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ABSTRACT
The abundance of interconnected devices in the Internet of
Things (IoT) offers a powerful vision on how automated cap-
ture systems can aid humans remember their lives better. Al-
ready today, mobile and wearable devices allow people to cre-
ate rich logs of their daily experiences in the form of photos,
videos, GPS traces, or even physiological data. This activity is
often called “lifelogging”, and has led to the so-called “quanti-
fied self” movement where people capture detailed traces of
their everyday lives in order to better understand themselves.
An interesting avenue to explore in this context is the pos-
sibility of capturing lifelog data for the sake of augmenting
one’s memory. Contemporary psychology theory suggests that
captured experiences of daily events can be used to generate
cues (hints) which, when reviewed, can improve subsequent
long-term recall of these memories. However, limitations of
on-body placement of wearable devices can yield poor quality
data and restricts capture to a first-person perspective. The
focus of this work is to enable the secure and automatic ex-
change of one’s lifelog streams with both co-located peers
and any available capture devices in an IoT infrastructure,
in order to construct a more comprehensive representation
of a previous experience, which can thus help one to create
more effective cues. We present a privacy-aware architecture
for this exchange and report on a proof-of-concept prototype
implementation.

CCS Concepts
•Security and privacy → Access control; Privacy-
preserving protocols; Authorization; Authentication;
•Human-centered computing → Ubiquitous and mobile
computing;

Author Keywords
Lifelogging; Memory augmentation; Sharing; Privacy;
Security; Co-located people; Wearables; Infrastructure
camera.
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INTRODUCTION
The emerging Internet of Things (IoT) not only allows us and
our devices to be “connected” all the time, but also to capture
and visualize an increasing share of our everyday lives in a
digital format – a process known as “lifelogging”. The number
of Internet-connected devices has seen a massive growth in the
last 13 years (going from 500 million in 2003, to 12.5 billion
in 2010, to 50 billion by 2020)1, clearly making the number
of IoT devices per person more than 5. This coupled with
techno-advances in data mining techniques has the potential
to bring lifelogging to a next level. When lifelogging pioneer
Gordon Bell started his MyLifeBits project [8] in 2001, he
initially envisioned capturing mostly archival material (e.g.,
computer files, scanned books and digitized music), similar
to a modern “Memex” [1]. Advances in capture technology,
however, quickly allowed him to move from capturing legacy
content to real-time and continuous content streams: “phone
calls, meetings, room conversations” as well as “1-2 thousand
photos that [his] SenseCam” captured every day.

Figure 1: Left: Microsoft SenseCam; Right: Narrative Clip 1.

The SenseCam [9] developed in 2004, was arguably the first
“lifelogging camera”: a neck-worn front-facing device that
captured images periodically (e.g., every 30 seconds) or when
the scene changed significantly (such as when moving to a dif-
ferent room). Modern lifelogging cameras have extended the
functionality of the SenseCam and followed the IoT paradigm
while offering an increasingly compact format.

For example, the 2016 Narrative Clip 22 weighs less than 20g
(the SenseCam weighed several hundred), includes WiFi con-
nectivity (SenseCam needed a cable), features 30h of battery
1Figures according to Cisco IBSG 2011.
2See www.getnarrative.com.

http://dx.doi.org/10.1145/2991561.2991577
www.getnarrative.com


(a) (b)

Figure 2: A coffee-break discussion as captured by (a) the participants’ Narrative Clip devices, and (b) a fixed camera.

life (the SenseCam lasted 12h), records 8MP images with
3264x2448 pixels (SenseCam did 640x480), and can record
video (which the SenseCam did not). Figure 1 shows a Nar-
rative Clip 1 next to a 2004 SenseCam. Photos and videos
are not the only types of lifelogging data that can be captured;
modern smartphones and wearables can contain a wealth of
sensors to capture, e.g., GPS location, acceleration, light levels,
temperature, audio, and a range of physiological parameters,
such as heart rate or galvanic skin response.

This work builds on our prior work on memory augmenta-
tion systems [5], which suggested that, instead of building
a memex-like “memory prosthetic” to be queried whenever
one’s own memory fails, one might instead use captured data
to train human memory, so that the relevant information can
actually be recalled without any external tool whenever it is
needed. By using the captured data to build carefully selected
memory cues3 and replaying those to users in an ambient fash-
ion (e.g., as a screensaver or a smartwatch card), the memories
associated with these cues can be more easily retrieved (i.e.,
at will) at a later time.

When looking at images captured by SenseCam-like devices,
however, we have previously found [4] that in many circum-
stances, the captured first-person perspective may not lend
itself well as a memory cue. In a multi-day experiment, we
found that camera lenses were often covered by clothes or
hair, or simply faced the wrong way due to the way they
were affixed to the body. Even when unobstructed, the first-
person-view typically showed only a small part of the scene,
potentially never capturing a person sat right next to the person
recording (see Figure 2a for examples from our own experi-
ence). Fixed infrastructure cameras can compensate for such
failures: a high vantage point usually allows them to capture
comprehensive scenes, completely unobstructed (see Figure
2b). Furthermore, first-person views from the devices of others
may also offer a richer view than one’s own [2]. In addition,
we conducted an experiment [3] where we collected lifelog
traces of a group of twenty researchers, and identified the
necessity for an automatic and seamless way of exchanging

3A memory cue is an item, e.g., a photograph, but also a sound or a
smell, that can act as a hint to a past experience.

self-captured data in order to create a comprehensive lifelog-
ging dataset.

In an IoT network of infrastructure sensors (e.g., fixed cam-
eras) capable of capturing people interactions and users
equipped with personal lifelogging devices, our work investi-
gates a technique both for seamless acquisition of self-captured
lifelogging data of others with whom we interact, and data
from local infrastructure devices. Note that while this work
focuses on the exchange of captured photos, it could work
equally well with other media and data types, and hence is
able to support any of the above-mentioned lifelog data, as
long as they are packaged into discrete files that can be ex-
changed between peers. In this paper, we elicit initial system
requirements and provide an architecture for sharing personal
lifelog data with others, with a view to preserving the pri-
vacy of all involved users, as well as ensuring confidentiality,
authenticity, integrity, and provenance for shared memories.
With a focus on the technical side of this work we report a
prototypical implementation of this architecture and present
initial system performance measurements. Note that we do
not report on the impact of this architecture on augmenting
users’ memory or on any other usability related study as these
are out of scope of this paper.

REQUIREMENTS
To gain an understanding of system requirements, we consider
the following scenario:

• Morning walk to the office:
We want access to any fixed infrastructure camera capturing
our walk, yet must also prevent their owners from easily
tracking our location.

• Enter department building, meet a colleague in the hall-
way for a chat:
We want access to our colleague’s captured data, and data
from any hallway cameras.

• Attend a work meeting:
We want in-room sensors to provide access to high-quality
captured data (camera, microphone, board contents, etc.),
as well as captured data from co-located colleagues. People



who simply pass in front of the meeting room should not
have access to this data.

• After the meeting, while packing our bag in the room,
chat with a colleague:
Although high-quality capture of the meeting room is
stopped, we still want to capture data from our colleague’s
wearable camera. Colleagues who have already left the
room should not have access to this data.

Ultimately, our goal is to build a system that would enable the
seamless and secure sharing of captured lifelog data in such a
fully connected IoT scenario. However, at the outset, this work
focuses on the implementation of peer-based data exchange
and less on acquiring data captured by fixed infrastructure
sensors (e.g., fixed cameras).

ENVISIONED FUNCTIONALITY
Figure 3 gives an overview of foreseen data flows. The envi-
sioned core functionality is as follows:

• Advertise Sharing Capabilities: A capture device that is
willing to share lifelog data with others needs to indicate its
availability to close-by peers, yet without making it trivial
to passively track it this way.
• Detect Peers: Once proximate peer devices are detected,

the device needs to negotiate the secure exchange of cap-
tured data for the duration of co-location. Peer devices may
include both the personal capture devices of other users and
fixed capture installations (e.g., room cameras).
• Secure Exchange of Capture Data: Actual data exchange

need not (necessarily) happen in real-time. Instead, a de-
vice must communicate to co-located peers how they can
securely access the images that the device has captured.
• Detect End of Co-Location: If a peer leaves, the device

needs to cease sharing its captured data with this peer,
though it may continue to do so with peers that continue to
be co-located. Once all peers have left, the device needs to
stop sending out access information regarding the captured
data.
• Support Time-Limited Exchange and/or Access Revocation:

The system should support time-based access control of
shared data, e.g. a peer must download the shared data
within a week.

ARCHITECTURE
This section describes the full life cycle of a shared capture
session – from peer discovery to data exchange and access
control. Table 1 itemizes identifiers used in this section. In a
nutshell, a user’s device advertises its willingness to both share
its self-captured data and to acquire data of other co-located
peer devices by broadcasting periodically updated access to-
kens and its temporal public key (section “Advertise sharing
availability using memory beacons”). Tokens represent a way
of letting others know where to access data one is willing to
share. Both tokens and the public key are sent out only when
the device senses the presence of a co-located peer in order
to prevent a malicious person from tracking its location by
passively sniffing announced data (see section “Smart mem-
ory beaconing based on peer detection” for details). When

another peer observers such announcements, it will trigger
a passive key-exchange with the peer (see section “Key ex-
change protocol”). To perform such a P2P key exchange
in a multi-user environment, all peers broadcast both access
tokens and their public keys. A device grants access to its
self-captured data that it is willing to share only to co-located
peers. It does so by encrypting such shared data with all peers’
public keys. As a consequence, only the peers who possess
the valid private key will be able to get the shared data (see
section “Access control to shared data”).

We will now describe each of these steps in more detail.

Variable Description

Khash Key for hashing tokens to storage lo-
cation.

Pubi j / Privi j Temporary session key-pair; i identi-
fies device, j identifies session.

tokenit Access token, where i is the device
that issued it and t is the time period
it was issued in.

tdwell Minimum dwell time before adding
or removing a peer Pubi j key to the
list of registered peers.

Table 1: List of variables used in this work.

Advertise sharing availability using memory beacons
A device advertises its capability (and willingness) to let oth-
ers access its captured data by simply announcing an online
location (URL) of where the data will eventually be located
(again, real-time upload of captured data is not a key require-
ment). This also means that a device does not exchange the
actual data itself over the wireless channel, which minimizes
both bandwidth and energy consumption.

The actual announcements (memory beacons) are send us-
ing the Bluetooth Low Energy (BLE) short-range wireless
protocol.

The advertised online location is not fixed, but is based on an
implied fixed system-wide base URL (not send). The beacon
therefore only provides a continuously changing access token,
under which peers can find captured data for the short period
over which this token was used. Our current prototype updates
tokens every few seconds. Access tokens are simply long
random numbers – large enough so that accidental overlap of
tokens becomes unlikely. Due to the limited size available in
BLE announcements (see section “Implementation” below)
we use 200 bits in our prototype, which does not scale well in
the long term4 but is probably OK for immediate deployments.
Note that if a client notices that a particular token is already
“occupied” during upload, it could simply drop it or overwrite
the data at that address with its own encrypted URL (both
4A few billion people, each sending 86′400 individual tokens per day
(one new token per second), would create 8.641013 ≈ 1014 tokens per
day. If we want these to be around for some 3 years (1000 days), we
have 1017 tokens “in use” at any time. Given the birthday paradox,
this would leave a 1017/2200/2 ≈ 1017/1030 ≈ 10−13 chance of overlap.
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Figure 3: Data flow for capturing and sharing lifelog data between two co-located people. Bob’s repository downloads John’s
shared capture data, using decrypted URLs available from a central URL repository.

options result in a single lost second of data, either the current
period or the previous occupying period).

Peers use captured tokens to find the shared data at the known
system-wide URL. In the following we denote tokens as
tokenit, where i is the issuing device and t is the time period
for which the token was issued. Their short lifetime means
that as soon as a peer leaves the range of the device’s beacons,
they are unable to access any of the data captured at a later
time, as this data will use different access tokens.

While tokens thus provide some access control, as clients need
the token to know the address, one might accidentally “stum-
ble” upon uploaded data simply by trying arbitrary tokens. To
prevent this, peers also need an access key to decrypt the data
present at the token address. As part of the announcements,
devices thus also periodically send out public key Pubi j, where
i again identifies the device and j identifies a “sharing session”.
Whenever a device stops sharing captured data, i.e., when all
peers leave, it starts a new session upon first discovering a
new peer. Hence, over the course of a day, several public
keys will be generated and used. In our prototype, every 10th

announcement carries a public key instead of an access token.
We describe the use of these public keys to access shared data
in section 4.4.

Smart memory beaconing based on peer detection
Broadcasting a continuous stream of tokens allows a passive at-
tacker to track a device. While tokens change frequently, pub-
lic keys (which are interleaved with tokens) may not change
that often. With few devices around, there may simply not be
enough “noise” for a device to “blend-in” with others.

For this reason, devices periodically stop beaconing, moving
from sharing mode into an idle mode. Mode transition is
triggered by the the absence of other proximate peers; the
device will switch from idle mode to sharing mode if it detects

the presence of a peer in range, and vice versa (see Figure 4).
Presence detection cannot therefore rely on the reception of
tokens from other peers, as these may be in idle mode. Instead,
we propose use of a social detector – a sensor designed to
detect social engagement with other peers. Such a sensor may
be audio based (detecting if a device owner is engaged in
conversation [14] or counting the number of speakers [18])
or visual (using image recognition to detect faces in captured
photographs – a face lingering in front of the camera may well
indicate social interaction [7]).

Note that infrastructure sensors are basically peers who do not
move. No privacy issues prevent them from simply always
broadcasting beacon announcements.

Key exchange protocol
Upon encountering a memory beacon from another device, or
upon detecting social engagement, a device will trigger beacon
announcement. As part of this process, it will run a passive key
exchange protocol with other co-located devices to exchange
public keys for the session (Pubi j). Since announcements are
broadcast, the exchange is passive in the sense that there is
no direct communication or a handshake between the devices
whatsoever. Once a peer’s public key is received, a device
subsequently encrypts uploaded data using that public key. If
multiple peers are detected, a broadcast encryption scheme [6]
is used to encrypt the data using each peer’s public key (see
Section 4.4 below).

In order to prevent passers-by from receiving a set of access
tokens “by accident” and thus having access to captured data,
we enforce a dwell time (tdwell) during which the peer’s public
key must be seen repeatedly. Only if a peer has been present
for long enough, will we retroactively mark all captured data
staring from its first detection as being also shared with this
particular peer. As long as the peer stays in range (i.e., as long
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Figure 4: System state diagram showing the transition between
Idle Mode and Sharing Mode and the peer presence detection,
using an example dwell time tdwell of two rounds.

as its public key is periodically received), the device will add
the peer’s Pubi j key to the list of authorized clients that can
access its captured data (see Figure 4).

Access control to shared data
A device controls access to its captured data using both the
access tokens sent during “sharing mode”, and the public keys
received from other peers. Co-located peers can then query
that device’s database at a known base address and exchange
tokens they have collected for actual data:

−→ https : // f ixed_address/tokenit

In order to facilitate the use of one’s own repository to host
actual captured data, the known base address does not directly
provide data but instead offers a “redirect” to the data host. In
order to prevent trivial tracking through resolution of collected
tokens, the URL redirect is encrypted with the public keys of
all authorized peers:

←− E(https : //user_repo/data_address)

A peer accessing the token URL thus receives an encrypted
value that, when decrypted using the peer’s private session key
at the time (which the peer will need to keep track of), will
result in another URL for access to actual captured data.

To achieve a multi-user encryption setup, we use broadcast
encryption [6]: instead of re-encrypting the data URL for each
peer, we use a (random) symmetric key to encrypt the URL
with a symmetric cipher, and then encrypt that symmetric key
with each recipients Pubi j key. While URLs are not long,
encrypting only a 128-bit symmetric key instead of a 30-40
byte long URL is clearly more economical.

Given the above, captured data can then be made available at a
repository of a user’s choice and does not have to be encrypted,
as only those who both know the token tokenit and have had
their session public key Pubi j captured by the device (and
subsequently used to encrypt the used symmetric key) will be
able to find URLs of shared images.

In order to come up with the final URL on the user’s repository,
the user can simply use a keyed hash, together with a long-term
secret key Khash, to convert each access token into a storage
URL on their own repository. A non-keyed hash function
would not be sufficient, as it would allow an attacker who
knows the base address of the user’s repository (e.g., from
a previous peer exchange) to simply “fish” for images using
only captured access tokens.

A device can revoke access to (unretrieved) data at any time.
To invalidate access for a peer, the device simply removes the
public key Pubi j of the peer from the set of authorized devices
and re-runs the broadcast encryption scheme to re-encrypt
URLs with a new key. This, of course, only makes sense if the
peer has not already downloaded the shared data.

ENVISIONED THREATS
One of the goals of the proposed architecture is to protect the
captured memories of a user from unauthorized access as well
as prevent tracking the user’s location. As a result, we primar-
ily try to minimize “oversharing”, i.e., the accidental tuning-in
of a peer’s device to our captured data stream, without actually
interacting with us, as well as enlarging our tracking envelope.

Tracking is a prominent risk in our system since a device
advertises its willingness to share captured data by sending
out an announcement over a non-secure channel. An attacker
could simply listen passively for such advertised information
and thereby track a user’s location. To counter this threat, a
device does not send out announcements all the time. Instead,
it announces itself only when it detects the presence of an
appropriate peer. Also, announcements should not be linkable.

The system should avoid oversharing (i.e., allowing non-
authorized parties to access captured data) by granting access
only to peers who were present and engaged with the user at
the time of capture. Figure 5 depicts the different ways an
unauthorized person can try to get access to a user’s captured
data. An attacker can try to construct a data URL (one that
leads to actual data of a user) by guessing a valid access token
or passively sniffing for tokens being sent out. Either way, the
attacker then has to also guess a valid decryption key (i.e. the
user’s private ECC key) in order to successfully get a valid
data URL. To some extent, this sort of attack is similar to [10]
where they show that most of the existing URL shorteners
(which are mainly used for data exchange) have serious se-
curity consequences due to their low token space (typically
5-6 characters). In our case, guessing a randomly generated
access token of 25 bytes (200 bits) and a valid decryption key
(the private part of a 256 bits ECC key-pair; token and key
generation are explained in the following section) is extremely
hard to happen. Even if an attacker manages that, this would
only allow her to get a small set of data points and not compro-
mise the whole system, as other data are protected by different
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access tokens and eventually different encryption keys. Over-
sharing might also happen due to accidental data spills, e.g.,
by erroneously identifying passers-by as peers. All in all, the
shared data should only cover co-located periods.

Note that we do not guard against secret recordings – either
out-of-band (e.g., a hidden camera or microphone) or through
a “hidden” (fake) peer device that exploits the system by pre-
tending to be a peer capture device, but in reality is simply
passing on captured data to an attacker. Countering hidden
cameras or microphones is beyond the scope of this work.
However, to counter fake peers, one could imagine equipping
capture devices with low-powered OLED displays to show the
number of connected peers, coupled with a short audible beep
if a new peer “connects”. This would, e.g., allow meeting
participants to detect data over-sharing through a quick head
count mismatch.

We also do not consider control for re-sharing, i.e., preventing
peers from passing data on to others. However, one could
consider watermarking to help identify the source of a leak
should it, for example, surface on the Internet.

IMPLEMENTATION
We have implemented a prototype smartphone app to enable
the secure sharing of pictures captured by a worn camera
such as the Narrative Clip. As the current generation of the
Narrative Clip does not provide programmatic access, the
following procedure must currently be followed for achieving
our envisioned functionality:

• A user wears a lifelogging camera and also carries a smart-
phone running our app.
• The camera captures the user’s activities while the phone

exchanges keys and tokens with other peer devices.
• Later, the user manually connects the wearable camera and

uploads captured images to their repository. The app wire-
lessly syncs with the repository, uploading a set of times-
tamps and distributed tokens, as well as any captured public
keys from peers.

• A process in the repository then binds each image to dis-
tributed tokens tokenit based on timestamps. Each image
is made available at a URL based on the keyed hash of the
token used to advertise it.
• Finally, the repository process generates a set of encrypted

URLs for each image URL, based on received Pubi j keys
from other peers, and uploads these to a central repository
under the respective tokens.

Clearly, a next-generation wearable camera could integrate
all of these steps into a single worn device, handling, e.g., all
upload and processing during its charging at night.

Smartphone based beacon App
Our prototype app consists of two main services: a beacon
transmitter and a beacon scanner. The transmitter service
generates a public/private key-pair every time it starts and
then broadcasts the public key; both keys are generated with
Elliptic Curve Cryptography (ECC) using a curve over a 256
bit prime field. The transmitter also generates and broadcasts
a new random access token at a specific frequency. Tokens
are generated using a hash based pseudo-random number gen-
erator. The scanner service listens for nearby beacons of the
same type. Once it detects a beacon, it will store both access
tokens and captured public keys from other peers in internal
storage.

The app uses Bluetooth Low Energy (BLE) as the underlying
technology for sending and receiving both keys and access
tokens. We use the Android Beacon Library5 to create a BLE
beacon-like device. While most phones can scan for nearby
BLE beacon devices, there are currently few smartphones that
can also act as a beacon transmitter. For this prototype we use
the Nexus 5X, which does support this functionality.

The Bluetooth specification enables data broadcast through its
advertisement packet. BLE version 4 allows up to 28 bytes
(excluding the BLE header bytes) for manufacturer specific
data in the advertisement packet. Three bytes are consumed

5see https://altbeacon.github.io/android-beacon-library/

https://altbeacon.github.io/android-beacon-library/


by the beacon library (2 for specifying a mandatory beacon
identifier, and one for a mandatory power reference value6)
leaving 25 bytes for actual data (see Fig 6 for the beacon
layout). This size limnitation restricts our choice of key and
token length. As a result, the app generates tokens tokenit of
exactly 25 bytes (200 bits). Since 200 bits is not sufficient for
public key transmission Pubi j, we instead broadcast a 25 byte
identifier for a key uploaded to a known key server; peers can
use the identifier to retrieve the key from this known server.

BLE	Header
(10	bytes)

Beacon	Header
(2 bytes)

TX	Power	Reference
(1 byte)

Actual Data
(25 bytes)

Figure 6: The beacon protocol data unit.

The app alternates between sending its session public key
Pubi j and the changing access tokens tokenit. We use the 2
reserved bytes of the beacon header (see Figure 6) to differen-
tiate between key and token data. Since tokens are refreshed
much more frequently than public keys, the app is configured
to broadcast token beacons with a higher frequency than keys.
However, a too low frequency of key distribution will result
in delayed “registration” of peers. We experimented with dif-
ferent transmission schedules in order to find the best ratio
between public key and token transmission frequencies and
report results in the following section.

The app features an energy-efficient social sensor for detecting
the presence of other co-located people with whom a user
might be engaged. It is a modified version of the speaker
count algorithm as described in [18] which uses microphone
audio analysis to count the number of different people engaged
in a discussion.

Prototype performance measurements
In order to a) see whether such an architecture would work
using existing smartphone technology and to b) understand
its performance capabilities especially of the underlying BLE
packet transmission, we used three Nexus 5X phones to sim-
ulate a three-party social encounter, measuring how long it
took for the phones to "register" each other once they get in
proximity and how reliably a phone can pick up other peers’
access tokens.

Our performance measures compare three different token-
pubkey ratios (2.0:1.0; 3.0:1.0; and 5.0:1.5; all given in sec-
onds) over the three BLE announcement rates supported by
Android 6 (1 Hz, 3 Hz, and 10 Hz). For example, in the first
case the system would thus send out tokens for, say, 2 seconds,
followed by the device’s public key (session) for 1 second; at
a rate of 3 Hz, this would mean 6 token packets followed by 3
public key packets.

Figure 7 shows the public key and token reception rates per
second, averaged over the results of all 3 phones running
with each configuration for a period of 5 minutes. We see
that increasing the transmission frequency from 1 Hz to 3
Hz improves reception rates, but a further increase to 10 Hz
6The TX Power Reference Value is a pre-measured signal strength at
1m distance from a beacon, which allows a recipient to estimate the
actual distance of the signal sender.

adds delay when simultaneously transmitting and scanning for
packets. We hence use 3 Hz for the transmission rate.
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Figure 7: Average beacon reception rates for three token-
pubkey ratios (all given in seconds) 2.0:1.0; 3.0:1.0; and
5.0:1.5, using three BLE announcement frequencies 1 Hz;
3 Hz; and 10 Hz.

With a 3 Hz packet transmission, the highest beacon reception
rates (0.3 token/s and 0.12 keys/s) are achieved with 3 seconds
of token transmission and 1 second of key transmission. This
means that it may take up to 3 seconds before a device reliably
receives a new token from another device; public key beacons
will be picked up in less than 9 seconds (8.3 seconds). In
practice, this means that once two devices are in range, it
should take no more than 9 seconds (average 4.15 seconds)
for them to “register” each other and, after sufficient dwell
time tdwell has elapsed, to add each other’s public keys to their
respective encrypted URL uploads. Tokens should therefore
not be updated more frequently than once every 3 seconds,
otherwise a peer may miss a token (and thus be unable to
access captured data for this period). These results were more
or less dependent on the performance of the smartphones that
we had, and clearly better results may be achieved with future
hardware.

LIMITATIONS
The presented architecture provides a secure and an easy way
of exchanging captured data with other peers. Nevertheless,
it also has some limitations related to the choice of using
BLE for underlying beacon implementation and to the level of
actors’ commitment and fairness when it comes to uploading
actual data to the shared URLs.

The pitfall when using BLE solely for proximity detection is
that the its signal can be “heard” even by devices which are
not in a close enough proximity to be considered as co-located
peers. Another alternative that can reduce the proximity range
of beacon announcements and improve the co-presence detec-
tion is to combine BLE with an audio sensing solution [16, 14,
17].

The architecture clearly does not guarantee a successful acqui-
sition of self-captured data of other co-located peers, as users
may not upload their data to their repositories in the first place.
One has to rely on others willingness to perform the actual
data uploading on a timely manner. At the end, other peers



are users that one meets and socially interacts with and one
can always try to reach back other users and request them to
upload the missing data.

Last but not least, we have not yet addressed the issue of
IoT interoperability in our system, e.g., with established IoT
frameworks (see, e.g., [11, 13]) or standards (see, e.g., [12,
15]).

CONCLUSION
Lifeloging has the potential to offer significant benefits for
applications to support human memory. However, due to
limitations of worn devices, visual lifelogging data is often
too constrained to fully capture personal experience (e.g., due
to a poor point-of-view or visual obstruction). By enabling
a seamless and secure exchange of captured data with both
co-located peers and any available capture infrastructure (e.g.
surveillance cameras), we aim to compensate such issues and
allow for much richer representations of a previous experience.

Our initial prototype demonstrates how, within a few seconds,
we can reliably pick up a set of identifiers (tokens and public
keys) that allow for the secure exchange of captured data. We
are currently working on a study design in order to conduct
comprehensive “in the wild” user testing and performance
evaluation.
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