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SMOOTH DENSITIES OF THE LAWS OF PERTURBED DIFFUSION
PROCESSES

LIHU XU, WEN YUE, AND TUSHENG ZHANG

ABSTRACT. Under some regularity conditions on b, σ and α, we prove that the solution
of the following perturbed stochastic differential equation

(0.1) Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs + α sup
0≤s≤t

Xs, α < 1

admits smooth densities for all 0 < t ≤ t0, where t0 > 0 is some finite number.
Keywords: Perturbed diffusion processes, Malliavin differentiability, Smooth density.
Mathematics Subject Classification (2000): 60H07.

1. INTRODUCTION

There have been a considerable body of literatures devoted to the study of perturbed
stochastic differential equations(SDEs), see [1]-[7],[9], [11], [12]. Let (Ω,F , {Ft}t≥0,P)
be a filtered probability space with filtration{Ft}t≥0, let {Bt}t≥0 be a one-dimensional
standard {Ft}t≥0-Brownian Motion. Suppose that σ(x), b(x) are Lipschitz continuous
functions on R. It was proved in [5] that the following perturbed stochastic differential
equation:

(1.1) Xt = x+

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs + α sup
0≤s≤t

Xs, ∀ α < 1,

admits a unique solution. If |σ(x)| > 0, it was shown in [12] that the law of Xt is
absolutely continuous with respect to Lebesgue measure, i.e. the law of Xt admits a
density for t > 0.

There seem no results on the smoothness of the density of the law of a perturbed
diffusion process. This paper aims to partly fill in this gap. The smoothness of densities
is a popular topic in stochastic analysis and has been intensively studied for several
decades. We refer readers to [8], [10] and references therein. Our approach to proving
the smoothness of densities is by Malliavin calculus, so let us first recall some well
known results on Malliavin calculus [8] to be used in this paper.

Let Ω = C0(R+) be the space of continuous functions on R+ which are zero at
zero. Denote by F the Borel σ-field on Ω and P the Wiener measure, then the canonical
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2 L. XU, W. YUE, AND T.ZHANG

coordinate process {ωt, t ∈ R+} on Ω is a Brownian motion Bt. Define F0
t = σ(Bs, s ≤

t) and denote by Ft the completion of F0
t with respect to the P-null sets of F .

Let H := L2(R+,B, µ) where (R+,B) is a measurable space with B being the Borel
σ-field of R+ and µ being the Lebesgue measure on R+. We denote the norm of H by
∥.∥H . For any h ∈ H , W (h) is defined by

(1.2) W (h) =

∫ ∞

0

h(t)dBt.

Note that {W (h), h ∈ H} is a Gaussian Process on H .

We denote by C∞
p (Rn) the set of all infinitely differentiable functions f : Rn → R

such that f and all of its partial derivatives have polynomial growth. Let S be the set of
smooth random variables defined by

S = {F = f(W (h1), ...,W (hn)); h1, ..., hn ∈ H,n ≥ 1, f ∈ C∞
p (Rn)}.

Let F ∈ S, define its Malliavin derivative DtF by

(1.3) DtF =
n∑

i=1

∂if(W (h1), ...,W (hn))hi(t),

and its norm by
||F ||1,2 = [E(|F |2) + E(||DF ||2H)]

1
2 ,

where ||DF ||2H =
∫∞
0

|DtF |2µ(dt). Denote by D1,2 the completion of S under the norm
∥.∥1,2. We further define the norm

||F ||m,2 =

[
E(|F |2) +

m∑
k=1

E(∥DkF∥2H⊗k)

] 1
2

.

Similarly, Dm,2 denotes the completion of S under the norm ||.||m,2.

We shall use the following two propositions:

Proposition 1.1 (Proposition 1.2.3 of [8]). Let ϕ : Rd → R be a continuously differen-
tiable function with bounded partial derivatives. Suppose that F = (F 1, · · · , F d) is a
random vector whose components belong to the space D1,2. Then ϕ(F ) ∈ D1,2, and

D(ϕ(F )) =
d∑

i=1

∂iϕ(F )DF i.

Proposition 1.2 (Proposition 2.1.5 of [8]). If F ∈ D∞,2 with D∞,2 = ∩m≥1Dm,2 and
∥DF∥−1

H ∈ ∩p≥1L
p(Ω), then the density of F belongs to the space C∞(R) of infinitely

continuously differentiable functions.

Throughout this paper, for a bounded measurable function f , we shall denote

∥f∥∞ = sup
x∈R

|f(x)|.
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2. MAIN RESULTS

Throughout this paper, we need to assume α < 1 to guarantee that Eq. (1.1) has a
unique solution [5]. Furthermore, it is shown in [12] that

Theorem 2.1. ([12, Theorem 3.1]) Let (Xt)t≥0 be the unique solution to Eq. (1.1). Then
Xt ∈ D1,2 for all t > 0.

Theorem 2.2. ([12, Theorem 3.2]) Assume that σ and b are both Lipschitz continuous,
and |σ(x)| > 0 for all x ∈ R. Then, for t > 0, the law of Xt is absolutely continuous
with respect to Lebesgue measure.

In this paper, we shall prove the following results about the smoothness of densities:

Theorem 2.3. Assume that b is bounded smooth with ∥b′∥∞ < ∞ and that σ(x) ≡ σ.
If α < 1, t0 > 0 and b satisfy

θ(t0, α, b) < 1/2,

with θ(t0, α, b) :=
√

2∥b′∥2∞t20 + 8α2+∥b′∥2∞t20 + 4α2, then the law of Xt in (1.1) admits
a smooth density for all t ∈ (0, t0].

Theorem 2.4. Assume that b is bounded smooth with ∥b′∥∞ < ∞ and that σ is bounded
smooth with ∥σ′∥∞ < ∞, ∥σ′′∥∞ < ∞ and infx∈R |σ(x)| > 0. Let

(2.1) F (y) =

∫ y

x

1

σ(u)
du, y ∈ (−∞,∞)

and b̃(x) = b(F−1(x))
σ(F−1(x))

− 1
2
σ′(F−1(x)), then b̃ is bounded smooth with ∥b̃′∥∞ < ∞. If

α < 1, t0 > 0 and b satisfy
θ(t0, α, b̃) < 1/2

with θ(t0, α, b̃) :=
√

2∥b̃′∥2∞t20 + 8α2+∥b̃′∥2∞t20 + 4α2, then the law of Xt in (1.1) admits
a smooth density for all t ∈ (0, t0].

Proofs of Theorems 2.3 and 2.4: The main idea is to use Proposition 1.2 to prove the
two theorems. To verify the conditions in Proposition 1.2, it suffices to prove that Xt ∈
Dm,2 for all m ≥ 1 and ∥DXt∥H ≥ c > 0 a.s. for some constant c > 0.

Theorem 2.3 immediately follows from Lemmas 3.1 and 3.4 below.
Now we prove Theorem 2.4. Recall Yt =

∫ Xt

x
1

σ(u)
du in Lemma 3.5 below, by the

condition of σ, F is a continuous and strictly increasing function with bounded deriva-
tive and thus

(2.2) ∥DYt∥H = ∥DF (Xt)∥H ≤ 1

infx∈R |σ(x)|
∥DXt∥H .

Hence, by Lemmas 3.1 and 3.5 below, under the same condition as in Theorem 2.4 we
have
(2.3)

∥DXt∥H ≥ inf
x∈R

|σ(x)| · ∥DYt∥H ≥ inf
x∈R

|σ(x)| · [1− 2θ(t0, α, b̃)]t

2(1 + 2∥b̃′∥2∞t2 + 2α2)
t ∈ [0, t0].
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Hence, Xt admits a smooth density for all t ∈ (0, t0]. �

3. AUXILIARY LEMMAS

It is well known that ∥DXt∥H has the following representation [12] for all t > 0:

∥DXt∥H =

(∫ t

0

|DrXt|2dr
) 1

2

with DrXt satisfying

(3.1) DrXt = σ(Xr) +

∫ t

r

Drb(Xs)ds+

∫ t

r

Drσ(Xs)dBs + αDr

(
sup
0≤s≤t

Xs

)
.

We shall often use the following fact ([12], [8])

(3.2) DrXt = 0 if r > t,

(3.3)
∥∥∥∥D( sup

0≤s≤t
Xs)

∥∥∥∥
H

≤ sup
0≤s≤t

∥DXs∥H ,

where∥∥∥∥D( sup
0≤s≤t

Xs)

∥∥∥∥2

H

=

∫ t

0

∣∣∣∣Dr

(
sup
0≤s≤t

Xs

)∣∣∣∣2 dr, ∥DXt∥2H =

∫ t

0

|DrXt|2dr.

3.1. Xt is an element in Dm,2 for all t > 0 and m ≥ 1.

Lemma 3.1. Let Xt be the solution of the perturbed stochastic differential equation
(1.1), and suppose that the coefficients b and σ are smooth with bounded derivatives of
all orders. Then Xt belongs to Dm,2 for all t > 0 and all m ≥ 1.

Proof. We shall use Picard iteration to prove the lemma. Letting X0
t = x0 for all t > 0,

define Xn+1
t be the unique, adapted solution to the following equation:

(3.4) Xn+1
t = x0 +

∫ t

0

σ(Xn
s )dBs +

∫ t

0

b(Xn
s )ds+ α max

0≤s≤t

(
Xn+1

s

)
,

which obviously implies

max
0≤s≤t

(
Xn+1

s

)
= x0 + max

0≤s≤t

(∫ t

0

σ(Xn
s )dBs +

∫ t

0

b(Xn
s )ds

)
+ α max

0≤s≤t

(
Xn+1

s

)
.

Therefore,

max
0≤s≤t

(
Xn+1

s

)
=

x0

1− α
+

1

1− α
max
0≤s≤t

(∫ t

0

σ(Xn
s )dBs +

∫ t

0

b(Xn
s )ds

)
,
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this and (3.4) further gives

Xn+1
t =

x0

1− α
+

∫ t

0

σ(Xn
s )dBs +

∫ t

0

b(Xn
s )ds

+
α

1− α
max
0≤s≤t

(∫ s

0

σ(Xn
u )dBu +

∫ s

0

b(Xn
u )du

)
.

By the above representation of Xn+1
t and a standard method [5], for every t > 0 we

have

(3.5) lim
n→∞

Xn
t = Xt in L2(Ω).

Let m ≥ 1, it is standard to check that Xn
t ∈ Dm,2 for every t > 0 and n ≥ 1 [12,

Theorem 3.1]. By a similar argument as in [12, Theorem 3.1], we have

(3.6) sup
n≥1

E
[
∥DkXn

t ∥2H⊗k

]
< ∞, k = 1, ...,m.

Next we prove Xt ∈ Dm,2 by the argument of [8, Lemma 1.2.3]. Indeed, by (3.6),
there exists some subsequence DkX

nj

t weakly converges to some αk in L2(Ω, H⊗k) for
k = 1, ...,m. By (3.5) and the remark immediately below [8, Proposition 1.2.2], the pro-
jections of DkX

nj

t on any Wiener chaos converge in the weak topology of L2(Ω), as nj

tends to infinity, to those of αk for k = 1, ...,m. Hence, Xt ∈ Dm,2 and DkXt = αk for
k = 1, ...,m. Moreover, for any weakly convergent subsequence the limit must be equal
to α1, ..., αm by the same argument as above, and this implies the weak convergence of
the whole sequence. �

3.2. Additive noise case. If σ(x) ≡ σ, then Eq. (3.1) reads as

(3.7) DrXt = σ +

∫ t

r

Drb(Xs)ds+ αDr

(
sup
0≤s≤t

Xs

)
.

Lemma 3.2. Let t > 0 be arbitrary and b be bounded smooth with ∥b′∥∞ < ∞. For all
0 < t1 < t2 ≤ t, we have∣∣∥DXt2∥2H − ∥DXt1∥2H

∣∣ ≤ 2
[√

2∥b′∥2∞(t2 − t1)2 + 8α2 + ∥b′∥2∞(t2 − t1)
2 + 4α2

]
sup
0≤s≤t

∥DXs∥2H .

Proof. It is easy to see that∣∣∥DXt2∥2H − ∥DXt1∥2H
∣∣ = ∣∣∣∣∫ t2

0

(DrXt2)
2dr −

∫ t1

0

(DrXt1)
2dr

∣∣∣∣ ≤ I1 + I2,

where

I1 :=

∫ t2

t1

(DrXt2)
2dr, I2 :=

∫ t1

0

∣∣(DrXt2)
2 − (DrXt1)

2
∣∣ dr.
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We claim that∫ t2

0

(DrXt2 −DrXt1)
2dr ≤ 2

[
∥b′∥2∞(t2 − t1)

2 + 4α2
]
sup
0≤s≤t

∥DXs∥2H .(3.8)

and we will prove it in the last part of this proof.
Let us now estimate I1 and I2 by (3.8). Observe

I1 =

∫ t2

t1

(DrXt2 −DrXt1)
2dr ≤

∫ t2

0

(DrXt2 −DrXt1)
2dr,

by (3.8) we have

I1 ≤ 2
[
∥b′∥2∞(t2 − t1)

2 + 4α2
]
sup
0≤s≤t

∥DXs∥2H .(3.9)

Further observe

I2 ≤
[∫ t1

0

(DrXt2 −DrXt1)
2dr

] 1
2
[∫ t1

0

|DrXt2 +DrXt1 |2dr
] 1

2

≤
√
2

[∫ t1

0

(DrXt2 −DrXt1)
2dr

] 1
2
[∫ t1

0

|DrXt2 |2 + |DrXt1 |2dr
] 1

2

≤
√
2

[∫ t1

0

(DrXt2 −DrXt1)
2dr

] 1
2
[∫ t2

0

|DrXt2 |2dr +
∫ t1

0

|DrXt1 |2dr
] 1

2

≤ 2

[∫ t1

0

(DrXt2 −DrXt1)
2dr

] 1
2

sup
0≤s≤t

∥DXs∥H

≤ 2

[∫ t2

0

(DrXt2 −DrXt1)
2dr

] 1
2

sup
0≤s≤t

∥DXs∥H ,

this inequality and (3.8) gives

I2 ≤ 2
√

2[∥b′∥2∞(t2 − t1)2 + 4α2] sup
0≤s≤t

∥DXs∥2H .

Combining the estimates of I1 and I2, we immediately get the desired inequality in the
lemma.

It remains to prove (3.8). By (3.7), we have

(DrXt2 −DrXt1)
2 ≤ 2

∣∣∣∣∫ t2

t1

Drb(Xs)ds

∣∣∣∣2 + 2α2

∣∣∣∣Dr

(
sup

0≤s≤t1

Xs

)
−Dr

(
sup

0≤s≤t2

Xs

)∣∣∣∣2
≤ 2

∣∣∣∣∫ t2

t1

Drb(Xs)ds

∣∣∣∣2 + 4α2

∣∣∣∣Dr

(
sup

0≤s≤t1

Xs

)∣∣∣∣2 + 4α2

∣∣∣∣Dr

(
sup

0≤s≤t2

Xs

)∣∣∣∣2 .
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By Hölder inequality, (3.2) and Proposition 1.1, we have∫ t2

0

∣∣∣∣∫ t2

t1

Drb(Xs)ds

∣∣∣∣2 dr ≤ ∥b′∥2∞
∫ t2

0

(t2 − t1)

∫ t2

t1

|DrXs|2dsdr

= ∥b′∥2∞(t2 − t1)

∫ t2

t1

∫ s

0

|DrXs|2drds

≤ ∥b′∥2∞(t2 − t1)
2 sup
0≤s≤t

∥DXs∥2H .

Moreover, by (3.3) and (3.2) we have∫ t2

0

∣∣∣∣Dr

(
sup

0≤s≤t2

Xs

)∣∣∣∣2 dr ≤ sup
0≤s≤t2

∥DXs∥2H ≤ sup
0≤s≤t

∥DXs∥2H ,

∫ t2

0

∣∣∣∣Dr

(
sup

0≤s≤t1

Xs

)∣∣∣∣2 dr = ∫ t1

0

∣∣∣∣Dr

(
sup

0≤s≤t1

Xs

)∣∣∣∣2 dr ≤ sup
0≤s≤t

∥DXs∥2H .

Collecting the above four inequalities, we immediately get the desired (3.8). �

Lemma 3.3. Let b be bounded smooth with ∥b′∥∞ < ∞, we have

(3.10) sup
0≤s≤t

∥DXs∥2H ≥ σ2t

2(1 + 2∥b′∥2∞t2 + 2α2)
, t > 0.

Proof. By (3.7) and using (a+ b)2 ≥ 1
2
a2 − b2, we have

(DrXt)
2 ≥ 1

2
σ2 −

[∫ t

r

Drb(Xs)ds+ αDr

(
sup
0≤s≤t

Xs

)]2
≥ 1

2
σ2 − 2

(∫ t

r

Drb(Xs)ds

)2

− 2α2

[
Dr

(
sup
0≤s≤t

Xs

)]2
.

Further observe∫ t

0

(∫ t

r

Drb(Xs)ds

)2

dr ≤
∫ t

0

(t− r)

∫ t

r

|Drb(Xs)|2dsdr

≤
∫ t

0

(t− r)∥b′∥2∞
∫ t

r

|DrXs|2dsdr

≤ t∥b′∥2∞
∫ t

0

∫ t

r

|DrXs|2dsdr

= t∥b′∥2∞
∫ t

0

∥DXs∥2Hds

≤ t2∥b′∥2∞ sup
0≤s≤t

∥DXs∥2H ,

(3.11)
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where the second inequality is by Proposition 1.1. Hence,

∥DXt∥2H ≥ σ2t

2
− 2∥b′∥2∞t2 sup

0≤s≤t
∥DXs∥2H − 2α2∥D( sup

0≤s≤t
Xs)∥2H

≥ σ2t

2
− 2∥b′∥2∞t2 sup

0≤s≤t
∥DXs∥2H − 2α2 sup

0≤s≤t
∥DXs∥2H ,

where the last inequality is by (3.3).
This clearly implies

sup
0≤s≤t

∥DXs∥2H ≥ σ2t

2
− 2∥b′∥2∞t2 sup

0≤s≤t
∥DXs∥2H − 2α2 sup

0≤s≤t
∥DXs∥2H ,

which immediately yields the desired bound. �

Lemma 3.4. Let b is bounded smooth with ∥b′∥∞ < ∞ and σ(x) ≡ σ with σ ̸= 0. If
α < 1, t0 > 0 and b satisfy

θ(t0, α, b) < 1/2

with θ(r, α, b) :=
√

2∥b′∥2∞r2 + 8α2 + ∥b′∥2∞r2 + 4α2 for r > 0, then

(3.12) ∥DXt∥2H ≥ [1− 2θ(t0, α, b)]σ
2t

2(1 + 2∥b′∥2∞t2 + 2α2)
, t ∈ [0, t0].

Proof. Let t ∈ [0, t0]. For all 0 ≤ t1 ≤ t2 ≤ t, by Lemma 3.2, we have∣∣∥DXt2∥2H − ∥DXt1∥2H
∣∣ ≤ 2θ(t2 − t1, α, b) sup

0≤s≤t
∥DXs∥2H .

Hence, for all s ∈ [0, t],

∥DXs∥2H ≤
∣∣∥DXs∥2H − ∥DXt∥2H

∣∣+ ∥DXt∥2H
≤ 2θ(t− s, α, b) sup

0≤s≤t
∥DXs∥2H + ∥DXt∥2H ,

and consequently

sup
0≤s≤t

∥DXs∥2H ≤ 2θ(t, α, b) sup
0≤s≤t

∥DXs∥2H + ∥DXt∥2H .

The above inequality and (3.10) further give

∥DXt∥2H ≥ [1− 2θ(t, α, b)] sup
0≤s≤t

∥DXs∥2H

≥ [1− 2θ(t0, α, b)] sup
0≤s≤t

∥DXs∥2H .

Combining the above inequality and Lemma 3.3 immediately gives the desired inequal-
ity. �
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3.3. Multiplicative noise case. By the condition of σ, we have supx∈R σ(x) < 0 or
infx∈R σ(x) > 0. Without loss of generality, we assume that

inf
x∈R

σ(x) > 0.

Let us consider the following well known transform

(3.13) F (Xt) =

∫ Xt

x

1

σ(u)
du,

it is easy to see that F is a strictly increasing function with bounded derivative. Hence,

(3.14) sup
0≤s≤t

F (Xs) = F

(
sup
0≤s≤t

Xs

)
.

By Itô formula, we have

(3.15) F (Xt) =

∫ t

0

(
b(Xs)

σ(Xs)
− 1

2
σ′(Xs)

)
ds+Bt + α

∫ t

0

1

σ(Xs)
dMs

where Mt = sup0≤s≤tXs. It is easy to see that Mt is an increasing function of t and that
1

σ(Xs)
has a contribution to the related integral only when Xs = Ms. Hence,

(3.16) F (Xt) =

∫ t

0

(
b(Xs)

σ(Xs)
− 1

2
σ′(Xs)

)
ds+Bt + α

∫ t

0

1

σ(Ms)
dMs.

Since Mt is a continuous increasing function with respect to t, we have

(3.17) F (Xt) =

∫ t

0

(
b(Xs)

σ(Xs)
− 1

2
σ′(Xs)

)
ds+Bt + α

∫ Mt

0

1

σ(u)
du.

By (3.14),

(3.18) F (Xt) =

∫ t

0

(
b(Xs)

σ(Xs)
− 1

2
σ′(Xs)

)
ds+Bt + α sup

0≤s≤t
F (Xs).

Denote Yt = F (Xt), it solves the following perturbed SDE:

(3.19) Yt =

∫ t

0

b̃(Ys)ds+Bt + α sup
0≤s≤t

Ys

where b̃(x) = b(F−1(x))
σ(F−1(x))

− 1
2
σ′(F−1(x)). Applying Lemma 3.4, we get the following

lemma about the dynamics Yt:

Lemma 3.5. Assume that b is bounded smooth and that σ is bounded smooth with
∥σ′∥∞ < ∞, ∥σ′′∥∞ < ∞ and infx≥0 |σ(x)| > 0. Then b̃ is bounded smooth. If α < 1,
t0 > 0 and b satisfy

θ(t0, α, b̃) < 1/2
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with θ(r, α, b̃) :=
√

2∥b̃′∥2∞r2 + 8α2 + ∥b̃′∥2∞r2 + 4α2 for r > 0, then

(3.20) ∥DYt∥2H ≥ [1− 2θ(t0, α, b̃)]t

2(1 + 2∥b̃′∥2∞t2 + 2α2)
, t ∈ (0, t0].

Proof. It is easy to check that under the conditions in the lemma b̃ is bounded smooth
with ∥b̃′∥∞ < ∞. Hence, the lemma immediately follows from applying Lemma 3.4 to
Yt. �
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