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1 Introduction

Consider the two-dimensional Navier-Stokes equation with Dirichlet boundary condition,
which describes the time evolution of an incompressible fluid,

Ju(t, x)
ot
with the conditions

—vAu(t,z) + (u(t,z) - V)u(t,z) + Vp(t,z) = f(t,x), (1.1)

(V-u)(t,x) =0, for z€ D, t>0,
u(t,z) =0, for x € 0D,t >0, (1.2)
u(0,2) = ug(x), for z € D,

where D is a bounded open domain of R? with regular boundary 9D, u(t,z) € R? denotes
the velocity field at time ¢ and position z, v > 0 is the viscosity coefficient, p(¢, x) denotes
the pressure field, f is a deterministic external force.

To formulate the Navier-Stokes equation, we introduce the following standard spaces: let

V ={veHj(D;R?) :V-v=0,ae. inD},

ol = ( [ 1vofde) " = o,
D

and let H be the closure of V in the L?-norm

%
|y == (/ |U|2dl') = |vl.
D

Define the operator A (Stokes operator) in H by the formula

with the norm

Au = —vPyAu, Yu € H*(D;R*)NYV,

where the linear operator Py (Helmhotz-Hodge projection) is the projection operator from
L?*(D;R?) to H, and define the nonlinear operator B by

B(u,v) := Py((u- V)v),

with the notation B(u) := B(u,u) for short.
By applying the operator Py to each term of (1.1), we can rewrite it in the following
abstract form:

du(t) + Au(t)dt + B(u(t))dt = f(t)dt in L*([0,T], V"), (1.3)
with the initial condition u(0) = ug for some fixed point ug in H.

Taking into account the random external forces, in this paper we consider stochastic
Navier-Stokes equations (SNSE) driven by the multiplicative Lévy noise, that is, the follow-
ing random perturbations of Navier-Stokes equation:

{ duf(t) = —Au(t)dt — B(u(t))dt + f(t)dt + € [ G(u(t—), V)N (dtdv): (1.4)

UE(O) =Ug € H.



Here X is a locally compact Polish space, G is a measurable mapping to be specified later,
N¢" is a Poisson random measure on [0, T]x X with a o-finite intensity measure e ! A\p®9, Ay
is the Lebesgue measure on [0, 7] and ¢ is a o-finite measure on X, N is the compensated
Poisson random measure, i.e., for O € B(X) with 9(0) < oo,

NE'([0,8] x O) = N ([0,8] x O) — e "49(O).

As the parameter € tends to zero, the solution u® of (1.4) will tend to the solution of the
following deterministic Navier-Stokes equation at least in the mean sense

du’(t) + Au’(t)dt + B(u®(t))dt = f(t)dt, with u"(0) = uy € H. (1.5)

In this paper, we shall investigate deviations of v from the deterministic solution u°, as

e decreases to 0, that is, the asymptotic behavior of the trajectory,
Ve = (v —u) /a(e), (1.6)

where a(e) is some deviation scale which strongly influences the asymptotic behavior of Ye.
We will study the so-called moderate deviation principle (MDP for short, cf. [9]), that is
when the deviation scale satisfies

a(e) =0, e/a*(e) -0 ase— 0. (1.7)
Throughout this paper, we assume that (1.7) is in place.

Large deviations for stochastic partial differential equations have been investigated in
many papers, see [5], [6], [15], [19], etc.. Wentzell-Freidlin type large deviation results
for the two-dimensional stochastic Navier-Stokes equations with Gaussian noise have been
established in [1] and [20], and the case of Lévy noise has been established in [25] and [26].

Like the large deviations, the moderate deviation problems arise in the theory of statisti-
cal inference quite naturally. The estimates of moderate deviations can provide us with the
rate of convergence and a useful method for constructing asymptotic confidence intervals,
see [10], [11], [14], [16] and references therein. Results on the MDP for processes with inde-
pendent increments were obtained in De Acosta [8], Chen [7] and Ledoux [17]. The study
of the MDP estimates for other processes has been carried out as well, e.g., Wu [24] for
Markov processes, Guillin and Liptser [12] for diffusion processes, Wang and Zhang [23] for
stochastic reaction-diffusion equations. Wang et al [22] considered a MDP for 2-D stochastic
Navier-Stokes equations driven by multiplicative Wiener processes.

The moderate deviation problems for stochastic evolution equations and stochastic partial
differential equations driven by Lévy noise are drastically different because of the appearance
of the jumps. There is not much study on this topic so far. Recently, Budhiraja, Dupuis
and Ganguly [3] obtained the MDPs for stochastic differential equations driven by a Poisson
random measure in finite dimensions and in some co-nuclear spaces, which can not cover

SNSEs.

Our aim is to establish a moderate deviation principle for two-dimensional stochastic
Navier-Stokes equations (SNSEs) driven by multiplicative Lévy noises. We will apply the
abstract criteria (weak convergence approach) obtained in [3]. However, it is quite non-trivial



to implement the weak convergence approach to SNSEs due to the highly non-linear term
in the equation and the appearance of the jumps. The crucial step is to show the weak
convergence of SNSEs driven by counting random measures with random intensity. To this
end, we decompose the solutions into a sum of the solutions of several relatively simpler
equations and prove the convergence/tightness of the solutions of each equations.

The organization of this paper is as follows. In Section 2, we recall the general criteria
for a moderate deviation principle given in [3]. Section 3 is devoted to establishing the
moderate deviation principle for two-dimensional stochastic Navier-Stokes equations driven
by multiplicative Lévy noises.

Throughout this paper, cy, csr, - - - are positive constants depending on some parameters
N, f,T,---, independent of ¢, whose value may be different from line to line.

2 Preliminaries

In this section, we will recall the general criteria for a moderate deviation principle given in
[3], and to this end, we closely follow the framework and the notations in it.

2.1 Controlled Poisson random measure

Let X be a locally compact Polish space. Denote by Mpc(X) the space of all measures v
on (X, B(X)) such that J(K) < oo for every compact K in X, and let C.(X) be the space
of continuous functions with compact supports. Endow M g (X) with the weakest topology
such that for every f € C(X), the function ¥ — (f,9) = [, f(u)dd(u), 9 € Mpc(X) is
continuous. This topology can be metrized such that Mpc(X) is a Polish space (see e.g.
[4]). Fix T € (0,00) and let Xy = [0,7] x X. Fix a measure ¥ € Mpc(X), and let
U = A\r ® 9, where Ar is Lebesgue measure on [0, 7.

We recall that a Poisson random measure n on Xp with intensity measure ¢r is an
Mpc(Xr) valued random variable such that for each B € B(X7) with d7(B) < oo, n(B) is
Poisson distributed with mean ¥7(B) and for disjoint By, - - - , By, € B(Xr), n(By),--- ,n(By)
are mutually independent random variables (cf. [13]). Denote by P the measure induced by
n on (Mpce(Xr), B(Mpc(Xr))). Then letting M = Mpc(Xr), P is the unique probability
measure on (M, B(M)) under which the canonical map, N : M — M, N(m) = m, is a
Poisson random measure with intensity measure 7. We also consider, for 8 > 0, probability
measures Py on (M, B(M)) under which N is a Poissson random measure with intensity 9.
The corresponding expectation operators will be denoted by E and Ey, respectively.

Set Y = X x [0,00) and Yy = [0,T] x Y. Similarly, let M = Mpc(Y7) and let P be
the unique probability measure on (M, B(M)) under which the canonical map, N : M —
M, N(m) = m, is a Poisson random measure with intensity measure J7 = A\ ® ¥ @ Ao,
with Ay being Lebesgue measure on [0,00). The corresponding expectation operator will
be denoted by E. Let F; = a{N((0,s] x O) : 0 < s <t,0 € B(Y)}, and denote by F; the
completion under P. Let P be the predictable o-field on [0, 7] x M with the filtration {F; :
0<t<T}on (M BM)). Let A, (resp. A) be the class of all (P ® B(X))/B|0, ) (resp.
(P ® B(X))/B(R))-measurable maps ¢ : Xy x M — [0,00) (resp. ¢ : Xy x M — R). For



¢ € A, define a counting process N¥ on Xz by
N?((0,t] x U) = /(Oﬂ U/(O )1[07¢(57I)](T)N(dsdxdr), t€|0,7],U € B(X). (2.8)
X ,00

N¥ is the controlled random measure, with ¢ selecting the intensity for the points at location
x and time s, in a possibly random but non-anticipating way. When ¢(s, z,m) = 6 € (0, 00),
we write N¥ = NY. Note that N? has the same distribution with respect to P as N has with
respect to Py.

We end this subsection with some notations. Define [ : [0, 00) — [0, 00) by
I(ry=rlogr—r+1, rel0,00).

For any ¢ € A, the quantity

Li(g) = /X 1o (t, 2, )0 (dtdz) (2.9)

is well defined as a [0, oco]-valued random variable. Let {K,, C X, n = 1,2,---} be an
increasing sequence of compact sets such that U | K,, = X. For each n let

Avn = {p €A, forall (t,w)€[0,T] x M, n>o(t,z,w) > 1/nif v € K,
and o(t,z,w) =1if v € KS},

and let A, = U2 | A, ..

2.2 A General Moderate Deviation Result

In this subsection, we recall a general criteria for a moderate deviation principle introduced
in [3].

Assume that a(e) satisfies (1.7). Let {G}c~o be a family of measurable maps from M to
U, where M is introduced in Subsection 2.1 and U is a Polish space. We present below a
sufficient condition for large deviation principle (LDP in abbreviation) to hold for the family
G(eN< ") as € — 0, with speed £/a?(¢) and a rate function that is given though a suitable
quadratic form, which is the so-called moderate deviation principle (MDP for short, cf. [9]).

For e > 0 and M < oo, consider the spaces

SY.o={p: Xx[0,T] = Ry | Lr(p) < Ma*(e)} (2.10)
SM={Y: Xx[0,T] =R [ v =(p—1)/ale), p € SL}.

We also let

Uy’g ={pcA: ¢(,w)€ Sﬁ/{g, P-a.s.} (2.11)
UM ={pe A: ¥(-,-,w) € SM, P-a.s.}

The norm in the Hilbert space L?(d7) will be denoted by || || and By(R) denotes the ball
of radius R in L?(Y7). Throughout this paper Bo(R) is equipped with the weak topology of
L?(Y7) and it is therefore weakly compact. Given a map Gy : L?(d7) — U and n € U, let

Sy ={v € L*(¥r) : n=Go(v)}

5



and define I by

1
1) = i, |5l1018]. (2.12)

By convention, I(n) = +oo if S, = (.

Suppose ¢ € Sﬂa. By Lemma 3.2 in [3], there exists kq(1) € (0, 00) that is independent

of ¢ and such that ¥1{jy<1/a()} € B2(y/M#k2(1)), where ¢» = (¢ —1)/a(e). In this paper, we
use the symbol “ =" to denote convergence in distribution.

Condition MDP: Let G, : L?(¥7) — U be measurable and satisfy:
(MDP-1) Given M > 0, suppose that g%, g € Bo(M) and ¢° — g. Then
Go(9°) — Golg) inU.
(MDP-2) Given M > 0, let {¢°}.50 be such that for every ¢ > 0, ¢* € U}, and for some
RS (O, 1], wal{wqgﬁ/a(g)} =Y in BQ(\/MK/Q(]_)) where 1° = (gOE — 1)/(1(5). Then
G (eN* ) = Go(¢) in U.

The following criteria was established in [3].

Theorem 2.1 Suppose that the functionals G and Gy satisfy Condition MDP. Then
(Y = G5(eN® "), e > 0} satisfies a large deviation principle with speed €/a?(¢) and rate
function I defined in (2.12).

3 Moderate Deviation Principles

Let V, H be the Hilbert spaces introduced in Section 1. Denote by V' the dual of V.
Identifying H with its dual H’, we have the dense, continuous embedding

Vo HEH <V,

In this way, we may consider A as a bounded operator from V' to V’. The inner product in
H is denoted by (-, ). Moreover, we denote by (-,-), the duality between V' and V’. Hence,
for u = (u;) € V, w = (w;) € V, we have

2
(Au,w) =v Z / Oiuj0yw;dz. (3.13)
D

ij=1
Define b(-,-,+) : V x V x V — R by
2
b(u,v,w) = Z / w;Ojv;w;dz. (3.14)
ij=1"D
In particular, if u,v,w € V, then
2
(B(u,v),w) = ((u-V)v,w) = Z / w;0vw;dx = b(u, v, w).
ij=1"D

6



B(u) will be used to denote B(u,u). By integration by parts,
b(u,v,w) = —b(u, w,v), (3.15)

therefore
b(u,v,v) =0, Yu,v e V. (3.16)

There are some well-known estimates for b (see [21] and [20] for example), which will be
required in the rest of this paper.

(b, v, w)] < 2ful|2 - ul? - [Jo]|2 - Jv]2 - ], (3.17)
[b(u, u,v)| < %Hul!z + 32| vl[ 4 - |ul?, (3.18)
(B(u) — B(v),u —v)| < %uu — ol + clu— v oll3s, (3.19)
where
lol[fs < [o]*ol (3.20)

Now, we will state the precise assumptions on the coefficients and collect some preliminary
results from [3], which will be used in the sequel.

Condition A: The coefficient G : H x X — H and the force term f satisfy the following
hypothesis:

(A.1) for some Lg € L*(0),

|G(71,y) — G(w2,9)| < La(y)|lry — 22|, @1, 1€ H, y€X; (3.21)

(A.2) for some Mg € L*(¥),

G, 9)| < Ma(y)(1+ |z]), zeH, yeX (3.22)

(A.3) fe L2([0,T];V"), i.e., .
/0 1£(5)][2ds < oo, (3.23)

The following result follows by standard arguments (see [2], [21]).

Theorem 3.1 Fiz uy € H, and assume Condition A. Let u® be the unique solution of
equation (1.4) in L*(Q; D([0, T); H))NL*(Qx[0,T]; V), and u® the unique solution of equation
(1.5) in C([0,T], H) N L*([0,T],V). Then, the following estimates hold: there exists ¢ > 0
such that

T
sup [E( sup Ju(0)]?) +B( / Juf (O]%dt)] < Cprae (3.24)
€€(0,e0] te[0,7 0
and
T
sup |u’(t)|? +/ | (t)||Pdt < Ct1up- (3.25)
te[0,7) 0



We now state a LDP for {Y¢} (namely, the MDP for u®, e > 0), where
Y = (uf —u’)/ale), (3.26)

and a(e) is as in (1.7).
We define a class of functions by

H = {h X = R: 35> 0,s.t. VI with 9(T') < oo, /exp(5h2(y))19(dy) < oo}
r

Condition B: The functions Lg and Mg are in the class H.

The following theorem is our main result.

Theorem 3.2 Suppose that Conditions A and B hold. Then {Y*®} satisfies a large deviation
principle in D([0,T), H) N L*([0,T], V) with speed €/a?(g) and the rate function given by
1
o - (o)
() = mt { S0
where the infimum is taken over all ¢» € L*(Y7) such that (n,1) satisfies the following
equation
dn(t) = —An(t)dt — B(??(t),u (t))dt — B(u"(t), n(t))dt
/w O(t), y)d(dy)dt, (3.27)

with initial value n(0) = 0.

Proof: Proof of Theorem 3.2

According to Theorem 2.1, it suffices to prove that Condition MDP is fulfilled. The
verification of Condition MDP-1 will be given by Proposition 3.3. Condition MDP-2 will
be established in Proposition 3.6. [

Let {T;,t > 0} denote the semigroup generated by —A. It is easy to see that T;,¢ > 0
are compact operators. For f € L'([0,T], H), define the mapping

Rf(t) = /OtTt_Sf(s)ds, t >0,

which is the mild solution of the equation:

0 :—/OtAZ(s)ds+/0tf(s)ds

We recall the following lemma proved in [18] (see Proposition 5.4 there).
Lemma 3.1 If D C L'([0,T], H) is uniformly integrable, then the image family Y = R(D)
is relatively compact in C([0,T], H).

Denote Gy : L*(d7) — C([0,T), H) N L*([0,T],V) by

Go(v) = n if for ¢ € L*(¥7), where 7 solves (3.27). (3.28)



Proposition 3.3 Suppose that Conditions A and B hold. Fiz T € (0,00) and ¢°, g € Ba(Y)
such that g° — g. Then Go(g°) — Go(g) in C([0,T), H) N L*([0,T], V).

Proof: Set f(t) = [, ¢°(y,t)G(u°(t),y)I(dy),t € [0,T]. By (3.25),

//rG P < [ g /(1+\u<>\>dt

< 2 sup (1+ |u'(t /MG

t€[0,T)
0,

then, for every v € H, (G(u°(t),y),v) € L*(¥7). Combining ¢° — g in the weak topology
on L*(d7), we get

hm/f'%v h//gh )d(dy)ds,v), Vo e H, Ve [0,T]. (3.29)

e—0

Denote D = {f¢, € > 0}. Since, for every measurable subset O C [0, T

Lirwia < [ [ ieoicae.mda

< / /!9 y, t)[*0(dy) dt //!G lﬁ(dy)dt> v
< ([ Moo [ o+ peolza)”
< Y sup (14 |u°(t))V/Ar(0), (3.30)

t€[0,T]

we see that the family D C L'([0,T], H) is uniformly integrable in L'([0,T], H). Therefore,
by lemma 3.1, {Z¢, € > 0} is relatively compact in C([0,T], H), here Z*¢ satisfies

dZ5(t) = —AZE(t)dt + f=(t)dt, t € [0,T),

with initial value Z¢(0) = 0.
Let Z be any limit point of {Z¢, ¢ > 0} in C([0,T], H), and combining (3.29), we have

(Z(1),0) = /< M$+//y, 9)0(dy)ds, v), ¥ D(A).
This implies that Z is the unique solution of the following equation

{ dZ(t) = —AZ(t)dt + [, gy, t)G(u(t),y)0(dy)dt, t € [0,T];
Z(0) = 0.

Denote Z¢(t) = Z°(t) — Z(t). Notice that (3.30) also holds for
70 = [ 9l 0G0, 5)0d)

and sup,cp 77 [2%(s)| = 0, as € — 0, we obtain

t
ZEF + 2 [ 75 Pds
0



= 2 ({76, [[(509) ~ 0l )G, 000 s

< 2 sup [Z5(s)]

s€[0,T]
//M%W? \wmwf/mmm<>wmw
< AT sup (1+ [W’(®))VT sup [Z5(s)] —= 0, as e — 0. (3.31)
t€[0,1] s€[0,T7

Set L#(t) = Go(g°)(t) — Z°(t) and L(t) = Go(g)(t) — Z(t), and denote Ls(t) = L (t) — L(t).
Then

{ dLe(t) = —AL#(t)dt — B(LE(t) + Z=(t),u’(t))dt — B(ul(t), L= (t) + Z=(t))dt;
L&(0) = 0.

We have

t
|%hb/wn%

_ 2/0 §) + Z5(s),u%(s)), T (s)) ds
-2 [ (B0 + Z7(5)), TF(s)) ds
_ /0 (B(TF(s), T7(s)), u"(s)) ds
i /0 t ), T (s)) ds
o T de
— L)+ )+13<) (3.32)

By (3.18) and (3.20),

nol < 2f

< /MaWw—www|ﬁm JPITE(s) 2. (3.33)

(BLF(5), T¥(5)),u’(5)) | ds

By (3.17) and (3.25),

MW§2K

< 4/0 (Z5 ()21 Z5 ()12 1l ()12 1 () 12 [ L5 () | ds

ds

(B(Z%(5),u"(s)), L(s))

< 4 sup [Z5(s)[V? sup |u’(s 1/2/ 1Z2(s) 1M [[u® () 121 25 (s) || ds
s€[0,T] 5€[0,T]

IN

omweW/MawH/W|m )lds]

s€[0,T]

10



1/2
< C sup |Z%(s) 1/2 / | L= (s) |2 ds+C’ /||Z€ )12 ds ] (3.34)

s€[0,T]
Similar to (3.34), we have

1/2
|I5(t)| < C sup |Z:(s) 1/2 / | L= (s)|]?ds + C /||ZE |ds } (3.35)

s€[0,T7

Combining (3.32)—(3.35), we get

TP + (v —C sup [Z5(s)|42) / T2 (s) [2ds (3.36)

s€[0,T]

128 _ r 1/2
< = sup [u(s)[? / [ (5)|[PITE(s) s + € sup [Z5(s)[2( / 175(s)|1%ds) .

36[0 T] s€[0,T7]

By (3.25)(3.31) and using Gronwall’s lemma,

=0 | ¢e[0,7]

lim{ sup [ZE(4)2 + /0 ||F(t)||2dt} = 0. (3.37)

Recall L5(t) = Go(¢°)(t) — Z=(t) and L(t) = Go(g)(t) — Z(t). By (3.31) and (3.37) yield that

T
hg(l){ sup |Go(g°)(t) — Gol(g) (1)[? +/ 1G0(9°) () — Qo(g)(t)Hth} =0
€ t€[0,T 0
|
Recall the definition of ¢}, in (2.11). We note that for every ¢° € U}, there exists
unique process X € D([0,T], H) N L*([0,T],V) that solves the following equation

+ [ G(XE(t), y) (¢F (y, t) — 1) (dy)dt;

{dXE(t) —  —AXE(t)dt — B(X*(t), X°(t))dt + f(t)dt + [, eG(X(t=),y)N= "¢ (dydt)
XE(O) = Upg.

We refer the reader to [3] for details. Moreover, the following lemmas 3.2-3.4 were also
proved in [3].

Lemma 3.2 Let h € L*(9) N'H and fix M > 0. Then there exists g, > 0 such that for any
measurable subset I of [0,T] and for all € > 0,

sup / (. 0(dy)ds < a*(E) + A (D), (3.38)

peSY

Lemma 3.3 Let h € L*(9) N'H and I be a measurable subset of [0,T]. Fix M > 0. Then
there exists I'y, pp, : (0,00) — (0,00) such that T'y(u) L 0 as u T 0o, and for all e, f € (0,00),

sup /X ) |R(y)Y(y, $)|L{jy2p/ay0(dy)ds < Th(B)(1 + v/ Ar(1)),

pesM

and

sup / )y, $)9(dy)ds < pn(8)v/ 3 (D) + Tu(B
XxTI

pesM
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Lemma 3.4 Let h € L*(9) NH be positive. Then for any > 0,

i sup [ Yl )Lt D) =0 (3.39)
€20 yesM Jxx[o,T]

Proposition 3.4 There exists an g > 0 such that

T
sup (E sup [X°() +E / |X5(1)|[%dt) < O, < ox. (3.40)
e€(0,e0] t€[0,T] 0
Proof: By Itd’s formula,
d|XE(t)]? + 2v|| X5 (¢)||2dt

= 2(f(t),X’3(t))dt+2</X€G(X5(t—),y)]v51WE(dydt),X5(t—)> (3.41)
Y / G(X* (), ) (& (. 1) — 1)O(dy)dt, X*(1)) + / |G (1), y) PN (dydr).

We have
/ 20/(s), X(3))lds < v / |5 (s) [ °ds + ~ / I F($)]2ds. (3.42)
Set ¥°(y, s) = (¢°(y,5) — 1)/a(e) € UM. Then
‘/tz /GXE 9),9) (o ( 5)—1)19(dy)ds,X€(s)>‘
< / X5(s)] / GIX(), )16y, )1V (dy)ds
< 2(e) / X5 (8)](1 + [X5(s))) /ng|¢5(y,s)|19(dy)ds
< 1ae) [+ X [ Mol (i 3.49

Combining (3.41)-(3.43), we have

XA+ v / X (5)|Pds

]_ T ~_—1 _¢
< fuol+ / 1 (s ||Vds+sup| / / EG(X*(5—), y)N* (dyds), X*(s—))
1€[0,T]
/ / 2|G(X(s—), y) PN (dyds) + da(e) / / Mo ()| (3, )[9(dy)ds
Ha(e) [ X4 / Ma() V(.9 0(dy)ds
0 X

Applying Gronwall’ lemma and using Lemma 3.3, we get

X + / X (s)]2ds

12



< (11 VD4 I+ I+ I5> exp [4@(5) (pMG(ﬁ)ﬁ + T (5)a(5))} . (3.45)
By (3.23) and Lemma 3.3,

L+ I+ I < O+ da(e) <pMG (B)VT + D, (ﬁ)a(e)). (3.46)

By Burkholder-Davis-Gundy inequality and Lemma 3.2,

EI; < E(/OT/X4€2|Xa(s_>‘2|G<Xa(s_)’y)|2N51¢a(dy7d8)>1/2

1. 1/2
< E[ sup |X°(s) / /452|G (X*(s—),y) PN (dy,ds)> }
s€[0,T]
1
< “E sup 1X€(s)\2+16d@ / /\G (X5(s), 1) %% (y ,s)q?(dy)ds)
4 s€[0,7T
1
< -E sup ]Xs(s)\2+325E<( sup |X°(s) / /MG ﬁ(dy)ds)
4 s€[0,T] s€[0,T7]
1
< -E sup |X°(s)|* + 32e6p, (a*(e) + T)E( sup |X=(s)|* +1). (3.47)
4 e, s€[0,T

Similar to (3.47), we get

El, — ¢E /0 /X IGXE(s), 1) 2o (3, 5)0(dy)ds

< 26, (a®(e) + T)E( sup | X=(s)|* + 1). (3.48)
s€[0,7T

Choosing g9 > 0 such that 34eqcp. (a*(go) + T) < 1/8, and combining (3.45)—(3.48), we
obtain (3.40). The proof is complete.

Recall (1.5). We have

Theorem 3.5

lim (E sup | X°(t) — u°(t)|? +IE/O | X=(t) —uo(t)szt> =0. (3.49)

=0\ 4epo,1)
Proof: Set Z¢(t) = X°(t) — u°(¢). Then
dZ°(1) = —AZ()dt — B(X°(t), Z°())dt — B(Z°(1),u(¢))dt (3.50)
e / G(X* (1), y) N (dydt) + / GX(),y) (&= (. 1) — 1) (dy)de

with initial value Z¢(0) = 0.
Apply Ito’s Formula,

d|Z5 (1) + 20| 25 (1|2t (3.51)
_ 2<B(Za(t),Z‘E(t)),uo(t)>dt+25 / <G(X€(t—),y),Z&(t—)>N8*lvs(dydt)

X
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2 / (G0 0) (¢ w.1) — 1. 27(0) Yyt + < / IG(X(t—),y) PN (dydt).

By (3.18) and (3.20),
/tz (B(Z°(s), 2°(s)),u >(ds

< /an J2ds + 2 /nu 144l 22 (s) Pds

< /||Z€ |ds+— s i /||u 2125 (s) [2ds. (3.52)

Set ¥°(y,t) = (¢°(y,t) — 1)/a(e). By (3.21) and (3.22),

[/ <G<X€<s>,y><w<y, ) = 1. 2+() ()| ds

< 2 [ 12960 [ 1G0C(600) = G0l :5) — Uild)ds
+2 / 26| [ 166006 (09) ~ 11o(dy)ds

< 2a(e / Z(s)]? / Lol (y, )l (dy)ds
+a(e) [ 1+ 2P+ s)) | Vel . slocas

< o) [ 176 [ (2Let) +<1+l§[1£]|u0<z>r>MG<y>)rw(y,s)w(dy)ds
Fa@)(1+ sup o) / [ Vel (o, s)1o(ag)as (3.53)

Combining (3.51)(3.52)(3.53),
ZEP + v / 125(3)|Pds < My(T) + My(T) + My(T) + / J()|2°(s) Pds,

here

) = 2¢ sup ‘/ / G(X(1 )>N571¢’8(dydl)’,
s€[0,T]
)=¢ / /|G (X=(t=),y)PNe"¥ (dydt),

M;(T) = ae)(1 + sup |u°( / / Ma(w)l* (y, )|0(dy)ds

1€[0,T)

J(s) = 2 sup [l )|2||u0(8)||2+2@(6)/XLG(y)I@W(y,S)Iﬁ(dy)

3
V7 1elo,1)
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+a(e)(1 + sup IUO(Z)DLMG(y)lwg(yas)W(dy)-

1€[0,T

By Gronwall’ lemma, Lemma 3.3 and (3.25),
Z0 4 [ 127G
< (Ml(T) + M(T) + MS(T)> exp (/OT J(S)d5>
< C’<M1 (T) + My(T) + Mg(T)>. (3.54)

By Lemma 3.2 and (3.40)

EM, (T
L 1/2

< / /4821(; (XE(1-),y) 2|2 (1-)]PN=""¥ (dde))

< 12 ( swp |2 \2) veer( [ [ M+ >r>2¢€<y,z>ﬁ<dy>d1)
t€[0,T

< 1/2E< sup |Z°(t \2> + 8¢ ( sup (14 | X*(¢) / /MG J(dy dl)
t€[0,T] te[0,T]

< 1/215:( sup |Z°(t \2) + 1666y, (a T)C. (3.55)
te[0,T)

Similarly, we have
EMy(T) — eE/ /|G (X2 (8), )2 (y, £)0 (dy)dt

< 25E< sup (1 4+ |X*(¢) / /MG V(dy) dt)
te[0,T]

< ey, (a®(e) + T)C. (3.56)

By (3.25) and Lemma 3.3,

My(T) < Ca(e) (prg(BIVT + Tase (B)a(e) ). (3.57)
Combining (3.54)—(3.57), we have
T
lim (IE sup | Z5(t |2+IE/ ||Z€(t)||2dt) —0. (3.58)
e=0 N 4ef0,1) 0
The proof is complete. [ |
Define
-1 ]_
e 64,0:: €:_X5_0. .59
G°(eN ) =Y a(s)( u’) (3.59)
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Then Y¢ satisfies
dY<(t) = —AYE( )dt — B(YE( ),ul(t))dt — B(Xe(t), Ye(t))dt
7o Jx O y)Ns““’e(dydt)

e Jx G y)(¢(y, t) — 1)9(dy)dt, (3.60)

Ye(0) = o.

Proposition 3.6 Given M < oo. Let {¢°}eso be such that ¢° € UL for every e > 0.
Let ° = (¢* —1)/a(e) and B € (0,1]. Then the family {Y=, " 1{jye|<p/a(e)} feso 15 tight in

D([0,T],H) x Bg< M@(l)), and any limit point (Y, 1)) solves the equation (3.27).

Proof: The proof is divided into four steps.
Step 1. Let Z¢ be the solution of the following equation

dZE(t) = —AZ(t)dt + % / G(X=(t—),y)N= ¢ (dydt)

with initial value Z¢(0) = 0.
Applying Ito’s formula to | Z(t)|?,

d|Z°(H)|* + 2v|| Z5(t)||2dt (3.61)
2¢e ~
= (GO () ), 25 ) N ) + )N (dyd).
a(e) Jx
By Burkholder-Davis-Gundy inequality, Lemma 3.2 and (3.40), we have
25 ~_.—1, ¢
w | [ / X(5), ), 27 (5= ) N7 (dyds)|
teOT]
e 2| r7e e Lt 1/2
< cx( / [ 5 6 Pz s PN Ndyds))
0 Xa/ 5
< 1/2E( sup | Z5(t \2>+CIE / / e ),y)|2N5_1‘P€(dyds))
t€[0,T] a
C
< 1725 s |Z0F) + 5 / / M)+ X)) (. 5)0(dy)ds )
t€[0,T
< 1/2E( sup |Z°(t \2)+ e+ ), (3.62)

t€[0,T]

and similarly

E(/OT/i|G<X€< ) )N (gt

5
e YA @y )0 (dy)dt
£
< a2—(€)§Mc (a (5> +1). (3.63)
Combining (3.61) (3.62) and (3.63), we obtain
T
1imE< sup |Z5(8)2 + / ||Z€(t)||2dt) — 0. (3.64)
=0 Nyepo, 1) 0
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Step 2. Recall ¥° = (¢° — 1)/a(e). Let L?(t) be the unique solution of

{ dLA(t) = —AL*(t)dt + [ G(X=(t), y)V"(y, 1)1 {jpe|>5/ae)V (dy)dt,

L#(0) 0

We have
LF(O)* + 2 t L7 (s)||*d
0P+ [ )k
= 2 [ [ GO0 o o)) 0
/ IGO0 Lo L () D )

IN

T
< 2 sup |LA(8)] sup (1+]X°(1)) / / Mo () 4% (3, ) 110+ 5 a(ery V() ds

te[0,T te[0,7)

< 1/2 sup |L5(1)?
te[0,T

+0 s (- I OP) [ [ Mol oo ]

t€[0,T]

By (3.40) and Lemma 3.4,

T
E( sup |L( 12+u/ IL5(0) )
0

t€[0,T]

< (s (110D s [ [ Ve, )1 ussraenv(inas]

t€[0,T] wes Jo
— 0, ase—0. (3.65)

Step 3. Denote by U¢ the unique solution of the following equation

dU®(t) = —AU=(t)dt +/

. <G(X6<t)7 y) - G(uo (t)v y))W(% t)1{|1/15|§6/a(5)}19(dy)dt7

with initial value U¢(0) = 0. Then
e+ 2w [ )P
= 2 [ [ {60060 = G6).)). U)o 05 e cren s
<2 [ [0 - G000 06 .o
< 2 sup |US(s)| sup |X=(s) —u® |/ /LG )Y (y, s)[9(dy)ds

s€[0,T] s€[0,T)
< 1/2 sup |U%(s)|* +C sup ‘X‘E(s)—u sup / /LG V(y, s |19(dy)ds> .
TZJESNI

s€[0,T] s€[0,T]
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By Lemma 3.3 and (3.49), we have

T
: € 2 € 2 _
}:1_136 [E<52EPT}|U (s)] ) —|—E</O U= (s)|| ds)] = 0. (3.66)
Step 4. Set K¢ = Z° + L + U® and denote T¢ = Y*® — K*. By (3.60), we have

dY=(t) = —AT=(t)dt — a(g)B(Tf(t) +KE(E), TE(t) + Kf(t))dt,
=B (u(0), 5(0) + K5())dt = B(T (1) + K (1), u°() )b, (3.67)
+ fx G(uo(t)v ?JWE (y7 t>1{\w€\§ﬁ/a(£)}19(dy)dta
T(0) = 0.
Set

M= (D([O,T],H)HLQ([O,T],V); C([0,T], H) N L2([0,T], V); Bg( M@(l))).

By (3.64), (3.65) and (3.66), and notice that (¢°1yc|<g/a(e)})e>0 is tight in B2< M@(l))
(see Lemma 3.2 in [3]), (Z°, L° + U®, ¥°1ye|<p/a(e)})e>0 is tight in II, and let (0,0,v) be
any limit point of the tight family, and denote by Y = Gy(¢) the solution of equation (3.27).

It follows from the Skorokhod representation theorem that there exist a stochastic ba-
sis (QY, F', {F} ey, P') and, on this basis, II-valued random variables (Z¢, LU, V),
(0,0,@Z), e € (0,¢p), such that (25, Ef]a, @ZE) (respectively (0,0,J)) has the same law as
(ZE, LF + UE, 1/)51{|¢s|33/a(5)}) (respectively (0,0,¢)), and (25, [7(/]5, If/}v‘f) — (0,0,1;) n
II, Pl-as..

Set K¢ = Z¢ + LU . Denote by T¢ the unique solution of (3.67) with (K¢,1*) replaced
by (K¢,1°). Then (K¢, T¢) has the law as (K%, Y¢). Hence, Y = K¢ + T° has the same
law as Y2 = K=+ T in D([0,T], H) N L%([0,T], V). Denote by Y the solution of equation
(3.27) with (y, t) replaced by ¥ (y,t). ¥ must have the same law as Y.

Thus, the proof of the Proposition will be complete if we can show that

T
sup |YE(t) — Y (¢)]? —|—/ |YE(t) — Y(t)||?dt — 0, P! —a.s., as e — 0. (3.68)
te[0,T7] 0

This is the task of the remaining proof.

Consider the following equation

{ d(t) = —AT=(t)dt + [, G(u®(t), y) = (y, )0 (dy)dt, (3.69)
T(0) = 0. |

Using similar arguments as in the proof of (3.31), we have

T
lim ( sup |[T°(t) — F(t)]2 —|—/ |T5(t) — F(t)||2dt> =0, (3.70)
e=0 \tefo,1) 0

here [ satisfies (3.69) with Jg(y, t) replaced by J(y, t).
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Set M =Y —T and M¢ = Y — K¢ —T°. Then

{ dM(t) = —AM (t)dt — B(uo(t), M(t) + f(t))dt - B(M(t) + (), uU(t)>dt

- *(3.71)
M(0) = 0.
and
((aME(t) = —AM(t)dt — a(g)B<J\7€(t) +TE(t) + Ko(t), Me(t) + T=(t) + I?E(t))dt,
—B(u(t), M=(t) + I=(t) + K=(t) ) dt
—B(M=(t) + Te(t) + K=(t),u°(t) ) dt,
| M(0) = 0.
(3.72)
Since
~ T ~
i [ sup |K€(t)|2+/ |B=(0]%dt] -0, P~ as. (3.73)
€20 Licio,1) 0
taking into account (3.70), by standard arguments (see [21]), we have
w [ s TP+ [ ITFOP] + [ swp (30 + [ 10
e€(0,e0] -t€[0,T t€(0,7)
< Ow') < oo, P! —as. (374)
Set M = M — M and ¢ = I — I'. Now the proof of (3.68) reduces to the proof of
= T —
tim [ sup (M) +/ |37 (s)|2ds] =0, P'—as., (3.75)
e=0 Ligjo,1) 0
We have
— t —
P + 20 [ [3)Fds
t ON . . N . . S—
_ —2a(5)/ (B(Ma( )+ T5(s) + K5(s), M=(s) +r€(s)+Kf(s)),Ms(s)) ds
t —
2/ < (uo —|—K‘€(S)>,M‘f(s)> ds
/ (B (Ms ) )) ds
/ (B(Ff +Ke(s ),ﬁ(s)) ds
= L(t) + L(t) + I5(t) + 14(75) (3.76)
Fix w! € Q! By (3.17) and (3.74), we have

[ ()]

< da(e) / [MF(s) + T2 (s) + K=(s)[||M°(s) + T°(s) + K°(s) ||| M=(s) | ds
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and

<

<

<

IA

(©) / |37 (s)] s

—|—2a(5)/0 |Me(s) + T=(s) + K°(s) 2| M=(s) + T=(s) + K°(s)||°ds

< a(«’f)/O |15(s)[[*ds + a(e)C(w"), (3.77)

|f2(t)t|
/0 (B(uo(s),ﬁ(s) +f~(5(s)),]f\\4/5(s)> ds

2

4/0 [ ()] [ ()[[V2IT=(s) + K=(3) V2T (5) + K ()2 M=(5) | ds

1V/ |215( S)||2d8+0/ () [[[u () [[IT=(5) + K=(5)[[T=(5) + K=(s)|[ds

_,,/ |37 (s)||2ds + C(w / [F=(s) + Re(s)]%ds] " (3.78)

similar to (3.78),

L(1)] < y/ | (s)|2ds + C(w / [F=(s) + Re(s)]1%ds] " (3.79)

By (3.18)(3.20) and (3.74),

()] = 2\/ ). u(s)) dsf
< V/o M= (s)]| ds+0/0 () 12| M= ()| ds. (3.80)
Combining (3.76)—(3.80), we have
(0P + (1/2 - a(e) / |37 (s)||2ds

< a(e)O(wh) + Cw? /0 HES )+ K°(s)]| d:s]l/2

e / ®(s) 2|3 (s) [ds.

Since lim._,pa(e) = 0 and

T = ~
lim [/ HFe(s)—t—Ks(s)Hst} =0, P'—a.s,
0

e—0

by Gronwall’s lemma we obtain

The proof is complete.

——— T —
lim[ sup |Ms(t)|2+/ ||M8(s)||2ds} —0, P'—as.
0

=0 Licro,m
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