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Abstract: The presented notes aim toward improved mod-
els of the scalar visual response to flat-field stimuli, and
are prompted by unease over the complexity of existing
colour difference models. Some of the basic assumptions
of colorimetry are examined in detail, and analytical
methods whereby these assumptions can be investigated
experimentally are presented. A key finding is that the
standard CIE colorimetric model is verifiably correct as a
predictor of point colour identity and metameric visual
equivalence. It is however demonstrated to be a mislead-
ing basis for modeling colour difference, and an alterna-
tive scalar reference basis and experimental analysis
method are presented � 2009 Wiley Periodicals, Inc. Col Res

Appl, 34, 163 – 169, 2009; Published online in Wiley InterScience

(www.interscience.wiley.com). DOI 10.1002/col.20479
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INTRODUCTION

The motivation for offering these notes is a deep unease

with the complexity of existing flat-field colour difference

models and their reliance on essentially empirical data fit-

ting. I also deplore the reliance of many investigators on

the co-ordinates of CIE XYZ colour space as a scalar ref-

erence basis for analyzing their results and building their

models. I therefore invite readers of the Journal to debate

the need for an alternative basis for colour difference

modeling. The debate I believe will be between two dis-

tinct philosophical positions. On one hand, we have those

who believe that the human visual response has no spe-

cific mechanism that quantifies colour difference, and in

consequence the sensation is the result of trainable guess-

work. The proponents therefore regard any attempt to find

a representative model of this response as either pointless

or doomed to failure. This stance is well documented in

Donald Laming’s book ‘‘Measurement of Sensation.’’1

There are on the other hand those of us who expect that

tangible explanatory benefit or better quantitative descrip-

tion can be delivered by improved colorimetric models.2,3

In presenting these notes I seek firstly to focus this

debate, and secondly to introduce a new approach to experi-

mental design, and to colorimetric analysis that in principle

could resolve the debate authoritatively. The new analysis

is essentially neutral in that it is equally applicable to gen-

erating support for either position, but it will become clear

that intuitively I expect the debate to be resolved in favor

of tangible benefit: I also believe however that a substantial

investment in new experiments will be necessary to demon-

strate that this intuition is sound. In the following discourse

I suggest in outline how the relevant experiments could be

designed and executed, and the hypothesis is that the debate

can be resolved incrementally by building up a set of defin-

itive linearized models for the component visual responses.

COLORIMETRIC ANALYSIS BY UNIT VALUE

REDEFINITION AND PROJECTIVE MAPPING

All possible visual stimuli are characterized by reference

to the radiometric scales of the physical domain. In this

domain the additive value and quantitative equivalence

properties are fundamentally constant, and this is the basis

for the real number scale and the axiomatic definitions of
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vector analysis: It is also the basis for the use of interna-

tionally accepted unit value definitions, and for the

equations and laws of Newtonian physics that quantify

the relationships between physical cause and effect. In

fields such as colorimetry, however, there are many scalar

visual responses including that of colour difference that

are only measurable by inference from their unit cause.

The visual responses to radiant stimuli are therefore con-

ventionally expressed in tristimulus units rather than units

of photopic response such as units of hue or lightness dif-

ference: We then interpret the resulting colour spaces to

indicate the presence of intrinsically complex scales of

visual difference. In these notes I will hypothesize alter-

natively that this apparent complexity actually reflects the

combined effect of three or more essentially simpler com-

ponent relationships, and that these relationships arise

from and indicate differences in unit value in the distinct

sub-component domains of the visual response.

Under this hypothesis I next adopt the concept of

‘‘finding the linear model’’ suggested by Berns4 as a key

analytical method, and within this method the strategy is

to identify and quantify distinct sets of domain specific

constants. Some of these constants must quantify unit sca-

lar value and may have a nonlinear definition relative to

unit cause as in the CIE L*a*b* model, and others must

characterize stimulus ratios and metameric visual equiva-

lence sets as in the CIE XYZ Standard Observer model.

The presented colorimetric hypothesis thus closely paral-

lels the standard approach; however I seek a more

detailed and verifiable model using a notional hierarchy

of domain-specific sub models as illustrated in Figs. 1

and 2. The relevant scalar and proportionate effect rela-

tionships are then evaluated using targeted experimental

data sets, and a nonlinear variant of the ‘‘projection onto

convex sets’’ or POCS analysis method described by

Stark and Yang5 is used, in order to isolate and quantify

the component relationships.

Figures 1 and 2 are intended to highlight potentially im-

portant inter-domain boundaries where innate differences in

unit value may exist and unit value transformation may be

necessary. They should not be interpreted as a model of the

human visual response. In principle such a model may even-

tually emerge, but only if future experiment does indeed val-

idate additional visual response constants and these can also

be related successfully to specific response mechanisms.

Vector Addition and Numeric Scaling

A clear theoretical and experimental distinction is next

established between the processes and axiomatic definitions

of vector addition and those of numeric scaling. The axi-

oms of affine geometry establish two subsets of properties.

The first subset is quantified by the multidimensional con-

stants that characterize order, ratio value, vector direction,

and point-identity equivalence. These are the constants of

spatially oriented proportionate effect and vector addition,

and under the defining axioms they are independently valid,

provided only that they model a domain within which sca-

lar value is strictly constant. The second subset is of scalar

properties, and its members must be quantified either by

declaring or experimentally characterizing unit value

within each dimension of the vector system. The axiomatic

distinction is between the vector system that describes the

multidimensional additive properties of a given domain,

and the definitions of unit value that scale it. It follows that

the unit definition must be a constant of all experiments

that are used to determine vector additive ratio value, and

that the ratios and directional dependencies of vector addi-

tion must be treated as constants in any experiments that

quantify the numeric scaling of the vector system.

FIG. 1. The notional hierarchy of components and relationships of the photopic visual response that is used to illustrate
the analysis. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Thus far we have obtained two significant analytical

results. First, we have classified and isolated the subset of

multidimensional vector defining properties, and verified

that they are independently quantifiable by constants such

as the Colour Matching Functions or CMFs. We have

thus established a valid theoretical basis for predicting

point colour identity accurately by vector sum as in the

CIE system. Second, we have isolated the scalar response

as a distinct and independently quantifiable property that

must be modeled by a set of one or more single (or intra)

dimension scales. It follows that the CIE Standard Ob-

server model and its defining datasets provide an axio-

matically verifiable characterization for ratios of propor-

tionate effect, instances of visual colour order, and instan-

ces of metameric visual equivalence. It also follows that

the point identities thus defined can be redistributed in

colour space by altering the individual unit value scales.

In effect the CIE L*a*b* model already does this, but an

improved multi-stage solution is sought via the suggested

analytical and experimental method. The intent is to

ensure that the visual scaling in each dimension of the

response is independently quantified by correctly designed

experiments; to increase the dimensionality of unit defini-

tion (as highlighted in Fig. 3); and to use sequential unit

redefinition when it is necessary to distinguish between

the properties of consecutively acting transformations

within the overall response (as suggested in Fig. 2).

Altering the Quantifying Scalar Basis of the

Colorimetric Analysis

The presented method uses nonlinear projection onto

convex sets to extend the vector analysis of additive col-

our mixing published by Krantz.6,7 The axioms of

Krantz’s analysis (see also Appendix) define what are

known as Grassmann structures, and they specify affine

vector systems where Grassmann’s laws of colour mixing

hold true. Apparent failures of Grassmann additivity in

the visual response are however well documented by

Alman, Pridmore, Thornton, Kuehni8–11 and others. The

axioms of affine geometry quoted by Krantz are therefore

used to specify a set of reference Grassmann structures,

and such failures of additivity are then quantified and

calibrated as numeric deviations from Grassmann’s Laws

by projecting the relevant dataset values onto this refer-

ence space definition.

The axiomatically uniform numeric scaling within each

reference dimension is declared to represent uniform

increments of the visual response, and I will therefore

refer to each reference space as a Uniform Colour System

(or UCS structure), in order to emphasize its status as a

definition of both visual and numeric uniformity. The

adopted sequence of initially N-dimensional and later

three-dimensional reference spaces is denoted in Fig. 3,

which also highlights the increased number of scaling

dimensions that is used in the analysis.

I emphasize at this point that the component UCS

structures are used only as reference spaces or templates

for constructing a colour space. They must not be con-

fused with the resulting experimentally quantified colour

space models. These are described later in Section ‘‘Prac-

tical realization of the analytical method’’ when the prac-

tical methods for mapping experimental datasets onto

UCS reference structures are elaborated.

Under the presented analysis, the CIE XYZ co-ordinate

system is validly defined three dimensionally by reference

to a triplet of mono-chromatic primaries, and the

FIG. 2. Some illustrative sub-divisions of the core steady-state perceptual response to a given stimulus power density
and wavelength at constant adaptation and in a constant spatial context. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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constancy of scaling over affine transformation is pro-

vided by the physical stimulus values. Scalar value is then

equated inter-dimensionally by normalization at the neu-

tral balance axis and by reference to the uniform spectral

power distribution (or SPD) of Illuminant SE. The visual

response model is then validly weighted (again three

dimensionally) by the spectrally defined CMF ratios. It

should be noted however that the above definition is

based exclusively on visual matching experiments, and

the visual difference scale is then an undefined constant

that cancels out across of the quantifying visual match

equations. It follows that the defining datasets only quan-

tify the properties of visual equivalence and ratio value,

and quite correctly the scaling continues to be expressed

in terms of physical units that are re-weighted by experi-

mentally observed proportionality ratios.

When the colour difference results from MacAdam’s

colour matching error (or CME) experiment12 are thus

scaled by unit tristimulus value as in the CIE x,y plane, it

is necessary to resort to Riemannian geometry to model

them, or to use locally valid ellipsoid parameters as in

CIE L*a*b* space. I hypothesize however that this is

firstly because the unit value of many visually distinct

dimensions and sequentially acting responses are modeled

by a single undifferentiated co-ordinate system, and sec-

ondly because the co-ordinates are established by serial

transposition of the quantifying unit value axes. However,

under the presented analysis the proportionality ratios of

the Standard Observer CMFs can be regarded as an inde-

pendently valid set of constants, we may therefore choose

an alternative visually more meaningful scalar reference

basis for calibrating the unit visual difference scales.

The chosen alternative is provided by our set of axio-

matically defined reference spaces, and we then effec-

tively invert the conventional procedure for constructing a

colour space. Thus, rather than extrapolating forward from

sets of CIE XYZ co-ordinate tristimulus values, we

hypothesize that the UCS reference space is a true model

of the properties under investigation. Scalar matrix map-

ping onto this space is then used to establish whether or

not the uniform and constant properties thus represented

can also be validated as statistically significant properties

of the relevant data sets.

THE SCALAR VALUE ANALYSIS

Under the theory of projection onto convex sets,5 a nomi-

nally infinite set of projections onto a UCS structure

exists. The theory also indicates that any given projection

can be quantified by iteratively convergent algorithms

such as the numeric mapping-error minimization adopted

in the presented analysis. The UCS reference template for

both visual and numeric uniformity is used firstly as a ba-

sis for data system linearization, and secondly as a basis

for equating unit value over the many distinct dimensions

of visual effect. This second requirement to equate scalar

value across dimensions is already present in the CMF

normalization of the CIE system, and it introduces an im-

portant constraint on the unit value mapping process. This

is because the mapping functions must not only linearize

the model in each dimension of the relationship; they

must also generate an equated numeric product in each

dimension. The equated product is of course the required

unit scalar value constant, and the constraint can be satis-

fied by holding the causal parameters in balanced inter

dimensional equivalence in a process known as neutral

axis or ‘‘grey scale’’ tracking.

We can for example use grey scale tracking to further

isolate and equate the component response scales as

follows: For a given adaptation state, experiments are

possible that quantify all points on the visual neutrality

axis. The CMF defined proportionate responses are

thereby held constant at balanced equivalence, and the

opponency responses are held quiescent at their null

point. The scalar cone-outputs are thus isolated as the

FIG. 3. The establishment of a common reference basis for visual response scaling over all sub-domains is illustrated.
Some of the domain specific members of the set of reference vector spaces are identified, and the required dimensionality
of reference scaling at each level is also indicated. The dimensionality at the post spectral levels is however an indicative
minimum and it may need to be increased to reflect the number of independent parameters that are found experimentally
to alter the observed response significantly.
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exclusively predominant response and they can be quanti-

fied by direct experiment. We might for example quantify

the response of just perceptible achromatic luminosity dif-

ference at increasing levels of stimulus power density. In

principle, the three individual cone-output characteristics

are then determined by projecting the experimental stimu-

lus values that quantify threshold difference onto their lin-

ear and inter dimensionally equivalent UCS definition.

The intent is to follow Kuehni’s suggestion,11 that the

phenomena of just noticeable difference at the neutral

axis, and supra-threshold chromatic difference should be

analyzed as fundamentally distinct phenomena, using

appropriately definitive models and data sets.

FINDING THE LINEAR MODEL BY NONLINEAR

PROJECTION

The grey-scale tracking analysis is a special case of the

vector space projection method known as POCS (see also

Appendix). The additional constraints of neutral axis

tracking enable multi-dimensional nonlinear cross depend-

ency relationships to be resolved, and the resolution is

provided by a projective mapping of scalar cause onto

scalar effect consisting of two distinct components. A set

of potentially nonlinear and simultaneously acting single

dimension functions is used to transform unit scalar value

at the inter-domain boundary that links cause to effect,

and an axiomatically distinct matrix of cross dependency

ratios then quantifies all possible vector sum additive

effects. As illustrated in Fig. 4, the transformation first re-

linearizes and re-equates unit value at the inter-domain

boundary by reference to observed increments in the neu-

tral axis visual responses: Having thus established a veri-

fiable linear model, this in turn enables the cross depend-

ency matrix relationship to be established as an independ-

ent systematic constant. In combination these two

transformations establish a mapping by nonlinear projec-

tion onto the set of hypothetical properties represented by

the axiomatically convex UCS structure.

This decomposition establishes a clear theoretical basis

for calibrating the nonlinear colour reproduction charac-

teristics of computer monitor screens. It also explains the

critical importance of grey scale tracking, the essentially

empirical success of the ICC profiling approach to colour

calibration,13 and the accurate and comprehensively tested

CRT calibration reported in reference.14

PRACTICAL REALIZATION OF THE

ANALYTICAL METHOD

The component visual responses are first classified as ei-

ther multi-dimensionally vector additive or intra-dimen-

sion scalar phenomena, and the specific sets and subsets

of component responses are then identified classified and

isolated for experimental investigation using a notional hi-

erarchy of inter-domain boundaries as in Figs. 1 and 2. A

set of reference UCS structures is then declared, whose

members are templates for constructing specific colori-

metric domain sub-models. The individual component

responses are then calibrated against a specific component

of the UCS reference system, which in principle has a

dimension of descriptive scalar value for each visually

distinct causal dimension. The overall model is initially

unpopulated, and it consists of empty (that is to say

FIG. 4. A matrix mapping system for describing nonlinear cross dependencies. The model first establishes a potentially
nonlinear unit value metric that describes the magnitude of observed incremental effect for each causal parameter. It then
quantifies the apparent cross dependencies under the resulting linearized and equated unit system as a strictly constant
matrix of effects. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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unquantified) proportionate value sub-spaces, and scalar

mapping projections. In principle each such empty compo-

nent can then be populated by mapping experimental data-

set members expressed in terms of unit cause onto the rele-

vant spatial template. The additive responses of visual

equivalence and multi-dimensional proportionate value col-

our mixture are then quantified by datasets derived under a

constant scaling definition from visual matching experi-

ments; and the visual scaling responses are quantified by

visual difference magnitude estimation experiments where

ratio value differences are held constant.

The product of each projective scalar mapping is in

effect a redefinition of unit value and a default 1:1 map-

ping relationship in each dimension is assumed, thereby

implying that unit redefinition is not required at the rele-

vant inter domain boundary. The presented colorimetric

analysis is thus directly equivalent both numerically and

visually to the standard CIE XYZ tristimulus value analy-

sis unless a statistically validated mapping-error minimi-

zation reveals that the relationship under investigation can

be better described by an alternative mapping. The projec-

tions are thus optimized until at some level of statistical

confidence they either demonstrably characterize a con-

stant relationship that is common to all of the observed

instances of cause and effect; or the iteration establishes

that no such constant scalar or proportionate relationship

exists as a property of the experimental data set.

Few members of the set of all possible projections will

actually represent the properties of the relevant experi-

mental data sets. The intent is therefore to design experi-

ments to either confirm or reject the hypothesis on a case

by case basis that under an appropriate projection, all

instances of observed effect represented in a given dataset

can be characterized by a specific set of validated con-

stants. Tangible benefit from this process will then be

demonstrated by accumulating additional statistically veri-

fied constants of the visual response. On the other hand,

the alternative debating stance will steadily gain weight

by eliminating the potentially important and more likely

candidate constants, such as the unit values that may be

characteristic of hue chroma and lightness difference.

SOME CANDIDATE VISUAL RESPONSE CONSTANTS

To investigate the possibility that the CMFs may be mem-

bers of a larger super-set of potentially important visual

response constants, we might perhaps study the visual addi-

tivity constant. In principle, any confirmed pattern of wave-

length or stimulus power dependent super or sub-additive

visual responses establishes a metamerically equivalent and

spectrally distinct definition of the true CMF constant, and

the dataset of primary triplet matches that quantify the CIE

Standard Observer establishes just one of many such ob-

server-metameric alternatives. In addition to studying the

additivity constant, we might also design experiments based

on the Bezold-Brücke (BB) hue shift at constant stimulus

wavelength;9,15 on the Helmholtz-Kohlrausch (HK) bright-

ness effect in hetero chromatic stimulus matching;8 and on

sets of complementary colours, whose ratio-value properties

are described by Pridmore.16

Apparent super- and sub-additive effects and errors in

transformability between alternative primary CMF deter-

minations have been reported by Thornton in part III of

his article series,10 and if such responses are confirmed to

be present, this would undermine the key assumption of

colorimetry that the property of additivity is invariant

over wavelength. Any deviations from constant additivity

can be characterized by a projective mapping that demon-

strably restores transformability. A mapping of this type

that restores transformability between the Thornton PC

CMF dataset and the CIE Standard Observer CMF dataset

is quantified in the two part reference.17,18

In principle, a set of invariant vector directions whose

members represent the responses to constant wavelength

stimuli could also be established as a characteristic visual

response constant by calibrating out the BB hue shift using

a projective mapping. It may also be possible to derive and

validate an appropriate experimental definition of unit

threshold hue difference as a function of wavelength at

constant stimulus power density. The intent is again to

calibrate out the nonuniformity of definition (this time for

difference of spectral vector direction), thereby adding

another quantified unit response mapping onto the visually

uniform master space. It is probably also worth investigat-

ing the phenomena of achromatic luminosity and chromatic

brightness. Under the presented analytical hypothesis, and

following Kuehni’s suggestion,19 the brightness response is

classified as sequentially super dependent on the unit lumi-

nosity response of the sensor system. The suggestion is

therefore that a key inter-domain boundary may exist

between the achromatic luminosity response and the chro-

matic brightness response. The characteristic three dimen-

sional unit value of chromatic brightness difference should

therefore be established by scalar matrix mapping as a

function of the previously quantified unit of achromatic lu-

minosity difference. If experiment then reveals it to be nec-

essary, the unit values for the visual brightness scale and

the associated chromatic difference values can then be

modeled as significantly different from the luminosity scale

and unit difference values along the neutral axis.

AUTHOR’S NOTE

This set of notes represents a personal view, and the pre-

sented ideas have developed gradually over a number of

years. They also in part reflect the views of a group of

colleagues20 with whom I have held an on-going discus-

sion of my ideas. They certainly haven’t always agreed

with me, but the interaction has been stimulating and of-

ten helpful and I acknowledge and welcome their input.

APPENDIX: AXIOMS THEOREMS PROOFS

AND METHODS

The analysis depends on some important axioms theorems

and proofs of affine geometry that are reported in articles
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by Krantz,6,7 which are subtitled respectively ‘Representa-

tion Theorem for Grassmann Structures’, and ‘Opponent

Colors Theory’. These articles equate and axiomatize

Grassmann’s laws of colour mixture with a convex cone

in a true vector space, and they provide worked proofs,

and theorems to support the stated definitions. In the

quoted articles these spaces are referred to as Grassmann

Structures; however in this article I prefer to call them

Uniform Colour Systems or UCS structures.

To quote the second article,

A Grassmann Structure is a quadruple hA,�,*,�i,
such that hA,�,*i is a convex cone (Axioms 1 and

2); � is an equivalence relation (Axiom 3); and

Grassmann’s additivity law holds (Axioms 4 and 5).

The set A is interpreted as the set of all possible col-

oured lights, or spectral radiance distributions; � and

* are interpreted respectively as additive colour mix-

ture, and multiplication by positive scalars; and � is

the binary relationship of metameric matching’.

By both formal declaration and experimental intent the

linear and uniform scaling in the reference UCS structures

is equated with incremental uniformity in all dimensions

of the visual response. The axiomatic convexity of

the reference structures then enables the de-convolution

method known as ‘projection onto convex sets’ or POCS.5

The method of unit value redefinition by nonlinear projec-

tion and neutral axis tracking used in these notes appears

to be a special case of POCS, and the special case is vali-

dated by demonstrating that the product of the simultane-

ously-acting set of unit value defining functions quantifies

a true constant of the data set under analysis. POCS

theory further indicates that the iterative refinement of a

given projection will always converge if smooth functions

are used, and the ‘onto’ vector space is demonstrably con-

vex. The presented iterative error-minimization method

for refining the set of mapping functions will thus only

fail to generate a statistically valid product if the potential

constant under investigation does not exist as a property

of the relevant data set.

Each mapping function from scalar cause onto scalar

effect is validated as a single dimension UCS structure or

UCS Code when its product demonstrably satisfies the

same set of axioms by characterizing a set of strictly uni-

form and constant visual scales. A nominally infinite set

of UCS Code mapping projections onto the reference

space then exists, but only a small subset of these

(thought to be essentially empty by the sceptics) will

quantify a possible constant of the visual response. A pro-

jection only characterizes a true constant when all mem-

bers of a relevant data set are exactly mapped onto the

reference UCS structure by a single definitive set of scalar

mapping functions.

I emphasize here the dual role of UCS structures and

their defining axioms. They exist both as proven context

free mathematical constructs and as applied in the current

context, where I use both the structures and the axioms

indirectly via the UCS declaration and numeric mapping-

error minimization as constraining rules for validating

both linear and nonlinear mapping relationships.
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