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Abstract—In multifunctional food and detergent 
production lines, accurate identification of ending point of the 
cleaning process for the previous product is crucial to ensure 
product integrity. In this paper, a commercial electrical 
resistance tomography system was applied to monitoring a lab 
Cleaning-In-Place circuit. Several image reconstruction 
algorithms are compared for the accurate identification of the 
end point and an optimized algorithm based on Tikhonov 
regularization with dynamic references is proposed and 
verified to be the best solution. The capabilities of this novel 
approach are discussed. 

Keywords—Clean-In-Place(CIP); Electrical Resistance 
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I.  INTRODUCTION  
Clean-In-Place(CIP), is an important industrial process in 

food and detergent plants. It aims at the removal/cleaning of 
soil inside the production line, which can endanger the 
process sterility, without dismantling the plant[1]. It has 
always been a crucial topic, especially for plants with 
multifunctional production lines, to monitor and analyze the 
process of CIP. Electrolyte–insulator–semiconductor (EIS) 
pH sensor has been adopted by researcher to judge the 
completion of CIP process. However, this method can only 
monitor the flow near the surface of the semiconductor 
which might lead to false reading of the completion stage of 
the whole process[2]. Several ultrasonic acoustic methods for 
fouling detection were also tried, but the cost of sophisticated 
instrumentation limits the possibility of pervasive 
applications in real industry[3, 4]. 

Electrical Resistance Tomography (ERT), is a non-
intrusive technology which has been widely adopted in 
industrial process monitoring[5]. It involves the acquisition 
of boundary voltages from sensors(electrodes) located on the 
periphery of an object, such as a process vessel, pipeline, 
etc.[5, 6].The boundary voltages vary with the change of 
external electric field (normally triggered by the injection of 
current), and the latter is caused by the change of 
conductivity distribution on the electrode plane[7]. With 
inverse calculation algorithms, the boundary voltages can be 
computed into reconstructed cross-sectional images of the 
object. Because of its rapid measurement speed, imaging 

ability and relatively low cost, ERT has become a popular 
technique in industrial process monitoring and analysis. 

In the present paper, ERT is used as a new approach to 
analyze the comprehensive spatial and time-varying 
conductivity changes during a CIP process, so as to locate 
the most difficult point to be cleaned in the circuit and also 
the ending point of the whole cleaning process. Section II 
describes the basic theory and concepts of ERT and the 
choice of algorithms, followed by the optimization applied to 
the basic algorithms. Section III introduces the instruments 
and procedures adopted in the experiment and also the 
principle in analyzing the results. Then preliminary results 
generated by two conventional algorithms are presented and 
compared with those from an optimized algorithm.The last 
section concludes the capabilities and drawbacks of this new 
approach. 

II. METHODOLOGY 

A. Sensitivity and forwards problem 
The basic theorem of sensitivity in Electrical Impedance 

Tomography can be presented as follows[8]: ݆ܵ ,݇ = ሬ⃗ܧ∫− ߮ ∙ ሬ⃗ܧ ߰݀ܽ ≈ ሬ⃗߮ܧ− ∙ ሬ⃗ܧ ߰                 (1) ݆ܵ ,݇  is the sensitivity coefficient that relates the changes in 
coupling for a particular exciter and detector pair to the 
change in the electromagnetic properties of a small 
perturbation within the detection range of the pair [8].  k 
stands for pixel number in the reconstructed image. j stands 
for voltage projection formed by 2 electrode pairs. ܧሬ⃗ ߮  and ܧሬ⃗߰  are the electric field strength in the corresponding pixel 
when either of the electrode pairs is acting as the exciter 
injecting current into the field, while the other electrode pair 
is acting as the detector. 

The core equation of the forward problem based on the 
sensitivity theorem is in [9].  ∆ܸ݆ܸܴ ,݆ ≈ − ∑ ݇ߪ∆ ݆ݏ∙ ∑1=ݓ݇݇, ܴߪ ,݇ ݆ݏ∙ 1=ݓ݇݇,                    (2) 

where w is the total number of pixels in the reconstructed 
image; ݆ݏ ,݇  is the sensitivity of kth pixel in projection j;ܸܴ ,݆  
and ܴߪ,݇  are the reference voltage in projection j and the 
reference conductivity of pixel k respectively; ∆ܸ݆  and ∆݇ߪ  



are the voltage change in projection j and the conductivity 
change of pixel k.  

This explains how changes in the conductivity 
distribution lead to corresponding changes in the measured 
boundary voltages. Furthermore, the equation can be 
derived as: ܸ1∗݌ =  (3)                            1∗ݓߪݓ∗݌ܬ−

where p is the total number of projections,  ݓ∗݌ܬ  is the 
normalized sensitivity matrix where each sensitivity value is 
divided by the sum of all the sensitivity values under each 
projection, ܸ1∗݌is the voltage change vector, ܸ1∗݌ = ൤∆ 1ܸܸܴ1 , ∆ 2ܸܸܴ2 ⋯    ∆ ݌ܴܸܸ݌ ൨−1

1∗ݓߪ ,is the conductivity change vector 1∗ݓߪ (4)                    = ቂ∆ܴߪ1ߪ , ܴߪ2ߪ∆ ⋯ ܴߪݓߪ∆    ቃ−1
                   (5) 

B. Inverse Problem 
The basic idea of inverse problem in ERT is to reveal the 

relationship between changes of conductivity distribution in 
the field and measured boundary voltages. Mathematically, 
this process is the inverse of equation (5): 1∗ݓߪ = 1−݌∗ݓܬ−  (6)                            1∗݌ܸ

Due to the soft field nature of electrical tomography, this 
is a severely ill-posed inverse problem because of the large 
condition number of sensitivity matrix (normally106) and 
insufficient number of independent measurements (less than 
the number of pixels)[10]. In practice it means for any given 
measurement precision, there are arbitrarily large changes in 
the conductivity distribution which are undetectable by 
boundary voltage measurements at that precision[11]. Hence 
algorithms need to be adopted to minimize errors in the 
inverse calculations. 

C. Choice of Algorithm 
1) Linear Back Projection(LBP) 
LBP is one of the first algorithms adopted in the attempt 

to reconstruct images for the electrical tomography. It is less 
accurate but with rapid response speed for computing 
because of its simplicity. The basic idea is to consider the 
sensitivity matrix ܬ ̅as a linear mapping from conductivity 
vector space to boundary voltage vector space (which is not 
true for the soft field domain), so the transposed sensitivity 
matrixܬ ̅ܶ  can be considered as the related mapping from 
boundary voltage vector space to conductivity vector 
space[12]. Hence,  ߪത = ܬ ̅ܶ തܸ                                       (7) 

LBP is not chosen as the main algorithm in this 
application because the prediction of the ending point 
requires accurate inverse results. This will be proved in the 
later sections. 

2) Iterative Algorithms 

There are many different existing iterative algorithms for 
ill-posed inverse problems, such as Gauss-Newton, 
Landweber, and conjugate gradient etc [9, 13, 14]. The 
common approach for all iterative algorithms is to eliminate 
errors and converge the result to the true solution through 
iterative calculations[15]. Iterative algorithms are very 
effective in static experiments as they can trade off 
computing time to minimize the error in the result. But they 
are not adopted in this application because they lower the 
computing efficiency of online tests. 

3) Tikhonov Regularization 
The main objectives of employing regularization in ill-

posed problems are to impose the prior assumptions, which 
are the reference values in the case of ERT, on the solution 
and at the same time filter out the high-frequency 
components of the solution, which correspond to the 
smallest singular values of the sensitivity matrix[16]. But 
when there is a significant difference between the prior 
assumption and the solution, the latter could be seriously 
distorted after regularization is adopted. 

Tikhonov regularization is a widely used algorithm for 
soft field tomography[11]. The explicit formula pattern 
is[11]: ߙߪ = ܬܶܬ) +  ܫ stands for the transpose of the sensitivity matrix andܶܬ (8)                       ܸܶܬ1−(ܫ2ߙ
is an identity matrix. 2ߙ is known as the regularization 
parameter, which controls the convergence level of the 
result. We use ߙ square to imply that it should always be 
positive. 

Tikhonov regularization is chosen to be the basic 
algorithm in this research because the main objective of 
monitoring CIP is to find out the ending point which in 
principle is defined as the point when the last fragment of 
soil is cleaned. This implies that the solution values would 
be very close to the reference values, under which condition 
regularization is most accurate. In the later sections, 
optimization on conventional Tikhonov regularization will 
be implemented in order to fulfil comprehensive analytical 
purposes. 

D. Optimizing Tikhonov Regularization 
1) Basic Principle 

 
Fig.1. Relationship between measured boundary voltage and material 

conductivity under same projection 

Two ERT planes with same dimensions and structure are 
filled respectively by two uniform conductive liquids of 
different conductivities 1ߪand 2ߪ(Figure 1). The projection 



paths under the same electrode pairs in the two planes have 
the same shape. Hence, with fixed injection current on the 
transmitter electrode pairs, the ratio of the measured 
boundary voltage across a receiver electrode pair in plane 1 
to that of the same positioned pair in plane 2 will equal to 
the ratio of the liquid conductivity in plane 2 to that of 
plane1. 

 
Fig.2. Measured boundary voltages (U curves) comparison between 

pure water  and pure soil.  

Similarly for other pairs of electrodes, the complete sets 
of boundary voltage measurements taken from the two 
planes, which are also known to be the 'U curves', should 
also be proportional. This can be proved by Figure 2. 
Despite the deviations caused by system noise, the two 
curves basically stay in the same shape. For all the 
corresponding voltage values, we also calculated the ratios 
between them and the result is shown in Table 1. 85 out of 
104 ratios stay between 60-80, which is the actual ratio 
between the conductivities of the soil and water in our 
investigation.  

Table 1.Voltage ratio between the soil and water background 

 
 

2) Optimization 
The cause of the distortions in preliminary results from 

Tikhonov regularization is the significant difference 
between the measured boundary voltages and reference 
voltages. On the other hand, if the reference voltages can 
vary dynamically with the change of background material 
conductivity to approach the level of measured voltages, the 
distortions can hence be reduced or even eliminated. 

The average voltage level can be determined in many 
ways. The method adopted in this experiment is: 

a) Extract the 16 voltage values corresponding to the 
measurements taken from where the distances between 
transmitter electrode pair and receiver electrode pair are 
the smallest and the accuracies are the highest; 

b) Eliminate abnormal large values by limiting them 
to the average level of peak values in the reference voltage; 

c) The median value of the 16 measured voltages is 
adopted as the criterion to judge the average voltage level. 

Based on above method, the ratio between the average 
level of the measured voltages and the reference is: ߛ = Vmm /VRm                                (9) Vmm  and VRm  are the median values of the 16 chosen 
voltages from measured boundary voltages and reference 
voltages. Hence, the dynamic reference corresponding to 
each frame is: ܸܴ∗തതത = ߛ ∙ ܸܴതതത                                  (10) 

So the formula of optimized Tikhonov regularization 
with dynamic reference can be derived as: ߪതߙ∗ = ܬܶܬ) +  (11)                       ∗ܸܶܬ1−(ܫ2ߙ

Where          ߪതߙ∗ = ቂ ܴߪ∙ߛ1ߪ∆ , ܴߪ∙ߛ2ߪ∆ ⋯ ቃ−1ܴߪ∙ߛݓߪ∆   
                    (12) 

ܸ∗ = ൤∆ 1ܸܸܴ 1∗ , ∆ 2ܸܸܴ 2∗ ⋯    ∆ ܴܸܸ݌ ∗݌ ൨−1
                      (13) 

III. EXPERIMENTS AND RESULTS 

A. Instruments and Procedures 
1) Instruments 
The lab CIP circuit is shown in Figure 3.The left end of 

the testing area is connected to the soil tank and water tap 
through a three-way valve. In the current study, a non-
Newtonian, shear thinning personal care product was used 
as the soil. The right end leads to the drain with a valve. 
There are 2 removable test areas into which transparent 
pipes with different geometry can be installed. 

 
Fig.3.Simulated CIP circuit 

In the present research, a ‘T-shape’ pipe shown in Figure 
4 is installed in one of the test areas and the other test area is 
placed with a normal straight pipe. A total of four ERT 
planes, each with 16 electrodes, are installed in the test pipe. 
Planes 1 to 3 are in the straight pipe section and plane 4 is in 
the sealed concave bottom(Figure 4), which in principle 
should be the most difficult one to be cleaned.  Electrodes on 
the planes are connected to a commercial ERT system in 
order to fulfill the measurements. 

 
Fig.4. 'T-shape' pipe with the 4 ERT planes installed 
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2) Procedures 
The procedure of the simulated test can be concluded to 

steps as follow: 

Step 1: Switch the three-way valve to the branch connected 
to water tap and fully fill the test area with tap water. Switch 
on the ERT system to start current injection and voltage 
measurement. The measured voltage values within this step 
are considered to be the original reference values. 

Step 2:  Switch off the ERT system and switch the three-
way valve to the soil tank. Fill the test area with the soil. 
Restart the ERT measurements. 

Step 3: Switch the valve to water tap and start the CIP 
process.  

Step 4: Keep measuring until the test area is visually fully 
cleaned. 

So the components being measured under each step are 
water, soil, the mixture of soil and water, water. 

B. Analytical Principles 
The measurement strategy in this experiment is 

reciprocal adjacent strategy. A total of 104 boundary voltage 
measurements were taken in each ERT frame. 

The average conductivity of the soil is approximately 
5S/m while that of tap water is around 0.06S/m. Therefore 
the maximum conductivity value of each ERT frame, i.e. the 
maximum pixel value in each reconstructed image is 
extracted independently as the criterion of judging the 
remaining presence of the soil. The ending point is reached 
when the maximum pixel value falls back to the reference 
level. Also, the average conductivity value in each frame is 
calculated to indicate the overall conductivity level in the 
steps described in the experimental procedures.  

C. Preliminary Results 
366 frames of data were acquired for each ERT plane 

during the CIP process under the water flow rate of 5400L/h 
and with the injection current of 5.11mA. The ending point 
for the ERT plane located in the T junction pipe, where the 
most difficult point in the pipe is fully cleaned, is shown to 
be around frame 340. 

1) Inverse Solutions with LBP 

 
Fig.5. Maximum conductivity curves from LBP 

 
Fig.6. Average conductivity curves from LBP 

The inverse solutions generated from LBP are shown in 
Figures 5 and 6. 

The maximum conductivity curves in Figure 5 are 
capable of indicating the ending point of each plane. 
However, the conductivity values of plane 2 and plane 3 
slightly exceed the actual conductivity of water (0.06 S/m) 
when they are fully cleaned. All the values are lower than 
the actual soil conductivity (5 S/m) to some extent, even 
during the period when the testing area is fully filled with 
the soil.  

The average conductivity curves of plane 4 drift 
randomly above and beneath the reference conductivity 
value in a small range after frame 50. In addition, at frame 
25 when the background material in testing area suddenly 
changes from water to the soil, the average conductivity 
value of all 4 planes jump below the reference value, which 
does not match the real case. Thus they cannot reflect the 
actual procedures of the experiment.  

The results have proved that LBP is not suitable for the 
monitoring of CIP due to the lack of accuracy. 

2) Inverse Solutions with Tikhonov Regularization 
The inverse solutions generated from Tikhonov 

regularization are shown below. 

The maximum and average conductivity values in those 
figures are converged to a much smaller range near 
reference conductivity value comparing to those of LBP 
while the curves are spikier under the narrowed axis scale. 
But the accuracy of the solutions near and after ending point 
is significantly improved. The maximum conductivity 
values after ending point of all 4 planes stay steady at the 
reference level (0.06 S/m) without drifting, which enables 
the position of ending point to be identified clearly. As for 
the average conductivity curves, they are also very spiky 
and vibrate within a small range before the ending points. 
Similar to the case of LBP, they cannot represent the actual 
procedures either. 

The performance can be explained by the convergent 
nature of Tikhonov regularization. When the conductivity of 
the target to be tested is significantly different from the 
reference value, the result will be converged and distorted. 
In this experiment, from frame 25 when the background 
material changes from water to soil, up to frame 250 when 
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the overall conductivity level drops near the reference level, 
the inverse solutions would become more and more accurate. 

 
Fig.7. Maximum conductivity curves from Tikhonov regularization 

 
Fig.8. Average conductivity curves from Tikhonov regularization 

Hence, the objective of locating the accurate ending 
point is accomplished. But in order to achieve 
comprehensive analysis throughout the CIP process, 
optimization needs to be applied to the conventional 
Tikhonov regularization in order to overcome the distortions 
in the average conductivity plot at earlier stages of the 
process. 

D. Optimized Results 

 
Fig.9. Average conductivity values from optimized algorithm 

Figure 9 shows the average conductivity values in each 
frame. It can be clearly seen in the plot that from frame 0 to 
around frame 25, the pipe is filled with water and the 

average conductivity stays at reference level. Then the pipe 
is filled by the soil with the conductivity ranging from 4 to 6 
S/m. The CIP process starts from around frame 40. The 
majority of the soil in straight pipe section is flushed away 
rapidly. The optimized ERT results indicate that plane 1 to 3 
are cleaned around frame 40.As for plane 4, the majority of 
the soil still remains even after plane 1 to 3 are already fully 
cleaned. Then the amount of soil starts to drop significantly 
from frame 50 until the plane is totally cleaned. In this way, 
the average conductivity curves fully illustrate the whole 
process, which is an important enhancement compared to 
conventional algorithms. This enables researchers to analyze 
earlier stages of CIP. 

The maximum conductivity curves are shown in Figure 
10 and 11. Due to system noise and the ill-conditioned 
nature of inverse problem, the maximum conductivity 
values are slightly higher and spikier than the average 
conductivity values. This is not critical as the main objective 
of plotting the maximum conductivity curve is to locate the 
ending point. With the scale of Y axis narrowed to 0~0.1 
S/m, the ending point of all 4 planes can be clearly 
identified. 

 
Fig.10. Maximum conductivity curves from optimized algorithm 

 
Fig.11. Maximum conductivity curve in smaller scale 

Images are also reconstructed from the optimized results 
(Figure 12). This provides a more intuitive way to inspect 
what actually happens during the CIP process and to locate 
the most difficult part to be cleaned on the periphery of the 
plane. 
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Fig.12. Reconstructed images from optimized results 

IV. CONCLUSIONS 
The present paper proposes a new approach of 

monitoring and analyzing the Clean-In-Place process with 
Electrical Resistance Tomography. An optimized algorithm 
with dynamic reference based on Tikhonov regularization is 
adopted in the inverse calculation. The dynamic reference is 
generated by configuring the average level of measured 
boundary voltages. The optimized result shows significant 
advantages against conventional LBP and Tikhonov 
regularization as it can precisely locate the ending point of 
the whole process and it overcomes the distortions when the 
conductivity of background material varies in a wide range. 
The sharpness and reliability of the reconstructed images are 
also improved. 

However, some drawbacks still exist in the optimized 
algorithm as the situation of mixed liquids is not considered 
in the basic principle. In fact when the plane is filled with 
equal volume of incompletely mixed liquids of different 
conductivities, the generated corresponding reference will 
totally distort the result as it is significantly different from 
the both components. But as in this experiment, the majority 
of mixture or mixed liquid is flushed away rapidly because 
of the high flow rate and the conductivity distribution within 
this relatively short period is not the main objective, the 
drawback can thus be neglected under this condition. If the 
dynamic reference optimization needs to be adopted in other 
applications, this drawback should be considered in prior. 
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