasing number of axial fibre fractures in

these local regions, extending further and further into the UD bundles as the original

damage scheme states. The damage observed in this study shows that many fractures

occur in clusters or chains, which may not be captured by a 2D investigation.

Even though the observations by Zangenberg et al. [11] were obtained at one specific

damage level and using destructive 2D visualisation techniques, many of the observa-
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Table 4: Max observed damage depth into UD bundle for different load stages both absolute and normalised

with an average UD bundle thickness of 0.9mm.

S2 S3 S4

Cycles 55,000 85,000 95,000

Penetration depth in UD 130 µm 310 µm 370 µm

Penetration depth in UD (%) ∼14% ∼34% ∼41%

tions in this study corroborate their damage scheme. However it is unlikely that damage

sites can be reliably identified from 2D imaging. Further, in this study, it is clearly ob-

served that damage progression is a 3D process, and that looking in 2D might give

misleading results depending on the location of the cut surface. The observed damage

zones using X-ray CT comprising single chains of fibre fractures extending in various

directions, and even clusters of fibre fractures. Therefore, a 3D view is essential and it

is preferable to include the damage progression over time in order to fully understand

the damage development. In the future, time-lapse experiments tracking a specific ROI

in a sample over the three stages will be reported in order to confirm the growth of the

fracture zones. This is currently the focus of ongoing work.

5. Conclusion

In this paper, damage evolution under tension fatigue was examined using X-ray

computed tomography experiments. A hierarchical approach has been taken using both

large field of view medium resolution scanning to identify damage zones and small field

of view high resolution scanning to analyse the arrangement of fibre fractures. All

the damage sites were located around regions where intersecting backing bundles were

located next to the UD bundles with no visible distance in between.

Our results have shown that the fibre fractures, for fibres in contact with the backing,

were aligned with the direction of the backing. This suggests that the fibre fractures

were initiated by matrix cracks in the backing bundles. In addition, except for just

next to the transverse backing bundles, the UD fibre fractures were observed to occur
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as chains and clusters of fibre fractures rather than planes. That is, fibre fractures

propagate away from the contacting intersecting backing bundles in chains and planes

that could not be determined simply from 2D destructive analyses. In order to properly

determine the transition from stage II to stage III, time lapse studies of the fatigue of

individual samples are required in the future.
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