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Abstract. The consequences of adding or removing axioms are difficult
to apprehend for ontology authors using the Web Ontology Language
(OWL). Consequences of modelling actions range from unintended infer-
ences to outright defects such as incoherency or even inconsistency. One
of the central ontology authoring activities is verifying that a particular
modelling step has had the intended consequences, often with the help
of reasoners. For users of Protégé, this involves, for example, exploring
the inferred class hierarchy.

We explore the hypothesis that making changes to key entailment sets ex-
plicit improves verification compared to the standard static hierarchy/frame-
based approach. We implement our approach as a Protégé plugin and
conduct an exploratory study to isolate the authoring actions for which
users benefit from our approach. In a second controlled study we ad-
dress our hypothesis and find that, for a set of key authoring problems,
making entailment set changes explicit improves the understanding of
consequences both in terms of correctness and speed, and is rated as the
preferred way to track changes compared to a static hierarchy/frame-
based view.

Keywords: ontology engineering, ontology authoring, reasoning

1 Introduction

Ontologies are explicit conceptualisations of a domain, and are widely applied in
biology, health-care and the public domain. Ontologies are typically represented
in a formal representation language such as the Web Ontology Language (OWL),
the Open Biomedical Ontologies format (OBO) or the RDF Schema language
(RDFS). The central advantage of using such formalisms is their well-defined
semantics. Generic reasoning systems can be used to access knowledge in the
ontology that is only implied, i.e. not explicitly stated, allowing richer answers to
queries, the identification of inconsistent knowledge and improved management
of large terminologies through definition-oriented development. There is strong,



2 Nicolas Matentzoglu, Markel Vigo, Caroline Jay, and Robert Stevens

if mainly anecdotal, evidence that building ontologies using OWL is difficult and
error-prone.

Attempts were made to quantify this difficulty [4], but an accurate model of
the cognitive complexity of various ontology authoring tasks such as exploration
or modelling has yet to be defined. The cognitive complexity of OWL can lead
to axioms that do not reflect the intentions of the author. Furthermore, the rich
and often complicated semantics of OWL can result in unintended inferences,
which are often not made explicit by the authoring tool, and even if they are, are
rarely communicated to the author clearly. An interview study recently revealed
that many ontology experts frequently run the reasoner, sometimes after every
modification, to detect errors such as unsatisfiable classes and to prevent the
spread of errors [12]. Participants also felt that the change evaluation phase,
i.e. the phase that determines whether a modelling action had the intended
consequences, is not well supported by state of the art development tools. Some
ontology authors use DL queries, generated on the fly, to do ‘spot checks’, others
work with competency questions that are crafted upfront to automatically verify
the correctness of a change. As the conceptual model of an ontology is, however,
not always known upfront, competency question based approaches, perhaps best
compared with unit tests in software engineering, unfold their utility later in the
engineering process and their coverage of the ontology depends on the user’s
diligence. Consequently we need the user interface to remove this complexity
from the ontologies, support the evaluation of ontologies and to either prevent
or detect errors.

In this work, we are concerned with improving the evaluation of modelling
actions. In the context of this work, we call the task of evaluating that a par-
ticular modelling action has had the desired effect “verification”. Verification is
a key sub-process of ontology authoring that involves conducting a set of tests,
for example to make sure that a definition of a class works as intended and that
no unsatisfiable classes were introduced [2]. When developing ontologies with
the popular Protégé ontology engineering environment, the verification step is
typically realised by invoking the reasoner and exploring the implicit knowledge
in the ontology [12], for example by making sure that a particular class has the
expected position in the inferred class hierarchy or a freshly introduced property
domain restriction results in the expected individual type inferences. We call
this approach static hierarchy/frame-based (SHFB), where “static” refers to the
fact that the inferred hierarchy only reflects a state, without any indication how
this state relates to the latest modelling action. We explore the hypothesis that
making changes to a number of key entailment sets explicit improves verification
compared to the static hierarchy/frame-based approach. Our contributions are
as follows:

– We developed the Inference Inspector, a novel Protégé plugin that makes
changes to key entailment sets as consequences of modelling actions explicit.

– We conducted an exploratory study to evaluate our Inference Inspector pro-
totype. We find that our approach is better suited for tasks that involve
change, such as changing definitions or adding restrictions, and less well
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suited for tasks that involve the introduction of new entities compared to
SHFB and is well received by users for a number of typical modelling tasks,
in particular changing class definitions.

– We conducted a laboratory experiment that confirms our hypothesis. We find
that making entailment set changes explicit improves the understanding of
consequences both in terms of correctness and speed, and is rated as the
preferred way to track changes compared to SHFB.

2 Background and Related Work

Ontology authoring is the creation and maintenance of ontology artefacts rep-
resented in a formal knowledge representation language such as OWL, OBO or
RDFS. We view an ontology O as a set of axioms, and α with α ∈ O being
an axiom in O. The signature of O is the set of entities across all axioms in O.
Typical ontology authoring activities include, but are not limited to, the cre-
ation of axioms or annotations. For a detailed discussion of ontology authoring
activities see [14]. Research on ontology authoring has experienced a resurgence
in recent years [12, 14, 15]. One reason for this might be the increased utilisa-
tion of change-logs for ontology development. WebProtégé for example produces
change-logs during ontology authoring, which can form the basis of rich and
informative analyses on ontology authoring activities [15].

While ontology authoring is increasingly performed in a programmatic fash-
ion, a large number of ontologies have been built using ontology authoring envi-
ronments such as Protégé [5] and WebProtégé [11]. Moreover, even if ontologies
are created in a programmatic fashion, they are often checked for defects in a
visual authoring environment. The work presented here is the continuation of a
series of investigations into the processes of ontology authoring [14, 13, 12]. The
aim of the series is to improve our understanding of ontology authoring pro-
cesses, in particular to identify typical authoring styles and workflows to guide
tool developers to improve their support of those workflows. We identified typ-
ical problems during ontology authoring, in particular that Protégé does not
cater for all the needs of current authors [12, 13]. Ever more sophisticated on-
tology modelling patterns make the verification of modelling actions difficult.
Unintended consequences such as the introduction of unsatisfiable classes, bro-
ken definitions (that result in wrong classifications) or wrong inferences on the
data level (ABox) are often difficult to spot, which was one of the core incentives
for this work. A specially modified version of Protégé that collects interaction
events silently during ontology authoring [14], Protégé4US, enabled us to study
ontology authoring workflows and derive a number of well-founded design sug-
gestions for authoring tools [14]. One of these was making the changes to the
inferred hierarchy explicit— another major incentive for developing the Infer-
ence Inspector.

The existing tool support for ontology authoring activities is still largely in-
adequate [12]. An example of an early study that established the necessity of
presenting explanations for entailments and reporting errors adequately in the



4 Nicolas Matentzoglu, Markel Vigo, Caroline Jay, and Robert Stevens

context of knowledge representation (KR) systems was McGuiness et al. [8].
Ontology authoring tools continued to receive poor usability ratings [3, 6, 12]
throughout the last 20 years. Examples of unmet demands from users include
the ability to compare different versions of the ontology [3] and inadequate de-
bugging support [12]. In particular, making the consequences of modelling ac-
tions explicit beyond simply identifying that a defect exists has received little
attention. The main effort in this direction came from Denaux et al. [2]. The
authors developed a system that provides interactive semantic feedback directly
after a change to the ontology. They suggest 6 categories of semantic feedback
from the ontology engineering environment, given a single axiom α being added
to the ontology: α was already asserted, α was not asserted, but could be in-
ferred, α causes the ontology to be inconsistent, α is novel and the addition
results in new implications, α is novel and the addition does not result in new
implications, and α causes a concept in the ontology to become unsatisfiable.
While Denaux et al. inspired us to produce a better feedback mechanism, their
work differs in two fundamental aspects to the research presented here: (1) in
Denaux et al. only additions are modelled, i.e., the case that an engineer adds
an axiom to the ontology, while we also cover removals, and (2) changes are
comprised of a single axiom, while we decided to model sets of additions and
removals. Only providing feedback when the reasoner is run returns the respon-
sibility for asking for feedback to the engineer, keeps the interface responsive
(reasoning is not required after every step), but also comes with a caveat: given
a set of changes, it may not be anymore possible to attribute a particular infer-
ence (either lost or gained) to a particular change, thereby putting the burden of
identifying the erroneous change back to the engineer. We believe, however, that
the gain in responsiveness is worth this caveat, and we can cover some of these
shortcomings using justifications, as explained in the next section. The authors
evaluate their approach using a task based setting similar to the exploratory
study we present later, and find that the feedback was generally considered
helpful. However, no formal evaluation was conducted to find out whether the
feedback actually led to more accurate modelling. The tool is available online
(https://sourceforge.net/projects/entendre/).

3 Inference Inspector: Making the Consequences of
Modelling Actions Explicit

We present the Inference Inspector, a Protégé plugin for making the conse-
quences of modelling actions in an ontology explicit. The Inference Inspector is
implemented as a plugin for Protégé 5 (5.0.0 at the time of writing). We consider
ontologies to be represented in OWL 2 DL, unless otherwise stated. A modelling
action is defined as a non-empty set of changes CH. A change can either be a
removal of an axiom α, denoted Rα, or an addition, denoted Aα. For example,
given the addition of an axiom α1: SubClassOf(A,B) and the removal of another
axiom α2: SubClassOf(A,C), the modelling action is defined as CH : {Aα1

, Rα2
}.

Axiom modifications are always treated as an addition of the revised axiom and a
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removal. In the previous example, the user might have decided that A should not
be subsumed by B, but by C instead, changing the existing SubClassOf(A,B) to
SubClassOf(A,C). The Inference Inspector makes changes to a predefined set of
key entailment sets explicit. A change to an entailment set is defined as follows.
Given an O, a previous version of the ontology O′

and a finite entailment set
E , the difference between the respective entailment set of O and O′

, EO \ EO′ ,
is called the set of added inferences w.r.t. E , and the difference between the en-
tailment set of O′

and O, EO′ \ EO is called the set of removed inferences w.r.t.
E . Given a language L and an OWL 2 ontology O, the L-entailment set of O,
written E(O,L), is the set of all axioms in L that are entailed by O (entailment
set).

There are a number of factors that inform the selection of appropriate en-
tailment sets for presentation [10]. Our approach was fairly practical: the entail-
ments shown should help the user to verify their modelling actions and not be
too costly to compute. In order to help the user verifying their modelling actions,
the entailment set should be indicative of erroneous or correct modelling and be
easily understandable by a typical user. In order to be indicative of erroneous
modelling, the presented entailments should be verifiable against modelling in-
tentions. Since we cannot directly access the user’s modelling intentions, we make
a number of simplifying assumptions. Firstly, we consider unsatisfiable classes
or ontology inconsistency as bugs, which any user aims to avoid. Secondly, we
assume that the majority of users have a mental model of the hierarchical struc-
tures of their ontology, including a model of class disjointness, and intend to
keep the ontology consistent with that mental model. In other words, we assume
that the ontology author knows, for a concept they are modelling, where in the
hierarchy it should be situated and which individuals should be members of it,
as well as whether it is disjoint from another concept in the domain. Therefore,
we primarily serve the modelling intentions of avoiding bugs while producing
hierarchies consistent with that mental model. We acknowledge that this as-
sumption is not universally true, as it is, for example, unlikely that any one
author of the gene ontology [1], for example, knows all subsumptions between
all the concepts it covers. Furthermore, there are other relevant axes that are
not covered by our approach, such as partonomy or any class level patterns that
are based on object properties, such as existential restrictions. We do, however,
believe that the subsumption relation is of central importance in a majority of
cases, which is also confirmed by our finding that users look at the class hier-
archy 45% of the time spent editing ontologies with Protégé [14]. Furthermore,
the presented entailments must be easily understandable by a user, i.e. we do
not want to replace a cognitively demanding search, such as a lookup in a large
hierarchy, by a cognitively demanding parse, such as an axiom involving deeply
nested class expressions. Therefore, our approach only considers entailments that
involve named entities, and avoid those that involve complex class expressions
such as existential restrictions. Lastly, determining the entailment sets should
not be too computationally expensive. Current implementations of subsumption
and instantiation perform well in practice [9], despite the high worst case com-
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plexity. Computing the full set of disjoint classes, on the other hand, can be more
computationally intensive in practice, because reasoners do not implement effi-
cient algorithms for this task. We therefore allow the user to determine whether
computing the disjointness relation is worth their while.

We consider the following (groups of) entailment sets: (1) atomic subsump-
tions between classes, and object and data properties; (2) equivalences between
classes, and object and data properties; (3) object property characteristics; (4)
disjointness between class names; (5) class assertions and; (6) object property
assertions. While (1), (2), (4) and (5) directly correspond to the considerations
above, (3) and (6) do not. We include object property assertions in our solution
in order to provide a mechanism that allows the user to check whether sub-
object property chains (and the object property hierarchy) work as intended.
The reason for including object property characteristics was that our extensive
experience teaching novice and advanced OWL users has shown that the inheri-
tance or non-inheritance of object property characteristics up or down the object
property hierarchy is extremely difficult to understand. For example, making an
object property functional makes all its children’s properties functional, while
the same is not true for transitivity. Although the entailment sets considered here
are finite, they are potentially large. To further reduce the amount of information
shown to the user, for the three atomic subsumption entailment sets, we consider
the transitive reduct, i.e. we query the reasoner only for direct subsumptions.

After the selection of appropriate entailment sets, the second question that
is relevant when presenting entailments to users according to Parvizi et al. [10]
is how they should be ordered. The Inference Inspector implements a config-
urable system for inference prioritisation. We allow the user to assign a priority
to an item from a list of pre-defined inference patterns. Currently, we have im-
plemented five priority levels and 11 inference patterns. The priority levels range
from critically important (ontology defects such as unsatisfiability) to unimpor-
tant (e.g. asserted axioms).

By default, the Inference Inspector orders the presented consequences by pri-
ority. Sometimes, ordering the potentially large number of entailments presented
to the user is not enough. In particular, inferences on the ABox (individual) level
can be extremely numerous. We therefore employ a grouping strategy for object
property assertion axioms and class assertions [10]. By default, we group all ax-
ioms of the type ClassAssertion(a,X), where X is a particular class name in the
ontology, and ObjectPropertyAssertion(a, b, R), where R is a particular object
property name in the ontology. For very large ontologies the list of inferences can
be further narrowed down by restricting it to particular entities in the ontology.
Justifications for entailments can be computed on demand.

After each reasoner run, a snapshot of the current ontology is created includ-
ing its inferences. By default users are presented with the consequences of their
most recent modelling action (Figure 1). We define the scope of a single mod-
elling action as the set of all changes that were applied to the ontology between
the latest and the previous run of the reasoner. For example, after running the
reasoner, the ontology author might add three axioms and remove one. When
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Fig. 1: A snapshot of the inference inspector after the removal of an axiom that
made IceCream unsatisfiable. Left: we can see the new position of IceCream in
the class hierarchy. Right: we can see respective lost inferences. P1 (Critical),
P2 (important) and P4 (not important) are priority levels (P).

the user runs the reasoner again, they will be presented with the entailments
added and lost since the previous run of the reasoner. From an implementation
perspective, this is realised by computing the set difference in accordance with
the definitions given in the beginning of this section. The Inference Inspector
allows the user to compare the current state of the ontology to any snapshot
created previously. The first snapshot is always the empty ontology: this means
that comparing the current version of the ontology with the empty ontology will
always show all inferences (short of those that are explicitly hidden by the user).
By default, inferences of critical importance (P1 in Figure 1) are always shown,
no matter which snapshot forms the basis for comparison, but this feature can
be switched off, if only the latest changes are of interest. Lastly, the user may
restrict the inferences presented, by either: (1) showing only inferences related to
the currently selected entity in Protégé or (2) showing only inferences involving
entities manually selected in a special entity selector panel. An important caveat
of the Inference Inspector implementation is that it relies on the correctness of
the reasoner. Reasoners are not always correct [7], and may not support the
inference of all the entailment sets considered by the Inference Inspector.

4 Materials and Methods

We conducted two studies to evaluate our approach. The first was an exploratory
study performed in the context of an advanced OWL modelling tutorial (E1),
intended to evaluate our prototype and isolate modelling actions where authors
may benefit from the Inference Inspector. A second, controlled laboratory ex-
periment (E2) validated the hypothesis that making changes to key entailment
sets explicit improves modelling performance.

4.1 E1: Prototype Evaluation

Goals The main goals of this study were to evaluate the Inference Inspector
prototype and determine those modelling actions where our approach is likely
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to add value over existing solutions. The evaluation was designed to be broad
and involved rating the Inference Inspector for perceived usefulness and respon-
siveness, as well as providing feedback on the user interface. From the results
we extracted modelling actions where our approach may help, and used this
information to design tasks for the second experiment (Section 4.2).

Participants 15 intermediate users of Protégé were recruited in the context
of a two day advanced OWL tutorial (see http://ow.ly/pK8P300x9wq). An
Amazon Voucher (£10) was given to those that were willing take part. Most
participants had successfully completed a beginner level OWL tutorial or had
an equivalent experience with OWL. Out of the 15 (9 female) participants, there
were 3 students, 5 PhD students, 3 research fellows, 1 data researcher, 1 assistant
director for information management, 1 clinician, 1 information architect and 1
bioinformatician. The mean self-reported expertise level (Likert-scale, 1,Novice -
5,Expert) was 2.47 (standard deviation 0.99) for Protégé and and 2.53 (standard
deviation 1.06) for OWL.

Experimental Setup Participants were asked to perform 10 typical ontology
authoring tasks in the context of an ontology about pizza (726 axioms,SHOIN )
using 5 pre-defined tabs in Protégé. A task typically involved an action, such
as adding a definition and running the reasoner, an act of exploration, such as
inspecting the changes that occurred, answering one or more control questions
about this inspection and finally rating all five tabs for the suitability of per-
forming the task and/or the inspection. The five pre-designed tabs were: a simple
list of inferred axioms (“Inferences” view in Protégé), the Protégé “Classes” tab,
the Inference Inspector, the Protégé “Individuals” tab and the DL Query tab
of the DL Query plugin for Protégé. For navigation purposes, all views showed
an asserted class hierarchy on the left hand side, which participants were in-
structed to ignore when evaluating the suitability of the views for each task.
The ten tasks were: (1) understanding the topic of the ontology, (2) identifying
unsatisfiable classes, (3) repairing unsatisfiable classes, (4) verifying the repair of
an unsatisfiable class, (5-6) verifying the definition of a new class, (7) changing
the definition of an existing class, (8) verifying the loosening of a restriction by
removing a disjointness axiom, (9) verifying the change of an object property as-
sertion and (10) verifying the addition of a role chain. To avoid participant bias
we presented the Inference Inspector simply as a third-party plugin, rather than
our own work. Participants were not formally introduced to the Inference In-
spector prior to the experiment, but some of the basic functionality was covered
as part of the preceding OWL Tutorial. The study took around 50 minutes.

4.2 E2: Making Changes to Key Entailment Sets Explicit Improves
Verification Performance

Goals The goal of the second study was to verify the following hypothesis: Mak-
ing gained and lost entailments explicit improves the user’s understanding of
consequences of authoring actions compared to a hierarchy/frame-based view.

Improvement of user understanding was tested through a series of exploration
questions and is evaluated using the following metrics:
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– Correctness of understanding: (#true positives + #true negatives)/#options
– Speed of understanding: time to completion / correctness
– Ease of understanding: #mouse-click / correctness, scroll time / correctness
– User suitability rating: Likert-scale (0,unusable-4,perfectly usable)
– Breakdown of answer options, i.e. the number of user-selected answers that

are correct (true positives), wrong (false positives) and the number of answers
not selected by the user that are correct (true negatives) and wrong (false
negatives).

The speed score accounts for the correctness of the answer: the more incorrect
it is, the higher the penalty on the score.

Participants 19 (5 female) participants were recruited via word-of-mouth and
email-advertisement. The background of the participants ranged from MSc stu-
dents and intermediate experience to academics and non-academic professionals
with a high level of OWL expertise between 22 and 57 years of age (mean 33.28).
Out of the 19 participants, there were 5 students, 5 PhD students, 5 academics
and 4 non-academics. 4 reported to be involved with ontologies as ontology en-
gineers, 8 as ontology researchers and 6 as ontology tool developers (1 other).
The mean self-reported expertise level (Likert-scale, 1,Novice-5,Expert) was 3.53
(standard deviation 0.61) for Protégé and and 3.68 (standard deviation 0.75) for
OWL.

Experimental Setup The controlled study was conducted in a designated us-
ability lab. All participants used the same machine with a 24 inch monitor with
Protégé 5.0.0 installed. Protégé was pre-configured with the Inference Inspector
and the specially developed Protégé Survey Tool 1 (PST) to administer the sur-
vey. Tasks were designed for the following problem areas: tightening conceptual-
isation (adding restrictions, verifying consequences), loosening conceptualisation
(removing restrictions, fixing unsatisfiable classes) and changing conceptualisa-
tion (changing class definitions). In order to mitigate the impact of varying user
expertise levels, all tasks were designed in pairs, i.e. two very similar tasks were
designed with one being tested using the Inference Inspector and the other one
being tested using the Classes or the Individuals tab. No task required access to
the properties tabs. Tabs were assigned to tasks (1 task of each pair to the Infer-
ence Inspector) using a Latin square, and then randomly sampled. The survey
contained a total of 14 verification tasks. The TBox focused tasks were pre-
sented in a scenario involving an ontology about pizza (604 axioms,SHOIN ),
and the ABox focused tasks were presented in a scenario involving an ontology
about family history (89 axioms,SHIF). The participant was asked to answer
2-3 exploration questions for every task, most of which were of the sort “Did the
class hierarchy change?” or “Which are the new subclasses of X?” In order to
increase participant focus, all questions were auto-submitted after 60 seconds.
The questions were designed to be answerable comfortably within that timeout
by a reasonably experienced user of Protégé. Answers submitted that way were
counted as if they were submitted in the regular way. The study had a maximum
duration of 50 minutes.

1 https://github.com/matentzn/protegesurvey
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5 Results and Discussion

5.1 E1: Prototype Evaluation

Figure 2 shows which views users considered their preferred option to tackle an
ontology authoring problem. The participant was allowed to select a single view
that was considered the most adequate for addressing a problem. For identify-
ing unsatisfiable classes, at least 5 participants rated the Inference Inspector as
the preferred view, compared to 8 who preferred the Classes tab. The Inference
Inspector presents unsatisfiable classes clearly to the user, but so does Protégé.
The result suggests that at the very least, for this important task, the Inference
Inspector is in fact usable. The same argument goes for the repair of unsatis-
fiable classes, which both views support by allowing the user to delete axioms
occurring in a justification. With respect to adding and changing definitions or
restrictions, we expected the Inference Inspector to outperform, because it makes
the changes explicit and not subject to a potentially complicated search in the
class hierarchy. When, however, users were asked to explore the consequences
of defining a new named class, they preferred the class hierarchy. This may be
because changes with respect to the defined class are made explicit simply by
its position in the hierarchy: all sub- and super-classes are new. Only a third of
participants preferred the Inference Inspector for this task, possibly because a
visual representation of the class hierarchy is easier to understand than a list of
axioms. The Inference Inspector did add value, however, when it came to under-
standing the consequences of a change in the definition of an existing class (i.e.
the EquivalentClasses axiom). Seven users preferred the Inference Inspector to
six who preferred the class hierarchy, possibly because it is harder to detect a
change in the position of a class, than it is to see the introduction of a new one.
The first prototype of the Inference Inspector did poorly on problems involving
individuals, perhaps because ABox inferences were not ordered or grouped in
any way, which was improved for the subsequent study.

Overview Verify added definition Verify changed definition

Identify unsatisfiable class Repair unsatisfiable class Verify changed indiv. assertions

I don't know
DL Query Tab
Inference List

Individuals Tab
Classes

Inference Inspector

I don't know
DL Query Tab
Inference List

Individuals Tab
Classes

Inference Inspector

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Number of votes

Fig. 2: Preferred view for addressing problem, one vote per participant.
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Figure 3 shows the distribution of scores, on a 5 point Likert scale, the In-
ference Inspector received for key usability criteria. Ease of use was the weakest
point of the Inference Inspector (mean rating of 2.93). While this can be par-
tially attributed to a lack of familiarity with the tool (“it seems useful but I don’t
understand it”), participants also found the plugin a “little busy, layout-wise”,
“overwhelming to use at first”, and that there “are maybe too much informa-
tion/options in the same view” (see next paragraph on free-form feedback). As
a consequence of this feedback, we reduced the options shown to the user and
adopted features such as the axiom renderer from Protégé to ensure a more fa-
miliar look and feel before conducting our second user study. Reliability had a
mean rating of 3.47, with at least 4 participants giving it a low rating of 2. The
problem with reliability may also have resulted from a lack of familiarity—users
may have not been sure what to expect, and therefore been confused by the
feedback. Response time was generally rated good (4.27, despite the Inference
Inspector being several seconds slower than the reasoner in Protégé. It remains
to be seen how well the Inference Inspector scales. Users expressed interest in
using the Inference Inspector for their own work (3.87) and would recommend
it to others (3.87).

mean=2.93 mean=3.47 mean=4.27

mean=3.87 mean=3.87

Ease of use Reliability Responsiveness

Use again? Recommend?

0

2

4

6

0

2

4

6

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

N
um

be
r 

of
 v

ot
es

Fig. 3: Ratings of Inference Inspector (1: unusable, 5: perfectly usable)

Study participants were also asked to provide some free-form feedback. They
recognised the importance of prioritising and reducing the information shown
(independent of whether the Inference Inspector succeeded at this): searching
the class hierarchy might be “very tedious in a [..] large ontology [..].” and
“some means to filter and sort the output” is required, for example by ”prior-
itizing inferences related to unsatisfiability”. Moreover, participants recognised
the importance of immediate feedback: “it’d be helpful to have more indication
that the repair was successful. As of now, we’re looking for the absence of error
warnings. If protege could compare the states and flash a message saying ‘fixed’
[..], it’d be better.” This is exactly the sort of feedback we are trying to provide.
As the participants were not told about the authors affiliation with the tool,
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there was little risk of experimenter bias. Unsurprisingly the feedback on the
Inference Inspector was mixed. The Protégé Classes tab was rated as favourite
for most (TBox related) tasks: “It’s the golden standard for all Protégé views”,
“I felt this view was the most helpful for editing and [..] information.” Partici-
pants, however, also recognised the potential impact of familiarity bias: “Maybe
I like it because I am familiar with it”. It is possible the familiarity bias had
a significant impact on results, especially since participants were not formally
introduced to the Inference Inspector.

5.2 E2: Making Changes to Key Entailment Sets Explicit Improves
Verification Performance

We tested the potential for improvement of verification performance provided
by the Inference Inspector with respect to (1) a particular range of tasks and
(2) the consequences of a change. While we generalise our results for tasks of
the kind described in Section 4.2, we do not say anything about other kinds
of modelling tasks, such as actions that involve datatypes. Secondly, we are
interested in understanding the consequences of a change. This means we do
not measure the performance of exploration tasks such as “What are the super-
classes of A” or “Which one of the following are not sub-classes of A”, but
instead “Which are the new sub-classes of A” and “Which subclasses were lost
to A”. The difference is subtle, but important. We use a Wilcoxon signed-rank
test to determine whether the difference between the Inference Inspector and
the respective Protégé views is statistically significant (at a significance level of
p=0.05) for a particular metric.

Exploration tasks were more likely to be performed correctly with the Infer-
ence Inspector (80%), than with the Protégé views (65%, p=0.009), see Table 1.
This provides evidence that our hypothesis, for the specified set of tasks, holds.
At a closer look (Figure 4) we can see that while the problems solved with the
Inference Inspector are clustered at the high end of correctness, the ones solved
with Protégé are more evenly spread. The same can be observed for the user rat-
ings. We acknowledge, however, that subjective ratings are potentially unreliable
due to experimenter bias. Tasks were also performed faster with the Inference
Inspector; in the case of exploration tasks, the difference was more than 4.5 sec
(mean). However, this difference is not statistically significant (p=0.095). If an-
swer correctness is taken into account (speed), the difference is even greater (and
significant, p=0.017). Figure 4 shows how the distribution of task performance
time (speed) with the Inference Inspector is shifted to the left. The distribution
of the task duration, in particular the high density of short-duration tasks, can
be explained by the immediacy with which questions such as “Which classes
are unsatisfiable?” or “Did the class hierarchy change?” can be answered with
the Inference Inspector. Figure 4 shows how the level to which users needed to
scroll is distributed. While there are more tasks that require very little scrolling
when using the Inference Inspector, there are also some tasks that require a
lot—for some problems, the Inference Inspector shows the results immediately,
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for others, searching is required. The difference between the Inference Inspec-
tor and Protégé however is not statistically significant (p=0.155). The primary
form of navigation in the Protégé hierarchy is expanding the nodes rather than
scrolling, which manifests itself typically as mouse-clicks. There were consider-
ably less clicks involved in arriving at a correct answer (p=0.015). Looking at
false positives and false negatives gives a more fine grained picture of correct-
ness. False positives are wrong observations, i.e. question options that were false
but selected by the user. False negative answers are missed answers, that suggest
that the view gave the participant a somewhat incomplete picture of the con-
sequences. At first glance, it is surprising that the exploration tasks resulted in
more false positive explorations than false negative ones (the converse is true for
the Inference Inspector). However, this can be explained by a significant number
of binary (Yes/No) questions that were frequently answered wrongly in the case
of the Protégé views, for example “Did the class hierarchy change?”, which is
not always obvious when using the “Classes” tab.

mean median sd p

Metric II P II P II P

Correctness 0.80 0.65 1.00 0.75 0.32 0.34 0.009

Rating 3.51 1.93 4 2 0.82 1.41 0.003

Duration 30.25 34.82 23.96 32.13 20.90 23.11 0.095

Speed 43.04 59.31 28.16 43.31 47.04 58.24 0.017

Ease (mouse-click) 6.75 11.09 3.00 8.00 10.59 12.03 0.015

Ease (scroll-amount) 2.83 5.74 0.00 0.00 13.72 19.38 0.155

False negatives 0.04 0.10 0 0 0.21 0.29 0.002

False positives 0.05 0.25 0 0 0.22 0.43 0.002

True negatives 0.79 0.56 1 1 0.41 0.50 0.002

True positives 0.95 0.73 1 1 0.22 0.44 0.141

Table 1: Mean, median and standard deviations for key metrics. II is the Inference
Inspector, P is Protégé (depending on the task, either individual or Classes tab).
P-values larger than 0.05 indicate that differences are not statistically significant.

6 Conclusions

Ontologies can be complex systems of axioms, and a modelling action may have
consequences throughout the whole system. Being able to apprehend these con-
sequences should be useful in ontology authoring. We presented the Inference
Inspector–a tool that shows the consequences of modelling actions–and explored
the hypothesis that making changes to key entailment sets explicit improves
understanding of the consequences of such actions.
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Fig. 4: Kernel density plots for 6 key metrics (x: metric, y: density). Lower three
log-rescaled.

We find that making entailment set changes explicit improves understand-
ing of the consequences of a range of key modelling actions. We provide evi-
dence that the standard static view of an ontology does not adequately sup-
port people in understanding the consequences of modelling actions, and should
be addressed by current ontology authoring environments. Making the con-
sequences of changes explicit as changes to entailment sets is by no means
the only, or necessarily best, way to approach this issue. For example, we can
easily imagine solutions that highlight changes to the class hierarchy directly.
We hope, however, that our work shows that making changes explicit is a
key feature missing from ontology authoring environments based on the static
hierarchy/frame-based paradigm and that the Inference Inspector will help ontol-
ogy authors to verify their modelling choices more easily, thereby improving the
ontology authoring experience. The plugin is actively maintained and available at
https://github.com/matentzn/inference-inspector. We welcome bug re-
ports and feature requests to be submitted through GitHub’s issue tracking
system. A demonstration video, along with links to the source code, the tutorial
and the results of both studies, can be found at http://ow.ly/pK8P300x9wq.
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