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Abstract

In many practical problems, the underlying structure of an estimated co-
variance matrix is usually blurred due to random noise, particularly when
the dimension of the matrix is high. Hence, it is necessary to filter the ran-
dom noise or regularize the available covariance matrix in certain senses, so
that the covariance structure becomes clear. In this paper, we propose a new
method for regularizing the covariance structure of a given covariance ma-
trix. By choosing an optimal structure from an available class of covariance
structures, the regularization is made in terms of minimizing the discrepancy,
defined by Frobenius-norm, between the given covariance matrix and the class
of covariance structures. A range of potential candidate structures, including
the order-1 moving average structure, compound symmetry structure, order-
1 autoregressive structure, order-1 autoregressive moving average structure,
are considered. Simulation studies show that the proposed new approach is
reliable in regularization of covariance structures. The proposed approach is
also applied to real data analysis in signal processing, showing the usefulness
of the proposed approach in practice.
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1 Introduction

In many practical fields including signal processing [11], network [13], and control
problems [6], a structured covariance matrices is really important and has to be
estimated. However, the underlying structure of an estimated covariance matrix is
usually blurred due to random noise, especially when the dimension of the covariance
matrix is large. Although the estimation of covariance matrix has been studied
widely in the literature (e.g., [9; 12]), it has received little attention for regularizing
an available/estimated covariance matrix into the one with a clear structure.
Specifically, suppose A is a given m X m covariance matrix, that is, it is symmetric
nonnegative definite. Let & be the set of all m x m positive definite covariance
matrices with structure s, for example, compound symmetry or uniform covariance
structure. A discrepancy between the given covariance matrix A and the set S is
defined by
D(A,S) = %16%‘1[/(14, B), (1.1)

where L(A, B) is a measure of the distance between the two m xm matrices A and B.
Assume there is a given class of k candidate covariance structures {si, so, ..., Sk}
Let S; be the set of all covariance matrices with structure s;. Denote the set of
mxm covariance matrices with the likely structures by 2 = U¥_, S;. The discrepancy
between a given covariance matrix A and the set €2 is then defined by

D(A,Q) :IéleigL(A, B). (1.2)

The idea is that, in this set €2, the structure with which A has the smallest discrep-
ancy can be viewed as the most likely underlying structure of A, and the minimizer
B with this particular structure is considered to be the regularized covariance matrix
of A.

Very recently, Lin et al. [7] considered the use of the entropy loss function,

L(A, B) = tr(A™'B) — log(det(A™*B)) — m,

also known as the Kullback-Leibler divergence, to measure the difference between
the matrices A and B. However, this measure has some drawbacks, including that
(a) it is a nonsymmetric measure in the sense that L(A, B) # L(B,A), and (b) it
requires the existence of the inverse of the given matrix A. In some circumstances,
the inverse of A may not always exist, or it may exist but its computation is too
intensive, for example, when the dimensional of A is rather high. To conquer the
difficulty, in this paper we propose to consider the distance between two matrices A
and B, defined by square of the Frobenius-norm, or hereafter F-norm,

L(A,B) = tr{(A - B)"(A— B)}. (1.3)

It is worth mentioning that the matrix A is not necessarily a sample covariance
matrix. It can be any estimates of a covariance matrix, obtained by various statis-
tical methods such as those based on modified Cholesky decomposition methods [9;
14] and thresholding principal orthogonal complements [3] among others.
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Regarding the likely structures of covariance matrix, in this paper we focus on
the following four candidates that are commonly used in time series, longitudinal
and spatial studies. Other candidate structures of covariance matrix may be studied
in a similar manner.

(1) The first-order moving average structure, MA(1), has a tri-diagonal structure
of covariance matrix,

1 c 0 0
c 1 ' 0
B=o¢*|: " : (1.4)
0o . c
0 0 c 1
1 1

where 02 > 0 and —

<c< .
2cos(n/(m+1)) " 2cos(n/(m + 1))
(2) The covariance of compound symmetry (CS) structure assumes that the

correlation coefficients of any two observations are the same. In other words, the
covariance matrix has the form

1 ¢ c c
c 1 .o¢
B = o? ' , (1.5)
c . . 1 ¢
c ¢ - c 1

where 02 > 0 and —1/(m —1) < c < 1.

(3) The first-order autoregressive structure, AR(1), has the property that the
correlation between any pair of observations decays exponentially towards zero as
the distance between two observations increases. The covariance matrix is of the
form

1 c Cm—? Cm—l
c 1 .. T Cm72
B=g¢>| + . . | (1.6)
m—2 . . 1 c
m—1 Cm—2 . c 1

where 02 > 0 and —1 < ¢ < 1.
(4) More generally, the first-order autoregressive moving average structure, AR-
MA(1,1), has one more parameter than AR(1), reflecting an additional decrease in



correlation for each additional lag. The covariance matrix has the form

[ 1 r re oo rc™t opem3 pemT2]
r 1 r B o opdmtt opemT3
re r 1 e
B = o? : : (1.7)
remt e 1 r rc
rc™3  pemTt el T r 1 r
_rcm_2 rém 3 pemtt .. re r 1]

where 02 >0, —-1 <c<land -1 <7r <1.

Owing to the fact D(A, ) = minj<;<x{D(A, S;)}, the main task now is to calcu-
late the discrepancy D(A,S;) for each of the candidate covariance structures listed
in (1.4)-(1.7), where the covariance matrix A is given.

The rest of this paper is organized as follows. In section 2, we transform our
problem into an optimization problem in numerical analysis and explore some of
its general properties. In section 3, we show that the problem of finding B with
structure MA(1), CS, AR(1) or ARMA(1,1) that minimizes L(A, B) is reduced to
computing the zeros of a nonlinear function. In section 4, we carry out simulation
studies, illustrating how our techniques of computing the structured covariance ma-
trix that minimizes the discrepancy function in (1.3) can be used in regularizing the
underlying covariance structure. In section 5, we apply the proposed approach to
a real data experiment in signal processing. Some further remarks and discussions
are presented in section 6.

2 Problem of interest

We start by formulating the problem of interest and exploring some of its properties.
Define f : R"™"™ — R, where R"™ is the set of all mxm symmetric positive definite
matrices and f(B) := L(A, B) = tr{(A— B)T(A— B)}. Obviously, Q C R7*™. Our
problem now reduces to
min f(B)
subject to B €’

Let Vi f = (0f/0b;;) be the gradient of f, where b;; is the (4, j) entry of B. Ignoring
the symmetry of A and B and using results from Magnus and Neudecker [8] we have

(2.8)

Vitr(ATB) = A,

Vitr(B'B) = 2B,

and then
Vef=2(B-A).



Write b = vec(B) € R™, where vec denotes the vector obtained by stacking the
columns of its matrix argument on top of each other from first to last. Taking f as
a function from R™ to R, the Hessian of f is then given by

O*f

20 .
V%f“'lamabj

} =21, ® I,),

(See, e.g., [8, 10]). Since I,, is positive definite, 2(/,, ® I,,) is obviously positive
definite, thus f(B) is a strictly convex function of B.

On the other hand, the sets 2 of MA(1) and CS are obviously convex. Therefore
when € is the set of positive definite matrices having one of the two structures the
problem (2.8) is convex and so has a unique solution. When €2 is the set of AR(1) or
ARMA(1,1) matrices, however, the problem is not convex because €2 is not convex.
We will show later that only a local minimum of the problem can be expected to be
found in these cases.

Note that when Q = R7"*™, the minimum of f(B) in (2.8) is obtained at Vg f =
0,i.e., B= A, provided that A is positive definite.

3 Solution of problems

We begin by considering the matrices (1.4)-(1.7) one by one, for which the problem
(2.8) is reduced to computing the zeros of a nonlinear function.

3.1 MA(1)
The matrix in (1.4) can be rewritten as
1 ¢ -+ 0 0
c 1 .0
Ble,o)=0* | . . . | =0T +cTy), (3.9)
o - - 1 c
o 0 - ¢ 1

where 77 is a symmetric matrix with the first superdiagonal and subdiagonal equal
to 1 and all other elements equal to 0. Note that the eigenvalues of B(c, o) are

Nj=0%(1+2¢cs5), j=1,---,m,

where s; = cos(mj/(m + 1)), see, e.g., [4], Sec. 28.5. Assuming m > 2, we have

§1>83>--->0>--->5,,s; = —spt1—; and hence B(c,0) is positive definite if
and only if
1 e 1
—_—— C —_—
281 251



Given a covariance matrix A, the discrepancy function in (1.3) is now
flc,0) = tr(ATA) — 20%(tr(A) + tr(ATy)e) + o (m + 2(m — 1)c?). (3.10)

It follows that

of
Ve e _ 4ot(m — 1)e — 20%tr(ATY)
af 4o3(m + 2(m — 1)c?) — 4o (tr(A) + tr(ATy)c)
do
and
o1 s
oc?  Ocoo
Vif =
e o
Jcdo  do?

B 40t (m — 1) 1603(m — 1)c — 4otr(ATY))
| 1603(m — 1)c — 4otr(ATY)  120%(m + 2(m — 1)¢?) — 4(tx(A) + tr(AT )c)

So that the stationary points (¢, o) of f(c, o) must satisfy following equations

2 tI‘(ATl)
{0 - 2(m—1)c’
h(c) :== mtr(ATy) — 2(m — 1)tr(A)c = 0.

Thus a unique stationary point is

2 _ (4
ﬂﬁr(ATl) (3.11)
T 2m — Dt(A)
Since
(V2f) =40 (m—1)>0
and

det(V2f(c,0)) = 4(m —1)o*(12mo® + 8tr(ATy)c — 4tr(A)) — (4otr(ATY))?
= 160%(2(m — 1)a?(tr(A) + tr(AT))c) — (tr(ATY))?)

ML e A))

= 32
> 0

at the stationary points (c, o), therefore the Hessian matrix V2 f is positive definite
and so the stationary point is a minimum point.
We summarize the discussion above in the following theorem.
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Theorem 3.1 Given a covariance matriz A, there exists a unique positive definite
matriz B(c,o) of the form (3.9) that minimizes the discrepancy function f(c,o) :=
L(A, B(c,0)) in (3.10). Furthermore, the minimum is achieved at (c,o) given in
(3.11).

3.2 Compound Symmetry

The matrix in (1.5) can be rewritten as

1 c -+ ¢ c
C 1 C
Blc,o)=0* | . . . | =02 +clee! = 1)), (3.12)
c . .1 ¢
c ¢ - ¢ 1

where e = [1,...,1]T € R™. The eigenvalues of B(c,0) are ¢*(1 + (m — 1)c) and
o?(1 — ¢) of multiplicities 1 and m — 1, respectively, so that B(c,o) is a positive
definite matrix if and only if

<c<l1.
m—1 ¢

See, for example, [2], Lem. 2.1.
Given a covariance matrix A, denoting ¢t := tr(AT (ee” — I)), the discrepancy
function is now given by

flc,0) = tr(ATA) — 20%tr(AT) — 20%ct + o*(m +m(m — 1)c?).
It follows that

of
Vfo— dc _ —20%t + 20'm(m — 1)c
' of —4otr(AT) — doct + 4o (m + m(m — 1)c?)
do
and
0*f  O%f
9or . | Oc2  Ocoo
Vef = B o
dcdo o2
20'm(m — 1) —4ot + 8o m(m — 1)c
B [—4015 +8c*m(m — 1)c  —4tr(AT) — et + 120%(m + m(m — 1)02)]

The stationary points (¢, o) of f(c,o) must satisfy following equations

o tr(AT) +ect

m+m(m — 1)c?’
h(c) := —20% + 20*m(m — 1)c = 0.
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Thus a unique stationary point is

t
~ (m — 1)tr(AT
) _( tr(ing + zt (3.13)
 m+m(m— 1)’

g

where t = tr(A” (ee? — I)). Since
(V21 = 20*m(m —1) >0
and

det(VZf) = 20*'m(m — 1)(—4tr(A") — det + 120%(m + m(m — 1)c?))
— (8c*m(m — 1)c — 4ot)?
= 160%m*(m — 1)

> 0

at the stationary points (c, o), therefore V2 f is positive definite and so the stationary
point is a minimum point.
We summarize the above discussion in the following theorem.

Theorem 3.2 Given a covariance matriz A, define f(c,0) := L(A, B(c,0)), where
B(e,0) is a positive definite covariance matriz with compound symmetry structure
asin (3.12). Then the global minimum of f(c,o) over o >0 andc € (—1/(m—1),1)
is achieved at (c,o) given in (3.13).

3.3 AR(1)
We rewrite B in (1.6) as
1 c =2 gm-l
¢ 1 - R m—1
B(c,0) = o? : : :0220’@ (3.14)
m—2 T . 1 i=0
m—1 Cmf2 c 1

where Ty = I and T; is a symmetric matrix with ones on the ¢th superdiagonal and
subdiagonal and zeros elsewhere. It can be shown that the k x k leading principal
minor of B(e,0) is o?%(1 — 2k~ for k = 2,--- ,m, see, e.g., [5], Prob.7.2, P12.
Therefore, B(c,0) is a positive definite covariance matrix if and only if

—1l<e< 1.



The discrepancy function in (1.3) is now

f(c,0) :=tr(ATA) — 202 thrAT +o* m+22

We find that
ﬁ B 2m—l o ' 4m—1 i1
202 3 i (AT + 40t Y (m —d)ic¥ 1)
. oc i=1 =1
Vf = 8f = m—1 m—1
o —40 3 Etr(AT)) +40*(m +2 Y (m —i)c¥)
g =0 =1

So the stationary points (¢, o) of f(c, o) must satisfy

(

- 2 thr(AT)mZ( 1)1
_ Z icifltr(ATi) i=0 11: —0,
i=1 m+ 2 Z( — 1)
m—1 =1 (3.15)
S citr(ATy)
0% = i:Om - .
m+2 Y (m—i)c*
\ =1
m—1

Since m + 2 >~ (m —i)c* > 0, by rearranging the first equality in (3.15) we have

m—1 m—1 m—1 m—1
h(c) = — Y ic "r(AT)(m+2 Z i)c?) 42 Z c'tr(ATy) Z = 0.
i=1 i=1 1=0 1=1

Numerical experiments show that there exists at least one root of h(c) in (—1,1).
Equivalently, the local minima of f(c, o) are achieved at the points (¢, o) satisfying
(3.15).

We then summarize the discussion above in the following theorem.

Theorem 3.3 Given a covariance matriz A € R™*™, define f(c,0) := L(A, B(c,0))
where B(c,0) is a positive definite covariance matriz of the AR(1) model as in

(8.14). Then the local minima of f(c,o) are attained at the points (c, o) satisfying
(3.15).



3.4 ARMA(1,1)

Now we consider the problem for covariance matrix with structure of ARMA(1,1) ,
for which

[ rc .- rd™t opem3 pem2]
r 1 r o s pemtt opemT3
rc r 1 o e
B(r,c,0) =0 | : |, (3.16)
rem4 ’ ' 1 rec
re¢m3  pemt : T 1 T
_7"cm*2 re™ 3 pemt . rc r 1]

m—1
Let q(t) = 1+ 2r > cfcos(kt), then B(r,c,o) is positive-definite if and only if
k=1
q(t) > 0 and ¢(t) # 0 for all t € R (Parter, 1962, Remark IT). Now the matrix B in
(3.16) can be rewritten as
m—1
B(r,c,0) =c*(I+r Y ¢'Ty),
i=1
where 7} is a symmetric matrix with ones on the ¢th superdiagonal and subdiagonal
and zeros elsewhere.
The discrepancy function in (1.3) is now
1

m— m—1
f(r,c,0) = tr(ATA) 4+ o*(m+2r? Z(m — 1)) — 202 (tr(A) + Z tr(ATy) ).
i=1 i=1
We then have the gradient of f
O _ -
9/ 407"2( — )2 Ztr(AT)
or =
m—1
Vf:= Z_f = | 4o0r? Z (i — 1) (m — i) —202r 3 (i — D)tr(AT;) 2
c =2
of Sy N 2(i—1) S i—1
5 4o3(m +2r% 3" (m — i)Y —do(tr(A) +r Y tr(AT) )
L Jo L i=1 =1 i
so that the stationary points (r, ¢, o) must satisfy
( m—1
20°r Z(m =1 _ Z tr(AT;)c =0,
Z;zl—l m—1
§20°r2 ) (i = 1)(m — i)V = Y (i = Dtr(ATy) ™ =0, (3.17)
= m—1 = m—1
o2(m+2r2Y (m—0)AY) —tr(A) —r > (AT = 0.
( i=1 i=1



By rearranging equations in (3.17), we have

A
'02 _ b ( )’
m
m—1 m—1
2rtr(A) Z(m — i) Z tr(AT;)c ! =0, (3.18)
i=1 i=1
m—1 m—1
2r2tr(A) Y (i — 1) (m — i)V e Z(z — Dtr(AT;)¢* = 0.
( i—2 i=2

Numerical experiments show that there exists at least one root of equations (3.18)
which ensures B € R7"*™. Equivalently, the local minima of f(r,c, o) are achieved
at the points (r, ¢, o) satisfying (3.18).

We summarize the discussion above in the following theorem.

Theorem 3.4 Given a covariance matriz A € R™*™, define f(r,c,0) := L(A, B(r,c,0))
where B(c,0) is a positive definite covariance matriz of the ARMA(1,1) model as

in (3.16). Then the local minima of f(r,c,0) are achieved at the points (r,c, o)
satisfying (3.18).

4 Simulation studies

To examine our method, in this section we carry out simulation studies. All compu-
tations are performed with MATLAB R2008b. The root-finding problem in section
3 is solved with MATLAB fzero or fsolve.

4.1 Assessment for Gaussian data

Let m be the dimension of the covariance matrices to be tested. First, we generate
an m xn data matrix ) with columns randomly drawn from the multivariate normal
distribution N(p, %), where 4 = 0 € R™ is a mean vector and ¥ is a covariance
matrix that have the structures as discussed in section 1. Second, we compute
the sample covariance matrix A with the generated data ). Finally, we find for
each structure a covariance matrix that minimizes the discrepancy function in (1.3).
We test with the true covariance matrix ¥, where for each structure we consider
several different values for m, ¢, » and o2. We choose sample size n = 1000, m €
{100,200}, ¢ € {0.25,0.5,0.75} and o* € {0.5,1,2,4} for ¥ having MA(1), CS,
AR(1) structures. For ¥ having an ARMA(1,1) structure we use the above n, m, ¢
and o2 but consider different choices of r, including {0.1,0.35,0.6}, {0.2,0.45,0.75}
and {0.25,0.5,0.8}. We summarize the experimental results in Tables 1-3 for m =
100 and in Tables 4-6 for m = 200.

Tables 1-6 are about here
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In Tables 1-6 each row stands for one experiment and for each experiment we
report the results averaged over 1000 repeated simulations. The first column gives
the true underlying covariance structure and the second column presents the dis-
crepancy between the true covariance matrix ¥ and the sample covariance matrix A
under the F-norm measure of discrepancy function. The rest of the columns report
the results from the computed matrix B with different structures. Note that we do
not include a row for ¥ having MA(1) with ¢ = 0.75 because there does not exist
such a positive definite covariance matrix in this case. The notation in Tables 1-6
is summarized as follows:

e X: the true covariance matrix;

e A: the sample covariance matrix;

e [3: the computed covariance matrix that has a certain structure and minimizes

the discrepancy function L(A, B) in (1.3).

o Ly 4, Lyp and Ly, g: the discrepancy function L(X, A), L(A, B) and L(X, B),

respectively.

In Tables 1-6, we have the following observations.

(1)

The matrix B having the minimum Ly, g has the same structure as the true
covariance matrix > and Ly p < Ly 4. In other words, the regularized esti-
mator B is much better than the sample covariance matrix A in terms of the
F-norm discrepancy function. This shows that regularization of the sample
covariance matrix A, is necessary not only for the convenient use of known
structure but also for the accuracy of covariance estimation.

For ¥ having one of the structures of MA(1), CS or AR(1), among different
minimizers B, there are two structures clearly winning out in the sense of
having smaller L4 p: the one having the same structure as X and the AR-
MA(1,1), the latter always being the best. It is not surprising for the matrix
B with ARMA(1,1) structure to win out because all MA(1), CS, and AR(1)
are indeed special ARMA(1,1) structures. There is no doubt that minimizing
among the larger feasible set will give the smaller minimum.

Note that it is extremely important to observe the discrepancy L4 g, because
in practice the true covariance ¥ is usually unknown and so is Ly . Thus,
the discrepancy L4 p can be used to identify the covariance structure.

The observations above are common to all choices of the structure of ¥ in the
class we have considered, the various values of m, ¢, 0? and r. Therefore, the
findings are reliable in this sense.

12



4.2 Assessment for high-dimensional data

In the above simulation studies, the sample covariance matrix with sample size
n = 1000 and dimension m = 100,200 is used to be the available matrix A, on
which its covariance structure needs to be identified. The sample covariance matrix
A considered above is nonsingular because the sample size n is much bigger than
the dimension m. In some practical scenarios, the given matrix A may happen
to be singular and it is natural to wonder if the proposed approach still works in
this case. We therefore run a further simulation study for the case of ¥ having
a CS structure with ¢ = 0.5 and 02 = 1. This time we draw random samples
with sample size n = 500 from m-dimensional normal distribution N(0,%) with
m = 1000. The sample covariance matrix A becomes singular due to n << m. This
experiment was repeated 1000 times. The F-norm discrepancy results averaged over
the 1000 simulations are summarized in Table 7 and the parameter estimates in the
simulations are presented in box-plot in Figure 1.

Tables 7 is about here

From Table 7, it is clear that the CS and ARMA(1,1) structures stand out,
implying that the two structures are the likely structure of the covariance matrix
Y. Note that the ARMA(1,1) includes CS as a special case, the two structures
identified are actually almost identical, see Figure 1. In Figure 1, (¢, s¢), (Ce, Se)
and (ca, $4) represent the estimates of parameters (c,0?) in the cases of MA(1), CS
and AR(1) structures, respectively, and (ra, cr, Spr) is the estimate of (r, ¢, 0?) for
ARMA(1,1) model. Thus the CS structure is correctly identified as the structure of
the covariance matrix A and then . An interesting finding from Figure 1 is that,
although the ARMA(1,1) model has the almost same parameter estimates as the
CS structure (¢ = 0.5 and 02 = 1), its estimate of variance o has more variability
than the one with CS structure. On the other hand, when the AR(1) is misused,
the resulting estimates of parameters can be very biased.

Note here that the sample covariance matrix A is singular. This is, the proposed
regularization approach works well even if the given matrix A is not nonsingular.
In this case, Lin et al.’s [7] method cannot be applied as it involves the use of the
inverse of the sample covariance matrix A.

4.3 Comparison with the MLE method

Although the above simulated data are generated from Gaussian distribution, we
stress that the proposed method does not require a distribution assumption. A
reviewer raised the issue of making comparisons with existing standard parametric
methods such as maximum likelihood estimation (MLE), method of moment/Yule-
Walker, least square regression method, etc. In order to save space, below we only
compare the proposed approach with the MLE method by intensive simulations.

13
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Figure 1: Box plot of parameter estimates

The comparisons are made under two assumptions, i.e., the data are Gaussian and
Non-Gaussian distributions. First, for the Gaussian distribution like the above we
generate an m x n data matrix with each column coming from N(0,%) where 3
is of the ARMA(1,1) structure with true parameters o = 1, ¢ = 0.5 and r =
0.20,0.45,0.75, respectively. Our proposed approach and the standard MLE method
are used to estimate the parameters and the results for 1000 runs are summarized
in Table 8, from which it is observed that the proposed approach performs almost
equally well as the standard MLE method.

Table 8 is about here

Second, we carry out the similar simulations but for non-Gaussian data this time.
Let ()1 is an m x n data matrix with each column being m independent samples
from y?2, i.e., the chi-square distribution with one degree of freedom. Assume C is
an m x m matrix of being the ARMA(1,1) structure with the same true parameters
o2, ¢ and r as above. Let Q = C'/2Q; then each column of @ forms a multivariate
sample that is not Gaussian. Obviously, ¥ = Var(g;) = 2C with ¢; is the ith column
of @ (i=1,2,...,n). In other words, the covariance matrix ¥ is of the ARMA(1,1)
structure with o2 = 2, ¢ = 0.5 and r = 0.20,0.45,0.75. Similarly, we compare the
proposed approach to the MLE method over 1000 simulation runs and report the
results in Table 9. It shows that the proposed approach is able to produce very
accurate estimates for the parameters in ¥ even if the data are not Gaussian. The
MLE method, however, can lead to very biased estimates for the parameters in 3
when data are not Gaussian.

Table 9 is about here
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4.4 Assessment for non-Gaussian data

To further investigate the performance of the proposed approach for non-Gaussian
data, we conduct another simulation study, in which the simulation setup is the
same as above except that this time each column of ¢); are random samples from a
Bernoulli’s distribution B(p) with the probability p = 0.1,0.3,0.5. Note this time
Y. = Var(¢;) = p(1 — p)C. Based on the data matrix ) we form the sample matrix
A and calculate various F-norm discrepancy values, reported in Table 10. From
Table 10, it is clear that even if the data are not Gaussian and actually generated
by a linear transformation of Bernoulli distributions, the proposed approach still
performs very well and is able to find the true structure of covariance matrix, just
like what it does for Gaussian data. A slight difference in format reported in Table
10 is that we have now reported the adjusted F-norm discrepancy

L*(A,B) = tr{(A — B)"(A — B)}/txr(AT A). (4.19)

This is because the original F-norm discrepancy defined in (1.3) is somehow in the
sense of absolute error and may result in a very large value as seen in Tables 1-7.

Table 10 is about here

5 Real data analysis

In the real data analysis, we consider the regularization of covariance matrices for
the synthetic control chart time series data. This data set contains 600 examples
of control charts synthetically generated by the process in [1]. The control charts
were assigned to six different classes: Normal, Cyclic, Increasing trend, Decreasing
trend, Upward shift and Downward shift. The data set is presented in an 600 x 60
matrix, with a single chart per row, and the classes are organized as follows: 1-100
are the Normal class, 101-200 are the Cyclic class, 201-300 are the Increasing trend
class, 301-400 are the Decreasing trend class, 401-500 are the Upward shift class,
and 501-600 are the Downward shift class.

These classes of data sets as well as their pooled data were tested using three
test methods, IPS, Fisher-ADF and Fisher-PP tests, for their stationarity. It is
concluded that apart from the Cyclic class, other five classes as well as the pooled
data of those the five classes are all stationary, after taking the first order difference
so as to remove the intercept and the time trend effects. Our analysis below is then
for the newly transformed data by using the first order difference. The regularization
of the covariance matrices for the new data of the five classes, as well as their pooled
data, is now made using the adjusted F-norm in (4.19). The numerical results are
reported in Table 11, where the column “Time” gives the time (in second) spent for
finding the optimal matrix B with each candidate structure.
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Table 11 is about here

Note that the true covariance matrix ¥ is unknown for any real data, so that
Lg 4 and L5, p are actually not available, where the given matrix A is chosen to
be the sample covariance matrix. We then use the adjusted F-norm discrepancy
L p in (4.19) to identify the most likely covariance structure among the possible
candidate structures: MA(1), CS, AR(1) and ARMA(1,1).

From Table 11, it is clear that for the transformed data using the first order
difference we have reasons to believe the five classes of the new data together with
their pooled data are all of MA(1) structure. Note that the ARMA(1,1) seems to
have a slightly smaller F-norm discrepancy value than the MA(1), but the differ-
ence is so small that it can be ignorable. Since the MA(1) is a special case of the
ARMA(1,1), it is believed that the ARMA(1,1) almost reduces to the MA(1) in this
case. Therefore, the MA(1) is preferred for the new data as it is more parsimonious
than the ARMA(1,1).

6 Discussion

Given a matrix A and a class of candidate covariance structures, a new method
was proposed to regularize available covariance matrix A so that its underlying
structure becomes clear. In other words, random noise can be filtered in this sense.
Our simulation studies demonstrate the reliability of the proposed method, which
filters not only random noise in A but also reveal characteristics of the stochastic
process structuring the covariance matrix.

In the simulation studies and real data analysis, the available matrix A considered
is taken as the sample covariance matrix. In practice, it does not have to be the
sample covariance matrix. In theory, the matrix A can be any available estimate
of the covariance matrix, obtained by various statistical methods. As long as A is
provided, our proposed method can be used to regularize the covariance matrix A
even if the distribution of the data is unknown, the dimension of matrix A is high,
or the matrix A is singular. In particular, our simulations show that by using the
sample covariance matrix the proposed method works very well in identifying the
true structure of the population covariance matrix > even for the high-dimensional
case, i.e., m >> n. In this case, the established approaches such as the maximum
likelihood estimation and moment estimation may not work properly, because the
inverse of the sample covariance matrix is usually involved in such methods.

We also show that, for Gaussian data with n > m, the proposed approach per-
forms almost the same as the standard MLE method in estimation of the parameters
in covariance matrices. For non-Gaussian data, the proposed approach still performs
very well in estimation of the parameters. In contrast, the standard MLE method
that wrongly assumes normality for non-Gaussian data results in very biased es-

16



timates of the parameters in covariance matrices. In other words, our proposed
method does not require any distribution assumption for the data. As long as a
reasonable covariance matrix estimate A is given, the underlying structures of the
population covariance matrix 3 can be captured by regularizing the estimate of A.
In this sense, the proposed approach is robust against the distribution of the data.

In addition to the four likely candidate structures considered in this paper, there
are a lot of other useful covariance structures in practice, such as AR(2), AR(3),
factor analytic structure, general linear structure, ARMA(p, ¢), banded or Toeplitz
structures, etc. In theory our proposed approach is applicable to any other likely
structures of covariance matrix, the corresponding optimization problem and com-
putation may become difficult, especially when the dimension of matrix A is very
high and sparse. We will investigate this problem in our future work.

A referee also raised the issue of measuring the accuracy of the parameter es-
timates or their confidence intervals for the covariance structures we considered.
Although it may be challenging, it is interesting to study the convergence rate and
the asymptotic distribution of the parameter estimates based on the sample covari-
ance matrix by assuming certain distributional conditions of the data. Alternatively,
we may use Bootstrapping resampling technique to construct the confidence inter-
vals of the parameter estimates. However, the focus here is on regularizing the
covariance matrix estimate A, aiming to find the underlying structure of the popu-
lation covariance matrix ¥ that is usually unknown. This issue definitely deserves
a further investigation.

It is worth mentioning that there are other regularization methods in the lit-
erature such as banding, tapering, thresholding (e.g., Bickel and Levina [2], 2008;
Cai and Liu [4], 2011; Pourahmadi [16], 2013), and POET (Fan, et al. [6], 2016)
among others. The proposed method in this paper has a clear distinction from these
methods as the aim here is to find the underlying structure of the covariance matrix
from a class of candidates. An interesting issue is to compare with at least some of
such literature work. We will also explore such interesting topics in our future work.
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Table 1: Simulation results with m = 100; ¢ = 0.25.

B
o2 = 0.50 MA(T) CS AR(D) ARMA(1,1)
b)) Lx 4 Lapg Lx B LaB Ls B Lap Ls B Lag Ls B
MA(1) 2.5327 2.5315 0.0012 5.5630 3.0337 2.6943 0.1638 2.5309 0.0018
CS 2.6833 154.1047 151.6041 2.3516 0.3317 15.9702 13.9584 2.3496 0.3337
AR(1) 2.5308 2.7341 0.2052 5.7147 3.1905 2.5294 0.0015 2.5288 0.0020
ARMA-r=0.1 2.5253 2.5571 0.0337 3.0325 0.5114 2.5363 0.0131 2.5237 0.0016
ARMA-r=0.35 2.5340 2.9336 0.4012 8.7838 6.2519 2.5848 0.0548 2.5316 0.0023
ARMA-r=0.6 2.5467 3.7187 1.1772 20.9075 18.3702 3.8263 1.2868 2.5430 0.0037
B
a?=1 MA(1) CS AR(1) ARMA(1,1)
= Ly a La.p Ly B La,p Ly B La.p Ly B La.s Ly B
MA(1) 10.1308 10.1259 0.0049 22.2522 12.1347 10.7770 0.6550 10.1235 0.0072
CS 10.7333 616.4186 606.4165 9.4064 1.3269 63.8807 55.8334 9.3983 1.3350
AR(1) 10.1233 10.9363 0.8209 22.8589 12.7620 10.1174 0.0059 10.1153 0.0080
ARMA-r=0.1 10.1012 10.2285 0.1349 12.1299 2.0457 10.1454 0.0525 10.0946 0.0065
ARMA-r=0.35 10.1359 11.7343 1.6048 35.1352 25.0077 10.3391 0.2190 10.1265 0.0094
ARMA-r=0.6 10.1869 14.8749 4.7090 83.6298 73.4807 15.3052 5.1472 10.1719 0.0150
B
o2 =2 MA(T) CS AR(1) ARMA(T,1)
b)) Ls A Lag Ly B Lap Ls B Lag Ls B Lag Ls B
MA(1) 40.5230 40.5035 0.0195 89.0088 48.5388 43.1081 2.6201 40.4940 0.0290
CS 42.9331 2465.6745  2425.6661 37.6255 5.3076 255.5229 223.3337 37.5931 5.3399
AR(1) 40.4932 43.7452 3.2836 91.4355 51.0478 40.4697 0.0235 40.4613 0.0319
ARMA-r=0.1 40.4047 40.9139 0.5394 48.5194 8.1828 40.5814 0.2098 40.3786 0.0262
ARMA-r=0.35 40.5435 46.9372 6.4191 140.5408 100.0307 41.3564 0.8761 40.5060 0.0375
ARMA-r=0.6 40.7475 59.4996 18.8360 334.5192 293.9228 61.2207 20.5887 40.6876 0.0600
B
o2 =4 MA(1) CS AR(1) ARMA(1,1)
= Ly a La,s Ly B La,s Ls B La,s Ly B La,s Ly B
MA(1) 162.0920 162.0140 0.0780 356.0350 194.1550 172.4323 10.4803 161.9761 0.1159
CS 171.7322 9862.6978  9702.6643 150.5020 21.2303 1022.0915  893.3348 | 150.3725  21.3597
AR(1) 161.9729 174.9810 13.1344 365.7421 204.1913 161.8790 0.0940 161.8454 0.1276
ARMA-r=0.1 161.6188 163.6558 2.1576 194.0777 32.7313 162.3257 0.8392 161.5142 0.1048
ARMA-r=0.35 | 162.1740 187.7489 25.6766 562.1630 400.1229 165.4256 3.5043 162.0241 0.1501
ARMA-r=0.6 162.9901 237.9984 75.3440 1338.0768  1175.6912 244.8828 82.3548 162.7502 0.2398
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Table 2: Simulation results with m = 100; ¢ = 0.5.

B
o2 = 0.50 MA(T) CS AR(1) ARMA(1,1)
b)) Lx 4 Lap Ly B Lap Ls B LaB Ls B Lap Ls B
MA(1) 2.5443 2.5426 0.0017 14.6677 12.1304 4.3834 1.8420 2.5418 0.0025
CS 3.1941 608.7943 606.4146 1.8749 1.3192 7.9307 7.3818 1.8724 1.3217
AR(1) 2.5452 6.6103 4.0714 18.0074 15.4796 2.5413 0.0040 2.5405 0.0047
ARMA-r=0.2 2.5275 3.1773 0.6524 4.9969 2.4780 2.7801 0.2556 2.5251 0.0025
ARMA-r=0.45 2.5410 5.8378 3.2980 15.0778 12.5387 2.5632 0.0294 2.5367 0.0044
ARMA-r=0.75 2.5657 11.7168 9.1595 37.3788 34.8265 3.5500 1.0001 2.5574 0.0083
B
a?=1 MA(1) CS AR(1) ARMA(1,1)
= Ly a La,s Ls B Las Ly B La,p Ly B La,p Ly B
MA(1) 10.1773 10.1704 0.0069 58.6707 48.5216 17.5336 7.3679 10.1673 0.0100
CS 12.7764 2435.1774 2425.6584 7.4996 5.2768 31.7229 29.5270 7.4896 5.2867
AR(1) 10.1809 26.4412 16.2858 72.0295 61.9184 10.1651 0.0158 10.1621 0.0188
ARMA-r=0.2 10.1101 12.7090 2.6095 19.9875 9.9118 11.1202 1.0225 10.1003 0.0098
ARMA-r=0.45 10.1641 23.3513 13.1920 60.3113 50.1550 10.2527 0.1174 10.1467 0.0174
ARMA-r=0.75 10.2628 46.8672 36.6379 149.5151 139.3059 14.2002 4.0003 10.2296 0.0332
B
o2 =2 MA(1) CS AR(T) ARMA(TL,1)
b)) Ls A Lap Ls B LB Lx B La B Lx B LaB Ls B
MA(1) 40.7091 40.6816 0.0275 234.6828 194.0864 70.1342 29.4718 40.6691 0.0400
CS 51.1055 9740.7095 9702.6337 29.9984 21.1070 126.8915 118.1081 29.9586 21.1469
AR(1) 40.7236 105.7649 65.1431 288.1179 247.6735 40.6603 0.0634 40.6483 0.0753
ARMA-r=0.2 40.4406 50.8361 10.4379 79.9501 39.6472 44.4809 4.0900 40.4013 0.0393
ARMA-r=0.45 40.6563 93.4052 52.7681 241.2454 200.6198 41.0107 0.4697 40.5867 0.0697
ARMA-r=0.75 41.0512 187.4690 146.5514 598.0605 557.2238 56.8007 16.0012 40.9186 0.1327
B
o2 =4 MA(1) CS AR(1) ARMA(1,1)
= Ly a La,s Ls B La,s Ly B La,s Ly B La,p Ly B
MA(1) 162.8363 162.7264 0.1100 938.7311 776.3455 280.5369  117.8872 | 162.6765 0.1599
CS 204.4220 38962.8381  38810.5348 119.9938 84.4282 507.5659  472.4326 | 119.8344  84.5876
AR(1) 162.8946 423.0596 260.5722 1152.4717 990.6942 162.6412 0.2534 162.5933 0.3012
ARMA-r=0.2 161.7623 203.3442 41.7517 319.8004 158.5889 177.9237 16.3600 161.6052 0.1570
ARMA-r=0.45 | 162.6254 373.6209 211.0724 964.9816 802.4793 164.0429 1.8788 162.3468 0.2786
ARMA-r=0.75 | 164.2048 749.8759 586.2058 2392.2420  2228.8952 | 227.2026 64.0048 163.6742 0.5306
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Table 3: Simulation results with m = 100; ¢ = 0.75.

B
a2 =0.50 MA(1) CS AR(1) ARMA(1,1)
= Ly a La,s Ls B La,p Ly B La,p Ly B La,p Ly B
CS 3.9150 1365.2677 1364.4280 1.0904 2.8246 2.6037 4.3421 1.0883 2.8267
AR(1) 2.5794 37.5059 34.9775 56.9499 54.4603 2.5581 0.0214 2.5568 0.0226
ARMA-r=0.25 2.5353 6.4169 3.8873 8.5743 6.0536 10.6511 8.1262 2.5303 0.0051
ARMA-r=0.5 2.5534 18.0680 15.5462 26.6927 24.2067 3.6861 1.1573 2.5411 0.0123
ARMA-r=0.8 2.5991 42.3503 39.7962 64.5068 61.9660 2.6285 0.0783 2.5727 0.0263
B
a2 =1 MA(1) CS AR(1) ARMA(1,1)
D) Ly a LaB Ly B LaB Ly B LaB Ly B LaB Ly B
CS 15.6600 5461.0707 5457.7122 4.3617 11.2982 10.4146 17.3684 4.3531 11.3069
AR(1) 10.3177 150.0234 139.9098 227.7995 217.8411 10.2323 0.0855 10.2274 0.0904
ARMA-r=0.25 10.1412 25.6677 15.5493 34.2971 24.2145 42.6044 32.5047 10.1210 0.0202
ARMA-r=0.5 10.2136 72.2720 62.1848 106.7706 96.8267 14.7445 4.6293 10.1645 0.0491
ARMA-r=0.8 10.3964 169.4013 159.1847 258.0274 247.8641 10.5138 0.3134 10.2910 0.1053
B
o2 =2 MA(T) CS AR(1) ARMA(1,1)
b)) Ls A Lap Ls B LB Lx B La B Lx B LaB Ly B
CS 62.6399 21844.2828  21830.8487 17.4469 45.1930 41.6585 69.4735 17.4122 45.2277
AR(1) 41.2710 600.0936 559.6393 911.1980 871.3646 40.9290 0.3421 40.9096 0.3616
ARMA-r=0.25 40.5649 102.6708 62.1972 137.1884 96.8581 170.4176  130.0189 40.4841 0.0808
ARMA-r=0.5 40.8546 289.0882 248.7394 427.0825 387.3069 58.9779 18.5174 40.6580 0.1966
ARMA-r=0.8 41.5857 677.6053 636.7388 1032.1095 991.4565 42.0552 1.2536 41.1639 0.4213
B
0?2 =4 MA(T) CS AR(1) ARMA(1,1)
b)) Lx 4 Lap Ls B Lap Lx B LaB Ls B Lap Ls B
CS 250.5596 87377.1312  87323.3948 69.7876 180.7720 166.6339  277.8940 69.6488 180.9108
AR(1) 165.0840 2400.3746 2238.5573 3644.7921  3485.4583 | 163.7160 1.3683 163.6382 1.4462
ARMA-r=0.25 | 162.2595 410.6833 248.7886 548.7534 387.4326 681.6706  520.0755 | 161.9362 0.3233
ARMA-r=0.5 163.4182 1156.3527 994.9574 1708.3300  1549.2275 | 235.9115 74.0694 162.6318 0.7862
ARMA-r=0.8 166.3429 2710.4212 2546.9553 4128.4380 3965.8260 | 168.2210 5.0143 164.6555 1.6853
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Table 4: Simulation results with m = 200; ¢ = 0.25.

B
o2 = 0.50 MA(T) CS AR(D) ARMA(1,1)
b)) Lx 4 Lap Ly B Lap Ls B Lag Ly B Lapg Ls B
MA(1) 10.0649 10.0637 0.0012 16.2196 6.1583 10.3926 0.3291 10.0632 0.0018
CS 10.6463 625.0203 615.6754 9.3896 1.2567 37.0791 28.9558 9.3855 1.2608
AR(1) 10.0648 10.4757 0.4135 16.5833 6.5228 10.0633 0.0014 10.0628 0.0020
ARMA-r=0.1 10.0623 10.1270 0.0670 11.1042 1.0447 10.0853 0.0253 10.0606 0.0017
ARMA-r=0.35 10.0679 10.8734 0.8096 22.8366 12.7836 10.1725 0.1088 10.0654 0.0024
ARMA-r=0.6 10.0936 12.4643 2.3773 47.6369 37.5648 12.6792 2.5914 10.0897 0.0039
B
a?=1 MA(1) CS AR(1) ARMA(1,1)
= Ly a La,s Ls B Las Ly B La,s Ls B La.p Ly B
MA(1) 40.2597 40.2550 0.0048 64.8785 24.6331 41.5704 1.3165 40.2527 0.0070
CS 42.5852 2500.0814 2462.7015 37.5582 5.0270 148.3163 115.8232 37.5421 5.0431
AR(1) 40.2590 41.9030 1.6540 66.3333 26.0913 40.2534 0.0056 40.2511 0.0079
ARMA-r=0.1 40.2493 40.5082 0.2680 44.4167 4.1786 40.3412 0.1013 40.2426 0.0067
ARMA-r=0.35 40.2715 43.4934 3.2385 91.3463 51.1345 40.6900 0.4351 40.2617 0.0098
ARMA-r=0.6 40.3743 49.8570 9.5093 190.5475 150.2592 50.7169 10.3654 40.3589 0.0155
B
o2 =2 MA(1) CS AR(T) ARMA(T,1)
b)) Ls A Lap Ls B LB Lx B Lag Ls B Lag Ls B
MA(1) 161.0390 161.0198 0.0191 259.5139 98.5325 166.2815 5.2659 161.0109 0.0280
CS 170.3408 10000.3254 9850.8060 150.2330 20.1079 593.2651 463.2930 150.1686  20.1723
AR(1) 161.0361 167.6118 6.6162 265.3330 104.3650 161.0136 0.0225 161.0044 0.0317
ARMA-r=0.1 160.9971 162.0326 1.0721 177.6666 16.7144 161.3649 0.4053 160.9703 0.0269
ARMA-r=0.35 | 161.0859 173.9737 12.9539 365.3852 204.5380 162.7599 1.7404 161.0469 0.0391
ARMA-r=0.6 161.4973 199.4281 38.0372 762.1900 601.0367 202.8675 41.4616 161.4354 0.0619
B
o2 =4 MA(1) CS AR(1) ARMA(1,1)
= Ly a La,s Ls B La,s Ly B La,s Ly B La,s Ls B
MA(1) 644.1559 644.0793 0.0766 1038.0555 394.1299 665.1262 21.0635 644.0438 0.1122
CS 681.3634 40001.3017  39403.2242 600.9319 80.4314 2373.0605 1853.1720 | 600.6743  80.6890
AR(1) 644.1444 670.4473 26.4646 1061.3320 417.4602 644.0542 0.0902 644.0175 0.1268
ARMA-r=0.1 643.9886 648.1305 4.2885 710.6666 66.8577 645.4595 1.6213 643.8811 0.1075
ARMA-r=0.35 | 644.3437 695.8950 51.8157 1461.5409 818.1520 651.0397 6.9615 644.1877 0.1562
ARMA-r=0.6 645.9893 797.7125 152.1489 3048.7600  2404.1466 811.4701 165.8464 645.7417 0.2476
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Table 5: Simulation results with m = 200; ¢ = 0.5.

B
o2 = 0.50 MA(1) AR(1) ARMA(1,1)
b)) Lx 4 LaB Lx B Lag Ls B La,B Ls B Lag Ls B
MA(1) 10.0876 10.0859 0.0017 34.7046 24.6290 13.7978 3.7121 10.0852 0.0024
CS 12.4924 2471.9393 2462.6999 7.4777 5.0147 19.7831 17.3309 7.4727 5.0197
AR(1) 10.0917 18.3236 8.2380 42.2092 32.1312 10.0877 0.0040 10.0869 0.0048
ARMA-r=0.2 10.0669 11.3824 1.3190 15.2032 5.1423 10.5789 0.5160 10.0643 0.0025
ARMA-r=0.45 10.0812 16.7480 6.6731 36.0862 26.0271 10.1301 0.0558 10.0767 0.0045
ARMA-r=0.75 10.1277 28.6442 18.5346 82.3645 72.2929 12.1208 2.0087 10.1190 0.0086
B
a?=1 MA(1) AR(1) ARMA(1,1)
= Ly a La,p Ly B La.s Ly B La,p Ly B La,s Ly B
MA(1) 40.3505 40.3436 0.0068 138.8182 98.5162 55.1911 14.8485 40.3408 0.0097
CS 49.9696 9887.7572 9850.7994 29.9107 20.0589 79.1323 69.3236 29.8907 20.0789
AR(1) 40.3669 73.2942 32.9521 168.8369 128.5248 40.3506 0.0162 40.3476 0.0193
ARMA-r=0.2 40.2674 45.5297 5.2761 60.8128 20.5693 42.3155 2.0638 40.2573 0.0102
ARMA-r=0.45 40.3248 66.9918 26.6926 144.3447 104.1083 40.5203 0.2231 40.3069 0.0179
ARMA-r=0.75 40.5106 114.5767 74.1384 329.4581 289.1715 48.4832 8.0346 40.4761 0.0345
B
o2 =2 MA(T) AR(1) ARMA(1,1)
b)) Ls A LaB Ly B Lag Ly B Lap Ls B Lap Ls B
MA(1) 161.4019 161.3746 0.0273 555.2729 394.0647 220.7645 59.3939 161.3631 0.0389
CS 199.8784 39551.0287 39403.1976 119.6429 80.2355 316.5294 277.2944 119.5628 80.3156
AR(1) 161.4674 293.1770 131.8082 675.3478 514.0994 161.4026 0.0648 161.3903 0.0770
ARMA-r=0.2 161.0696 182.1187 21.1042 243.2512 82.2772 169.2620 8.2554 161.0291 0.0406
ARMA-r=0.45 | 161.2993 267.9674 106.7704 577.3788 416.4330 162.0813 0.8923 161.2277 0.0716
ARMA-r=0.75 | 162.0426 458.3068 296.5535 1317.8325  1156.6861 193.9327 32.1385 161.9044 0.1382
B
o2 =4 MA(T) AR(1) ARMA(1,1)
= Ly a La,s Ly B La,s Ly B La,p Ls B La,s Ls B
MA(1) 645.6077 645.4983 0.1094 2221.0916  1576.2587 883.0582 237.5758 645.4523 0.1554
CS 799.5137 158204.1146  157612.7905 478.5715 320.9421 1266.1176  1109.1776 | 478.2513  321.2624
AR(1) 645.8696 1172.7078 527.2330 2701.3912  2056.3975 645.6104 0.2592 645.5613 0.3082
ARMA-r=0.2 644.2785 728.4747 84.4170 973.0047 329.1090 677.0481 33.0215 644.1162 0.1625
ARMA-r=0.45 | 645.1971 1071.8695 427.0815 2309.5151 1665.7320 648.3251 3.5693 644.9110 0.2862
ARMA-r=0.75 | 648.1702 1833.2270 1186.2140 5271.3299  4626.7443 775.7309 128.5542 647.6174 0.5528
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Table 6: Simulation results with m = 200; ¢ = 0.75.

B
o2 = 0.50 MA(T) CS AR(1) ARMA(1,1)
b)) Lx A Lap Lx B Lap Lx B LaB Ls B Lap Ls B
CS 15.6162 5554.8375 5541.0741 4.3933 11.2229 7.4676 14.3044 4.3897 11.2265
AR(1) 10.1738 81.2141 71.1382 128.4485 118.4413 10.1514 0.0224 10.1501 0.0236
ARMA-r=0.25 10.0724 17.9662 7.9052 23.2171 13.1621 42.9548 32.9090 10.0673 0.0052
ARMA-r=0.5 10.1182 41.7266 31.6179 62.7155 52.6420 12.4233 2.3290 10.1046 0.0136
ARMA-r=0.8 10.1966 91.1004 80.9393 144.8784 134.7604 10.2791 0.1328 10.1699 0.0266
B
o2 =1 MA(T) CS AR(1) ARMA(1,1)
b)) Ly 4 La B Ly B Lag Ly B LaB Ls B Lag Ls B
CS 62.4648 22219.3499 22164.2965 17.5733 44.8914 29.8703 57.2177 17.5589 44.9058
AR(1) 40.6950 324.8565 284.5529 513.7938 473.7654 40.6056 0.0894 40.6005 0.0945
ARMA-r=0.25 40.2896 71.8649 31.6206 92.8685 52.6485 171.8192 131.6359 40.2690 0.0206
ARMA-r=0.5 40.4727 166.9065 126.4714 250.8619 210.5680 49.6933 9.3161 40.4183 0.0545
ARMA-r=0.8 40.7863 364.4014 323.7570 579.5136 539.0417 41.1164 0.5312 40.6798 0.1065
B
o2 =2 MA(1) CS AR(1) ARMA(1,1)
= Ly a La,p Ly B La.s Ly B La,s Ly B La,s Ly B
CS 249.8591 88877.3996 88657.1860 70.2933 179.5658 119.4813 228.8706 70.2358 179.6233
AR(1) 162.7801 1299.4259 1138.2116 2055.1753  1895.0615 162.4223 0.3577 162.4018 0.3781
ARMA-r=0.25 | 161.1585 287.4597 126.4825 371.4739 210.5941 687.2768 526.5434 161.0761 0.0824
ARMA-r=0.5 161.8909 667.6259 505.8857 1003.4478 842.2721 198.7730 37.2644 161.6732 0.2179
ARMA-r=0.8 163.1453 1457.6058 1295.0282 2318.0545  2156.1670 164.4658 2.1248 162.7191 0.4259
B
o2 =4 MA(1) CS AR(1) ARMA(1,1)
D) Ly a LaB Ly B Las Ly B LaB Ly B Las Ly B
CS 999.4362 355509.5984  354628.7442 281.1731 718.2632 477.9250 915.4825 280.9431  718.4931
AR(1) 651.1205 5197.7035 4552.8464 8220.7013  7580.2462 649.6892 1.4307 649.6073 1.5125
ARMA-r=0.25 | 644.6341 1149.8388 505.9300 1485.8957 842.3765 2749.1071  2106.1737 | 644.3042 0.3297
ARMA-r=0.5 647.5636 2670.5037 2023.5428 4013.7910  3369.0885 795.0921 149.0575 646.6929 0.8714
ARMA-r=0.8 652.5812 5830.4232 5180.1127 9272.2180 8624.6679 657.8630 8.4994 650.8763 1.7036
Table 7: Simulation results for CS with (¢, 0?) = (0.5,1) and (m,n) = (1000, 500)
B
MA(D) CS AR() ARMA(1,1)
D) Ly a LaB Ly B Las Ly B LaB Ls B Las Ly B
CS | 2507.9700 251256.3608  249253.5243 | 1500.7138  1007.2562 | 1749.7276  1256.7082 | 1500.5837  1007.6397

Table 8: Comparison for Gaussian data with (m,n) = (100, 1000)

02 =1 o2 _mean o2 _std c_mean c_std r_mean r_std
Our approach 1.00015 0.00076 | 0.49967 0.01152 | 0.20019  0.00043
r=0.2 MLE 1.01999 0.00080 | 0.49972 0.00849 | 0.20092 0.00039
Our approach 1.00330 0.00126 | 0.49856  0.00269 | 0.45074  0.00047
r=0.45 MLE 1.02386 0.00135 | 0.49723 0.00204 | 0.45133 0.00041
Our approach 0.99761 0.00179 | 0.50528 0.00201 | 0.74577  0.00019
r=0.75 MLE 1.03601 0.01091 | 0.50636  0.00088 | 0.77189  0.00032
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Table 9: Comparison for non-Gaussian data with (m,n) = (100, 1000)

degree of freedom=1 o?_mean  o°_std | c_mean c_std r_mean r_std
Our approach 2.00006  0.00085 | 0.50168 0.00018 | 0.19982  0.00001
r=0.2 MLE 3.71577  0.01514 | 0.82444 0.00035 | 0.28089 0.00015
Our approach 1.99947  0.00058 | 0.50000 0.00006 | 0.44981  0.00001
r=0.45 MLE 4.58252  0.57929 | 0.88007 0.00259 | 0.69203 0.00298
Our approach 1.99781 0.00064 | 0.49956  0.00001 | 0.74987  0.00000
r=0.75 MLE 2.09557  0.00083 | 0.49442 0.00005 | 0.78559  0.00001

Table 10: Simulations for non-Gaussian data with (m,n) = (100, 1000)

B
Parameter p=0.1 MA(1) CS AR(I) ARMA(1,1)
2 Lya Lag Lyp | Lhp Lyp | Lip Lyp | Lap Lyp
MA(1) 0.06663 || 0.06655 0.00007 | 0.36927 0.30286 | 0.11244 0.04601 | 0.06654 0.00009
CS 0.00524 || 0.94214 0.94107 | 0.00305 0.00218 | 0.01244 0.01159 | 0.00305 0.00219
AR(1) 0.06041 0.15275  0.09222 | 0.41155 0.35050 | 0.06028 0.00014 | 0.06026  0.00015
ARMA-r=0.2 0.08802 0.10912  0.02158 | 0.16939  0.08187 | 0.09613 0.00848 | 0.08790 0.00011
ARMA-r=0.45 | 0.06531 0.14559  0.08015 | 0.37091  0.30455 | 0.06578  0.00078 | 0.06513  0.00018
ARMA-r=0.75 | 0.04163 0.18330 0.14164 | 0.57976  0.53837 | 0.05665 0.01551 | 0.04145 0.00018
B
Parameter p=0.3 MA(1) CS AR(1) ARMA(1,1)
> Los | Thn  Top | Thp Ty | Thn Loy | Ths iy
MA(1) 0.06300 || 0.06298 0.00002 | 0.36733  0.30392 | 0.10899  0.04613 | 0.06297  0.00004
CS 0.00475 0.94201  0.94421 | 0.00282 0.00193 | 0.01226  0.01137 | 0.00281  0.00194
AR(1) 0.05711 0.14909  0.09279 | 0.40836  0.35279 | 0.05702  0.00009 | 0.05700 0.00011
ARMA-r=0.2 0.08294 || 0.10453 0.02163 | 0.16472 0.08222 | 0.09139  0.00847 | 0.08286  0.00007
ARMA-r=0.45 | 0.06165 0.14208  0.08084 | 0.36822  0.30737 | 0.06220 0.00071 | 0.06156  0.00009
ARMA-r=0.75 | 0.03919 || 0.18074 0.14204 | 0.57774  0.54009 | 0.05446  0.01550 | 0.03907  0.00012
B
Parameter p=0.5 MA(1) CS AR(1) ARMA(1,1)
D Lia | Thw  Ion | Tap  Ton | Thp  Tin | Thp  Lin
MA(1) 0.06268 || 0.06266  0.00002 | 0.36660 0.30441 | 0.10878  0.04620 | 0.06264 0.00004
CS 0.00450 || 0.94196 0.94690 | 0.00288 0.00162 | 0.01234 0.01109 | 0.00287  0.00162
AR(1) 0.05669 || 0.14935 0.09256 | 0.40908 0.35198 | 0.05660 0.00008 | 0.05659  0.00010
ARMA-r=0.2 0.08228 || 0.10385 0.02164 | 0.16453  0.08227 | 0.09064 0.00847 | 0.08221  0.00006
ARMA-r=0.45 | 0.06128 0.14192  0.08085 | 0.36803 0.30742 | 0.06181  0.00072 | 0.06117  0.00011
ARMA-r=0.75 | 0.03923 0.18107  0.14227 | 0.57884  0.54100 | 0.05449 0.01551 | 0.03913  0.00010

Table 11: Regularization results for the transformed control chart data

MA(1) CS AR(1) ARMA(1,1)
L g Time L g Time L g Time L g Time

Normal 0.29221  0.00676 | 0.51449 0.00511 | 0.33031 0.01434 | 0.29204 0.01846
Increasing trend | 0.28062 0.00023 | 0.51337 0.00025 | 0.31407 0.00933 | 0.28058 0.01452
Decreasing trend | 0.28445 0.00023 | 0.51078 0.00025 | 0.31609 0.00925 | 0.28442 0.01464
Upward shift 0.29431  0.00023 | 0.47325 0.00025 | 0.32145 0.00870 | 0.29394 0.01129
Downward shift 0.32414  0.00023 | 0.50201  0.00025 | 0.35293 0.00927 | 0.32339 0.01168
pooled data 0.17392  0.00820 | 0.30127 0.00593 | 0.17342 0.01344 | 0.17022 0.01464

26



