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Abstract

Let K be a quadratic number field and ζK(s) be the associated Dedekind zeta-function.
We show that there are infinitely many gaps between consecutive zeros of ζK(s) on the critical
line which are greater than 2.866 times the average spacing.

1 Introduction

Let K be a number field, and let OK denote its ring of integers. The Dedekind zeta-function
attached to K is defined in the half-plane <(s) > 1 by

ζK(s) =
∑

a⊂OK

1

N(a)s
=
∏

p⊂OK

(
1− 1

N(p)s

)−1
,

where a and p run over the nonzero ideals and primes ideals of OK , respectively. Let K be a
quadratic extension of Q with discriminant D. It is known that ζK(s) factors as

ζK(s) = ζ(s)L(s, χD),

where ζ(s) is the Riemann zeta-function and L(s, χD) is the Dirichlet L-function associated to
χD. We denote the modulus of χD by q, which is given by the formula

q =

{
4|D| if D ≡ 2(mod 4),

|D| otherwise.

Let 0 ≤ γ1 ≤ γ2 ≤ . . . ≤ γn ≤ . . . denote the imaginary parts of the nontrivial zeros of ζK(s)
in the upper half-plane. Also, let tn be the imaginary part of the n-th zero of ζK(s) of the form
ρ = 1/2+ it, t > 0. In this article, we study the vertical distribution between the nontrivial zeros
of ζK(s). For T ≥ 2, it is well-known that

NK(T ) :=
∑

0<γ≤T
1 =

TL
π
− T

π
+O (L) ,

where

L = log

√
|D|T
4π2

.
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Hence the average size of γn+1 − γn is π/ log(
√
|D|γn). Normalizing, let

λK := lim sup
n→∞

γn+1 − γn
π/ log(

√
|D|γn)

and ΛK := lim sup
n→∞

tn+1 − tn
π/ log(

√
|D|tn)

.

Note that the Generalized Riemann Hypothesis for ζK(s) implies λK = ΛK . By definition, we
have that ΛK ≥λK ≥ 1, but it is believed that ΛK =λK =∞. Using a method of Hall [12] and
some ideas of Bredberg [3], Turnage-Butterbaugh [21] has shown that ΛK ≥

√
6 = 2.449 . . .. Our

main theorem is an improvement upon this bound on ΛK .

Theorem 1. We have ΛK > 2.866. Thus, under the Generalized Riemann Hypothesis for ζK(s),
we have λK > 2.866.

Remark. Theorem 1 of [21] contains a small error, but the proof and result ΛK ≥ 2.449 . . . are
valid after making an appropriate modification, which we now explain. The theorem states that
for ε > 0 and |D|<T 7/9−ε, we have ΛK ≥ 2.449 . . ., however, we must require D � T ε for the
result ΛK ≥ 2.449 . . . to hold. The mistake arises in the third line of the proof of Theorem 3 of
[21], where it is stated that for α+β� 1/ log(

√
|D|T ), we have D−(α+β) = 1 + O((α+β)|D|ε).

The correct estimate is, rather, D−(α+β) = 1 + O((α+β) log |D|). Thus we require D � T ε so
that the O-term is smaller than the main term. By inserting the correct estimate for D−(α+β)

in the argument, the proof is valid. In short, the statement of Theorem 1 of [21] should read as
follows: for ε>0 and D�T ε, we have ΛK ≥ 2.449 . . .. We note that Theorem 1 above holds for
D � T ε as well.

The weaker lower bound on ΛK obtained in [21] is derived using the mixed second moments
of the derivatives of ζK(1/2 + it). Those moments are obtained via a special case of a result of
Heap [14, Theorem 1] on the twisted second moment of the Dedekind zeta-function. Combining
Hall’s method with the full strength of Heap’s result would likely improve the bound derived in
[21]. In the present article, however, we appeal to a recent improvement of Heap’s result due to
Bettin et al. [2] which allows one to consider a longer amplifier. Indeed, in [14, Corollary 1], the
Dirichlet polynomial has length T ϑ, ϑ<1/11, and in [2], one may take the length of the Dirichlet
polynomial to be T ϑ, ϑ<1/4.

The analogous problem for demonstrating large gaps relative to the average spacing between
critical zeros of the Riemann zeta-function, ζ(s), has been extensively studied (see, for example,
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19]). To place our result in context, we note that, to date,
the strongest result for ζ(s) is due to Bui and Milinovich [6], who have shown, assuming the
Riemann Hypothesis, that there are infinitely many critical zeros of ζ(s) which are at least 3.18
times the average spacing. Very recently the problem has also been studied for critical zeros of a
GL(2) L-function, L(s, f), where f may be taken as either a primitive (holomorphic or Maass)
cusp form. Barrett et al. [1], assuming the Generalized Riemann Hypothesis, have shown that
there are infinitely many critical zeros of L(s, f) which are at least

√
3 = 1.732 . . . times the

average spacing. Both of these results make use of Hall’s method, which we detail in the next
section.

2 A lower bound on ΛK

In this section, we outline Hall’s method to obtain the bound appearing in Theorem 1. We use a
similar setup as Bui and Milinovich [6] in the construction of our argument, which in turn follows
Section 2 of Bredberg [3].

Theorem 2 (Wirtinger’s inequality). Let f : [a, b]→ C be a continuously differentiable function,
and suppose that f(a)=f(b)=0. Then∫ b

a
|f(x)|2dx ≤

(b− a
π

)2 ∫ b

a
|f ′(x)|2dx.
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Proof. This is a variation of Wirtinger’s inequality given by Bredberg (see [3, Corollary 1]).

Fix K. Suppose, towards a contradiction, that ΛK ≤ κ, where κ is some real number. Let

f(t) := eiνLtζ(12 +it)L(12 +it, χD)M(12 +it),

where ν is a real constant that will be chosen later. Here we choose M(s) to be an amplifier of
the form

M(s) =
∑

h1h2≤y

dr(h1)dr(h2)χD(h2)P [h1h2]

(h1h2)s
,

where y = T ϑ, 0 < ϑ < 1/4, r ∈ N, and dr(h) denotes the coefficients of ζ(s)r. Moreover, we use
the notation

P [h] = P
( log y/h

log y

)
for 1 ≤ h ≤ y, where P (x) =

∑
j≥0 bjx

j is a polynomial. By convention, we set P [h] = 0 for
h ≥ y. Thus, for all h, we have

P [h] =
∑
j≥0

bjj!

(log y)j
1

2πi

∫
(1)

(y
n

)s ds

sj+1
. (1)

Here, and throughout the article, the notation
∫
(c) means

∫ c+i∞
c−i∞ .

Denote all of the zeros of the function f(t) in the interval [T, 2T ] by t̃1 ≤ t̃2 ≤ . . . ≤ t̃N . By
our assumption, we have

t̃n+1 − t̃n ≤
(
1 + o(1)

)κπ
L

as T →∞ for n = 0, 1, . . . , N . Here we define t̃0 = T and t̃N+1 = 2T . By Theorem 2, we have∫ t̃n+1

t̃n

|f(t)|2dt ≤
(
1 + o(1)

)κ2
L2

∫ t̃n+1

t̃n

|f ′(t)|2dt (2)

for n = 0, 1, . . . , N . Summing (2) for all zeros in the range [T, 2T ] gives∫ 2T

T
|f(t)|2dt ≤

(
1 + o(1)

)κ2
L2

∫ 2T

T
|f ′(t)|2dt.

Therefore, if

h(D,κ,M) :=
L2

κ2

∫ 2T
T |f(t)|2dt∫ 2T
T |f ′(t)|2dt

> 1,

we may conclude that ΛK > κ. Thus, the problem has been reduced to the study of the above
mean values.

2.1 Smoothed mean-value estimates

To calculate the mean squares of |f(t)| and |f ′(t)| we consider the more general integral

I(α, β) :=

∫ ∞
−∞

ζ(12 +α1+it)L(12 +α2+it, χD)ζ(12 +β1−it)L(12 +β2−it, χD)

×M(12 +α3+it)M(12 +β3 − it)Φ
( t
T

)
dt, (3)

where αi, βi � L−1 for i = 1, 2, 3, y = T ϑ, ϑ < 1/4, and Φ(x) is a smooth function supported in
[1, 2] with derivatives Φ(j)(x) �j T

ε for any j ≥ 0. We shall prove the following proposition in
Section 3.
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Proposition 1. We have

I(α, β) =
c(α, β)Ar+1(log y)2r

2+4rL2

(2r2 − 1)!((r − 1)!)4
Φ̂(0)T +O(TL2r2+4r+1),

where

Ar =
∏
p

(
1− 1

p

)2r2 ∞∑
m=0

ar(p
m)2

pm
,

with ar(n) the coefficients of ζK(s)r, and

c(α, β) =

∫
[0,1]7

x+x1+x2≤1
x+x3+x4≤1

y−(α3+β3)x−α3(x1+x2)−β3(x3+x4)−β1x1−β2x2−α1x3−α2x4

× [Ty−(x1+x3)]−(α1+β1)t1 [qTy−(x2+x4)]−(α2+β2)t2
(
1−ϑ(x1+x3)

)(
1−ϑ(x2+x4)

)
× x2r2−1(x1x2x3x4)r−1P (1−x−x1−x2)P (1−x−x3−x4)dxdx1dx2dx3dx4dt1dt2.

The proof of Proposition 1 uses the main theorem of [2] (see Theorem 3 below). This gives
I(α, β) as a sum of six terms, two of which lead to a lower order contribution. The difference
between the four main terms is simply a permutation of the shifts which allows us to concentrate
on a single term. Using standard analytic techniques we compute this as a product of (log y)2r

2+4r

times a multiple integral dependent on the shifts. Upon combining all four main terms we gain
the full expression for c(α, β) along with the extra factor of L2.

Using Proposition 1, we now prove the following smoothed mean-values of f(t) and f ′(t).

Proposition 2. Suppose ϑ < 1/4. Then we have∫ ∞
−∞
|f(t)|2Φ

( t
T

)
dt =

c0Ar+1(log y)2r
2+4rL2

(2r2 − 1)!((r − 1)!)4
Φ̂(0)T +O(TL2r2+4r+1),

where

c0 := c(0, 0) =

∫
[0,1]7

x+x1+x2≤1
x+x3+x4≤1

(
1−ϑ(x1+x3)

)(
1−ϑ(x2+x4)

)
x2r

2−1(x1x2x3x4)
r−1

× P (1−x−x1−x2)P (1−x−x3−x4)dxdx1dx2dx3dx4dt1dt2.

Proof. The result follows immediately from Proposition 1 upon noting that∫ ∞
−∞
|f(t)|2Φ

( t
T

)
dt = I(0, 0).

Proposition 3. Suppose ϑ < 1/4. Then we have∫ ∞
−∞
|f ′(t)|2Φ

( t
T

)
dt =

c1(ν)Ar+1(log y)2r
2+4rL4

(2r2 − 1)!((r − 1)!)4
Φ̂(0)T +O(TL2r2+4r+3),

where

c1(ν) :=

∫
[0,1]7

x+x1+x2≤1
x+x3+x4≤1

(
1−ϑ(x1+x3)

)(
1−ϑ(x2+x4)

)
x2r

2−1(x1x2x3x4)
r−1
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×
(
ν−ϑ(x+ x1+x2+x3+x4)− t1

(
1−ϑ(x1+x3)

)
− t2

(
1−ϑ(x2+x4)

))2
× P (1−x−x1−x2)P (1−x−x3−x4)dxdx1dx2dx3dx4dt1dt2.

Proof. We have∫ ∞
−∞
|f ′(t)|2Φ

( t
T

)
dt =L2Q

[
1

L

(
d

dα1
+

d

dα2
+

d

dα3

)]
×Q

[
1

L

(
d

dβ1
+

d

dβ2
+

d

dβ3

)]
I(α, β)

∣∣∣∣
α=β=0

,

where
Q(x) = ν + x.

Note that

Q

[
1

L

(
d

dα1
+

d

dα2
+

d

dα3

)]
Xα1

1 Xα2
2 Xα3

3 = Q

[
logX1 + logX2 + logX3

L

]
Xα1

1 Xα2
2 Xα3

3 .

Since the error term in I(α, β) is necessarily holomorphic for small αi, βj , we may apply the
above differential operator via Cauchy’s integral formula over a circle of radius L−1 to give the
desired formula for c1(ν) along with the desired error term.

2.2 Completion of the proof of Theorem 1

From Propositions 2 and 3, we deduce that∫ 2T

T
|f(t)|2dt =

c0Ar+1(log y)2r
2+4rL2

(2r2 − 1)!((r − 1)!)4
T +O(TL2r2+4r+1) (4)

and ∫ 2T

T
|f ′(t)|2dt =

c1(ν)Ar+1(log y)2r
2+4rL4

(2r2 − 1)!((r − 1)!)4
T +O(TL2r2+4r+3). (5)

By (4) and (5), we have

h(D,κ,M) :=
L2

κ2

∫ 2T
T |f(t)|2dt∫ 2T
T |f ′(t)|2dt

=
c0

κ2c1(ν)
+ o(1).

The choice ϑ = 1/4, v = 1.2773, r = 1, and

P (x) = 1− 10.8998x+ 28.9444x2 − 22.1343x3 + 0.6148x4

gives
h(D, 2.866,M) = 1.00016 . . . ,

and the theorem follows.

Remark. It is not clear that emulating higher moments should necessarily lead to larger gaps
in our framework. The basic point is that the coefficients in the denominator of the ratio∫
|f |2/

∫
|f ′|2 can often be larger than those of the numerator when one considers higher moments.

For example, taking f(t) = ζ(1/2 + it)k in our setup leads to lower bounds on Λ2
Q of (essen-

tially) the form (
1
2 log T

)2 ∫ 2T
T |ζ(12 + it)|2kdt∫ 2T

T |kζ ′(
1
2 + it)ζ(12 + it)k−1|2dt

. (6)
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If we assume the moments conjecture of Keating-Snaith [16],∫ 2T

T
|ζ(12 + it)|2kdt ∼ a(k)g(k)

k2!
T (log T )k

2
,

along with the following conjecture of Hughes [15, Equation (6.81)],∫ 2T

T
|ζ ′(12 + it)ζ(12 + it)k−1|2dt ∼ a(k)g(k)

k2!

k2

4k2 − 1
T (log T )k

2+2,

then the ratio in (6) is given by (4k2 − 1)/4k4 which tends to zero as k → ∞. By considering
Hardy’s Z-function instead of the zeta-function one can make a slight improvement here. Even
then, assuming a conjecture of Hughes [15, Conjecture 6.1] the best one can get from this method
is ΛQ > 2.

As we have demonstrated, one can perform further optimizations in this setup. However,
when considering higher moments (or their emulation via twisted moments) there may be more
germane inequalities other than the basic inequality of Wirtinger. This is the subject of Hall’s
paper [13], where unfortunately the resulting lower bounds on ΛQ are seemingly very difficult to
calculate for k ≥ 4.

If one is to assume the higher moment conjectures then a better approach is to use the method
of Mueller [18]. Briefly, the reason for this is that there is an issue of overcounting in Mueller’s
method, but this can be reduced by taking higher moments and this allows one to detect larger
gaps. For example, in the paper [20] it is proved that there are infinitely large gaps subject to
the appropriate moment conjectures.

3 Proof of Proposition 1

3.1 Lemmas

We first collect some lemmas of Bui and Milinovich [6, Lemma 4.1 and Lemma 4.2].

Lemma 1. Let

Kj(α, β) =
1

2πi

∫
(L−1)

(y
n

)u
ζr(1+α+u)ζr(1+β+u)

du

uj+1
.

Then we have

Kj(α, β) =
(log y/n)j+2r

((r − 1)!)2j!

∫∫
x1+x2≤1
0≤x1,x2≤1

(y
n

)−αx1−βx2
(x1x2)

r−1(1− x1 − x2)jdx1dx2 +O(Lj+2r−1)

uniformly for α, β � L−1.

Lemma 2. Suppose f is a smooth function. Then we have

∑
n≤y

dr(n)

n1+α
f
( log y/n

log y

)
=

logr y

(r − 1)!

∫ 1

0
y−αxxr−1f(1− x)dx+O(Lr−1).

3.2 Mean value calculations

To evaluate I(α, β), defined in (3), we apply a special case of a result of [2], which computes the
twisted moment of the product of four Dirichlet L-functions.
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Let G(s) be an even entire function of rapid decay in any fixed strip |<(s)| ≤ C satisfying
G(0) = 1. Furthermore, assume that G(s) vanishes at s = −(αi + βi)/2 for i = 1, 2. Let

V (x) =
1

2πi

∫
(1)
G(s)(2π)−2sx−s

ds

s
. (7)

Given two positive integers a and b, and four primitive characters ψ1, ψ2, χ1, and χ2, we denote

Zα,β,γ,δ,a,b(t, ψ1, ψ2, χ1, χ2) :=
∑

am1m2=bn1n2

ψ1(m1)ψ2(m2)χ1(n1)χ2(n2)

m
1/2+α
1 m

1/2+β
2 n

1/2+γ
1 n

1/2+δ
2

V
(m1m2n1n2

t2

)
.

Since ζK(s) = ζ(s)L(s, χD), we shall take ψ1=χ1=1, the trivial character, and ψ2=χ2=χD.
Applying Theorem 1.3 of [2] in this special case, we obtain the following theorem.

Theorem 3. Suppose ϑ < 1/4. Then we have∫ ∞
−∞

ζ(12 +α1+it)L(12 +α2+it, χD)ζ(12 +β1−it)L(12 +β2−it, χD)
∑
h,k≤y

chck
h1/2+itk1/2−it

Φ
( t
T

)
dt

=
∑
h,k≤y

chck√
hk

∫ ∞
−∞

Φ
( t
T

)[
Zα1,α2,β1,β2,h,k(t, 1, χD, 1, χD)

+
( t

2π

)−(α1+β1)
Z−β1,α2,−α1,β2,h,k(t, 1, χD, 1, χD)

+
( qt

2π

)−(α2+β2)
Zα1,−β2,β1,−α2,h,k(t, 1, χD, 1, χD)

+
( t

2π

)−(α1+β1)( qt
2π

)−(α2+β2)
Z−β1,−β2,−α1,−α2,h,k(t, 1, χD, 1, χD)

+ εχD

( t

2π

)−α1
( qt

2π

)−β2
Z−β2,α2,β1,−α1,h,qk(t, χD, χD, 1, 1)

+ εχD

( t

2π

)−β1( qt
2π

)−α2

Zα1,−β1,−α2,β2,qh,k(t, 1, 1, χD, χD)

]
dt+Oε

(
T 1−ε)

uniformly for αi, βi � L−1, where εχD is the root factor in the functional equation for L(s, χD).

Theorem 3 gives

I(α, β) = I1 + I2 + I3 + I4 + I ′1 + I ′2 +Oε
(
T 1−ε) ,

say, where the terms I1, I2, I3, I4 correspond to the first four terms of the (expanded) above
expression and I ′1, I

′
2 correspond to the last two. We shall show in Section 3.4 that these latter

terms are of a lower order.

3.3 Main terms

Consider the first term

I1 =
∑

h1h2,k1k2≤y

dr(h1)dr(h2)χD(h2)P [h1h2]dr(k1)dr(k2)χD(k2)P [k1k2]

(h1h2)1/2+α3(k1k2)1/2+β3

×
∑

h1h2m1m2=k1k2n1n2

χD(m2)χD(n2)

m
1/2+α1

1 m
1/2+α2

2 n
1/2+β1
1 n

1/2+β2
2

∫ ∞
−∞

Φ
( t
T

)
V
(m1m2n1n2

t2

)
dt.

The terms I2, I3, I4 can be acquired by permuting the shifts and by multiplying by the appro-
priate factors of T and q. We therefore concentrate on I1 in the meanwhile.
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The contour integral representation (1) and (7) give

I1 =
∑
i,j

bibji!j!

(log y)i+j

( 1

2πi

)3 ∫ ∞
−∞

∫
(1)

∫
(1)

∫
(1)

Φ
( t
T

)
G(s)

( t

2π

)2s
yu+v

×
∑

h1h2m1m2=k1k2n1n2

dr(h1)dr(h2)χD(h2)dr(k1)dr(k2)χD(k2)

(h1h2)1/2+α3+u(k1k2)1/2+β3+v

× χD(m2)χD(n2)

m
1/2+α1+s
1 m

1/2+α2+s
2 n

1/2+β1+s
1 n

1/2+β2+s
2

du

ui+1

dv

vj+1

ds

s
dt.

Since the coefficients and the condition h1h2m1m2 = k1k2n1n2 are both multiplicative, we may
express the inner sum in terms of an Euler product. From this we see that the inner sum is given
by

A(α, β, u, v)ζ(1+α3+β3+u+v)2r
2
ζ(1+α3+β1+u+s)rζ(1+α3+β2+u+s)r

× ζ(1+β3+α1+v +s)rζ(1+β3+α2+v +s)rζ(1+α1+β1 +2s)ζ(1+α2+β2 +2s), (8)

where A(α, β, u, v) is some arithmetic factor which is absolutely convergent in the product of the
half-planes <(u) > −1/2, <(v) > −1/2.

We first move the u and v contours to <(u) = <(v) = δ, and then move the s contour to
<(s) = −δ/2, where δ > 0 is some fixed constant such that the arithmetic factor converges
absolutely. In doing so, we only cross a pole at s = 0. Note that the poles at s = −(αi + βi)/2
for i = 1, 2 of the zeta-functions are cancelled out by the zeros of G(s). On the new line of
integration we simply bound the integral by absolute values, giving the following contribution

�ε T
1+εy2δT−δ �ε T

1−ε.

Therefore,

I1 = Φ̂(0)Tζ(1+α1+β1)ζ(1+α2+β2)
∑
i,j

bibji!j!

(log y)i+j
Ji,j +Oε(T

1−ε), (9)

where

Ji,j =
( 1

2πi

)2 ∫
(1)

∫
(1)
yu+vA(α, β, u, v)ζ(1+α3+β3+u+v)2r

2
ζ(1+α3+β1+u)r

× ζ(1+α3+β2+u)rζ(1+β3+α1+v)rζ(1+β3+α2+v)r
du

ui+1

dv

vj+1

=
∑
n≤y

d2r2(n)

n1+α3+β3

( 1

2πi

)2 ∫
(1)

∫
(1)

(y
n

)u+v
A(α, β, u, v)ζ(1+α3+β1+u)r

× ζ(1+α3+β2+u)rζ(1+β3+α1+v)rζ(1+β3+α2+v)r
du

ui+1

dv

vj+1
.

Here we have restricted the sum to n ≤ y since the error term can be made arbitrarily small by
moving the contours of integration sufficiently far enough to the right.

We now shift the contours of integration to <(u) = <(v) = L−1. A trivial estimate then gives
Ji,j � Li+j+2r2+4r. Since A(α, β, u, v) is holomorphic at (0, 0, 0, 0) we have the Taylor expansion

A(α, β, u, v) = A(0, 0, 0, 0) +O(L−1) +O(|u|+ |v|).

So, upon replacing A(α, β, u, v) by A(0, 0, 0, 0), we incur an error of size O(Li+j+2r2+4r−1).
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We take a brief diversion to show that A(0, 0, 0, 0) = Ar+1. We have

A(s, s, 0, 0) =ζ(1+s)−2(r+1)2
∑

h1h2m1m2=
k1k2n1n2

dr(h1)dr(h2)χD(h2)dr(k1)dr(k2)χD(k2)χD(m2)χD(n2)

(h1h2m1m2k1k2n1n2)1/2+s

=ζ(1+s)−2(r+1)2
∑
m=n

ar+1(m)ar+1(n)

(mn)1/2+s

=ζ(1+s)−2(r+1)2
∞∑
n=1

ar+1(n)2

n1+2s
.

It is not immediately obvious that this is convergent at s= 0. However, we may arrive at such
a conclusion by first replacing ζ(1 + s)−2(r+1)2 with [ζK(1 + s)/L(1 + s, χD)]−2(r+1)2 , forming
the Euler product of the zeta-function and the sum over n, and then separately checking the
cases of split, inert and ramified primes (for which one has χ(p) = 1, χ(p) = −1 and χ(p) = 0
respectively). Setting s=0 then gives Ar+1.

On returning to our formula for Ji,j , we now have

Ji,j = Ar+1

∑
n≤y

d2r2(n)

n1+α3+β3
Ki(α3 + β1, α3 + β2)Kj(β3+ α1, β3+ α2) +O(Li+j+2r2+4r−1),

where

Kj(α, β) =
1

2πi

∫
(L−1)

(y
n

)u
ζ(1+α+u)rζ(1+β+u)r

du

uj+1
.

By Lemmas 1 and 2, we have

Ji,j =
Ar+1(log y)i+j+4r

((r − 1)!)4i!j!

∫∫∫∫
0≤x1,x2,x3,x4≤1
x1+x2,x3+x4≤1

(x1x2x3x4)
r−1(1−x1−x2)i(1−x3−x4)j

×
∑
n≤y

d2r2(n)

n1+α3+β3

(y
n

)−(α3+β1)x1−(α3+β2)x2−(β3+α1)x3−(β3+α2)x4

×
( log y/n

log y

)i+j+4r
dx1dx2dx3dx4 +O(Li+j+2r2+4r−1)

=
Ar+1(log y)i+j+2r2+4r

(2r2 − 1)!((r − 1)!)4i!j!

∫ 1

0

∫∫∫∫
0≤x1,x2,x3,x4≤1
x1+x2,x3+x4≤1

(x1x2x3x4)
r−1(1−x1−x2)i

× (1−x3−x4)jy−(α3+β3)x−
(
(α3+β1)x1+(α3+β2)x2+(β3+α1)x3+(β3+α2)x4

)
(1−x)

× x2r2−1(1−x)i+j+4rdx1dx2dx3dx4dx+O(Li+j+2r2+4r−1)

=
Ar+1(log y)i+j+2r2+4r

(2r2 − 1)!((r − 1)!)4i!j!

∫∫ ∫
0≤x,x1,x2,x3,x4≤1

x+x1+x2,x+x3+x4≤1

∫∫
(x1x2x3x4)

r−1(1−x−x1−x2)i

× (1−x−x3−x4)jy−(α3+β3)x−(α3+β1)x1−(α3+β2)x2−(β3+α1)x3−(β3+α2)x4

× x2r2−1dx1dx2dx3dx4dx+O(Li+j+2r2+4r−1),

where in the last step we have used the substitutions xm(1− x) 7→ xm, m = 1, 2, 3, 4. Inputting
this in our formula for I1 gives

I1 = Φ̂(0)T
Ar+1(log y)2r

2+4r

(2r2 − 1)!((r − 1)!)4
ζ(1+α1+β1)ζ(1+α2+β2)
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×
∫∫ ∫

0≤x,x1,x2,x3,x4≤1
x+x1+x2,x+x3+x4≤1

∫∫
y−(α3+β3)x−(α3+β1)x1−(α3+β2)x2−(β3+α1)x3−(β3+α2)x4x2r

2−1(x1x2x3x4)
r−1

× P (1−x−x1−x2)P (1−x−x3−x4)dxdx1dx2dx3dx4 +O(TL2r2+4r+1).

We now recall the formulae for the three remaining I terms;

I2 =T−(α1+β1)I1(−β1, α2,−α1, β2) +O(TL2r2+4r+1),

I3 =(qT )−(α2+β2)I1(α1,−β2, β1,−α2) +O(TL2r2+4r+1),

I4 =T−(α1+β1)(qT )−(α2+β2)I1(−β1,−β2,−α1,−α2) +O(TL2r2+4r+1).

These give

I(α, β) = Φ̂(0)T
Ar+1(log y)2r

2+4r

(2r2 − 1)!((r − 1)!)4

∫ ∫ ∫
0≤x,x1,x2,x3,x4≤1

x+x1+x2,x+x3+x4≤1

∫ ∫
y−(α3+β3)x−α3(x1+x2)−β3(x3+x4)

× U(x)x2r
2−1(x1x2x3x4)

r−1P (1−x−x1−x2)P (1−x−x3−x4)dxdx1dx2dx3dx4
+ I ′1 + I ′2 +O(TL2r2+4r+1) +Oε(T

1−ε),

where

U(x) =
y−β1x1−β2x2−α1x3−α2x4

(α1 + β1)(α2 + β2)
− T−(α1+β1)yα1x1−β2x2+β1x3−α2x4

(α1 + β1)(α2 + β2)

− (qT )−(α2+β2)y−β1x1+α2x2−α1x3+β2x4

(α1 + β1)(α2 + β2)
+
T−(α1+β1)(qT )−(α2+β2)yα1x1+α2x2+β1x3+β2x4

(α1 + β1)(α2 + β2)
.

A short calculation shows that U(x) is given by

y−β1x1−β2x2−α1x3−α2x4

(
1− [Ty−(x1+x3)]−(α1+β1)

α1 + β1

)(
1− [qTy−(x2+x4)]−(α2+β2)

α2 + β2

)
= y−β1x1−β2x2−α1x3−α2x4L2

(
1− ϑ(x1 + x3)

)(
1− ϑ(x2 + x4)

)
×
∫ 1

0

∫ 1

0
[Ty−(x1+x3)]−(α1+β1)t1 [qTy−(x2+x4)]−(α2+β2)t2dt1dt2 +O(L).

Inputting this into I(α, β) gives the main term of Proposition 1.

3.4 Lower order terms

It remains to calculate I ′1, I
′
2. We have

I ′1 =εχD

∑
h1h2,k1k2≤y

dr(h1)dr(h2)χD(h2)P [h1h2]dr(k1)dr(k2)χD(k2)P [k1k2]

(h1h2)1/2+α3(k1k2)1/2+β3

×
∑

h1h2m1m2=qk1k2n1n2

χD(m2)χD(m2)

m
1/2−β2
1 m

1/2+α2

2 n
1/2+β1
1 n

1/2−α1

2∫ ∞
−∞

Φ
( t
T

)( t

2π

)−α1
( qt

2π

)−β2
V
(m1m2n1n2

t2

)
dt.

Similarly to before we may unfold the integrals in the polynomials P [h1h2], P [k1k2] and use (7).
We then encounter an inner sum of the form∑

h1h2m1m2=qk1k2n1n2

dr(h1)dr(h2)χD(h2)dr(k1)dr(k2)χD(k2)

(h1h2)1/2+α3(k1k2)1/2+β3
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× χD(m2)χD(m2)

m
1/2−β2+s
1 m

1/2+α2+s
2 n

1/2+β1+s
1 n

1/2−α1+s
2

.

From the Euler product this is given by

B(α, β, u, v)ζ(1+α3+β3+u+v)2r
2
ζ(1+α3−α1+u+s)r

× ζ(1+α3+β1+u+s)rζ(1+β3−β1+v +s)rζ(1+β3+α2+v +s)r,

where B(α, β, u, v) is an arithmetic factor convergent in some product of half-planes containing
the origin. In comparison with (8), note the absence of the two zeta terms. Accounting for this
whilst shifting the contours of integration to <(u) = <(v) = L−1 and trivially evaluating the
integrals as in the analysis of the previous section gives

I ′1 � (log y)2r
2+4r.

The same bound holds for I ′2.
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