

The University of Manchester Research

Covariance Structure Regularization via Frobenius-Norm Discrepancy

DOI: 10.1016/j.laa.2016.08.013

Document Version

Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA): Cui, X., Li, C., Zhao, J., Zeng, L., Zhang, D., & Pan, J. (2016). Covariance Structure Regularization via Frobenius-Norm Discrepancy. *Linear Algebra and its Applications*, *510*, 124-145. https://doi.org/10.1016/j.laa.2016.08.013

Published in: Linear Algebra and its Applications

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Covariance Structure Regularization via Frobenius-Norm Discrepancy

Xiangzhao Cui¹, Chun Li¹, Jine Zhao¹, Li Zeng¹, Defei Zhang¹ and Jianxin Pan^{2*}

¹School of Mathematics, University of Honghe, Yunnan, China ²School of Mathematics, University of Manchester, UK

Abstract

In many practical problems, the underlying structure of an estimated covariance matrix is usually blurred due to random noise, particularly when the dimension of the matrix is high. Hence, it is necessary to filter the random noise or regularize the available covariance matrix in certain senses, so that the covariance structure becomes clear. In this paper, we propose a new method for regularizing the covariance structure of a given covariance matrix. By choosing an optimal structure from an available class of covariance structures, the regularization is made in terms of minimizing the discrepancy, defined by Frobenius-norm, between the given covariance matrix and the class of covariance structures. A range of potential candidate structures, including the order-1 moving average structure, compound symmetry structure, order-1 autoregressive structure, order-1 autoregressive moving average structure, are considered. Simulation studies show that the proposed new approach is reliable in regularization of covariance structures. The proposed approach is also applied to real data analysis in signal processing, showing the usefulness of the proposed approach in practice.

Keywords: Covariance estimation; Covariance structure; F-norm; Regularization.

^{*}Corresponding author: Email: Jianxin. Pan@manchester.ac.uk; Tel: +44 161 2755864; Fax: +44 161 275 5819.

1 Introduction

In many practical fields including signal processing [11], network [13], and control problems [6], a structured covariance matrices is really important and has to be estimated. However, the underlying structure of an estimated covariance matrix is usually blurred due to random noise, especially when the dimension of the covariance matrix is large. Although the estimation of covariance matrix has been studied widely in the literature (e.g., [9; 12]), it has received little attention for regularizing an available/estimated covariance matrix into the one with a clear structure.

Specifically, suppose A is a given $m \times m$ covariance matrix, that is, it is symmetric nonnegative definite. Let \mathcal{S} be the set of all $m \times m$ positive definite covariance matrices with structure s, for example, compound symmetry or uniform covariance structure. A discrepancy between the given covariance matrix A and the set \mathcal{S} is defined by

$$D(A, \mathcal{S}) = \min_{B \in \mathcal{S}} L(A, B), \tag{1.1}$$

where L(A, B) is a measure of the distance between the two $m \times m$ matrices A and B. Assume there is a given class of k candidate covariance structures $\{s_1, s_2, \ldots, s_k\}$. Let S_i be the set of all covariance matrices with structure s_i . Denote the set of $m \times m$ covariance matrices with the likely structures by $\Omega = \bigcup_{i=1}^k S_i$. The discrepancy between a given covariance matrix A and the set Ω is then defined by

$$D(A,\Omega) = \min_{B \in \Omega} L(A,B).$$
(1.2)

The idea is that, in this set Ω , the structure with which A has the smallest discrepancy can be viewed as the most likely underlying structure of A, and the minimizer B with this particular structure is considered to be the regularized covariance matrix of A.

Very recently, Lin *et al.* [7] considered the use of the entropy loss function,

$$L(A, B) = tr(A^{-1}B) - \log(\det(A^{-1}B)) - m,$$

also known as the Kullback-Leibler divergence, to measure the difference between the matrices A and B. However, this measure has some drawbacks, including that (a) it is a nonsymmetric measure in the sense that $L(A, B) \neq L(B, A)$, and (b) it requires the existence of the inverse of the given matrix A. In some circumstances, the inverse of A may not always exist, or it may exist but its computation is too intensive, for example, when the dimensional of A is rather high. To conquer the difficulty, in this paper we propose to consider the distance between two matrices Aand B, defined by square of the Frobenius-norm, or hereafter F-norm,

$$L(A, B) = tr\{(A - B)^T (A - B)\}.$$
(1.3)

It is worth mentioning that the matrix A is not necessarily a sample covariance matrix. It can be any estimates of a covariance matrix, obtained by various statistical methods such as those based on modified Cholesky decomposition methods [9; 14] and thresholding principal orthogonal complements [3] among others. Regarding the likely structures of covariance matrix, in this paper we focus on the following four candidates that are commonly used in time series, longitudinal and spatial studies. Other candidate structures of covariance matrix may be studied in a similar manner.

(1) The first-order moving average structure, MA(1), has a tri-diagonal structure of covariance matrix,

$$B = \sigma^{2} \begin{bmatrix} 1 & c & \cdots & 0 & 0 \\ c & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & 1 & c \\ 0 & 0 & \cdots & c & 1 \end{bmatrix},$$
 (1.4)

where $\sigma^2 > 0$ and $-\frac{1}{2\cos(\pi/(m+1))} < c < \frac{1}{2\cos(\pi/(m+1))}$.

(2) The covariance of compound symmetry (CS) structure assumes that the correlation coefficients of any two observations are the same. In other words, the covariance matrix has the form

$$B = \sigma^{2} \begin{bmatrix} 1 & c & \cdots & c & c \\ c & 1 & \ddots & \ddots & c \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ c & \ddots & \ddots & 1 & c \\ c & c & \cdots & c & 1 \end{bmatrix},$$
 (1.5)

where $\sigma^2 > 0$ and -1/(m-1) < c < 1.

(3) The first-order autoregressive structure, AR(1), has the property that the correlation between any pair of observations decays exponentially towards zero as the distance between two observations increases. The covariance matrix is of the form

$$B = \sigma^{2} \begin{bmatrix} 1 & c & \cdots & c^{m-2} & c^{m-1} \\ c & 1 & \ddots & \ddots & c^{m-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ c^{m-2} & \ddots & \ddots & 1 & c \\ c^{m-1} & c^{m-2} & \cdots & c & 1 \end{bmatrix},$$
 (1.6)

where $\sigma^2 > 0$ and -1 < c < 1.

(4) More generally, the first-order autoregressive moving average structure, AR-MA(1,1), has one more parameter than AR(1), reflecting an additional decrease in

correlation for each additional lag. The covariance matrix has the form

$$B = \sigma^{2} \begin{bmatrix} 1 & r & rc & \cdots & rc^{m-4} & rc^{m-3} & rc^{m-2} \\ r & 1 & r & \ddots & \ddots & rc^{m-4} & rc^{m-3} \\ rc & r & 1 & \ddots & \ddots & rc^{m-4} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & rc^{m-4} \\ rc^{m-4} & \ddots & \ddots & \ddots & 1 & r & rc \\ rc^{m-3} & rc^{m-4} & \ddots & \ddots & r & 1 & r \\ rc^{m-2} & rc^{m-3} & rc^{m-4} & \cdots & rc & r & 1 \end{bmatrix},$$
(1.7)

where $\sigma^2 > 0$, -1 < c < 1 and -1 < r < 1.

Owing to the fact $D(A, \Omega) = \min_{1 \le i \le k} \{D(A, S_i)\}$, the main task now is to calculate the discrepancy $D(A, S_i)$ for each of the candidate covariance structures listed in (1.4)-(1.7), where the covariance matrix A is given.

The rest of this paper is organized as follows. In section 2, we transform our problem into an optimization problem in numerical analysis and explore some of its general properties. In section 3, we show that the problem of finding B with structure MA(1), CS, AR(1) or ARMA(1,1) that minimizes L(A, B) is reduced to computing the zeros of a nonlinear function. In section 4, we carry out simulation studies, illustrating how our techniques of computing the structured covariance matrix that minimizes the discrepancy function in (1.3) can be used in regularizing the underlying covariance structure. In section 5, we apply the proposed approach to a real data experiment in signal processing. Some further remarks and discussions are presented in section 6.

2 Problem of interest

We start by formulating the problem of interest and exploring some of its properties. Define $f : \mathbb{R}^{m \times m}_+ \to \mathbb{R}$, where $\mathbb{R}^{m \times m}_+$ is the set of all $m \times m$ symmetric positive definite matrices and $f(B) := L(A, B) = \operatorname{tr}\{(A - B)^T(A - B)\}$. Obviously, $\Omega \subset \mathbb{R}^{m \times m}_+$. Our problem now reduces to

$$\begin{array}{ll} \min & f(B) \\ \text{subject to} & B \in \Omega \end{array} .$$
(2.8)

Let $\nabla_B f = (\partial f / \partial b_{ij})$ be the gradient of f, where b_{ij} is the (i, j) entry of B. Ignoring the symmetry of A and B and using results from Magnus and Neudecker [8] we have

$$\nabla_B \operatorname{tr}(A^T B) = A,$$
$$\nabla_B \operatorname{tr}(B^T B) = 2B,$$

and then

$$\nabla_B f = 2(B - A).$$

Write $b = \text{vec}(B) \in \mathbb{R}^{m^2}$, where vec denotes the vector obtained by stacking the columns of its matrix argument on top of each other from first to last. Taking f as a function from \mathbb{R}^{m^2} to \mathbb{R} , the Hessian of f is then given by

$$abla_b^2 f := \left[rac{\partial^2 f}{\partial b_i \partial b_j}
ight] = 2(I_m \otimes I_m),$$

(See, e.g., [8, 10]). Since I_m is positive definite, $2(I_m \otimes I_m)$ is obviously positive definite, thus f(B) is a strictly convex function of B.

On the other hand, the sets Ω of MA(1) and CS are obviously convex. Therefore when Ω is the set of positive definite matrices having one of the two structures the problem (2.8) is convex and so has a unique solution. When Ω is the set of AR(1) or ARMA(1,1) matrices, however, the problem is not convex because Ω is not convex. We will show later that only a local minimum of the problem can be expected to be found in these cases.

Note that when $\Omega = R_+^{m \times m}$, the minimum of f(B) in (2.8) is obtained at $\nabla_B f = 0$, i.e., B = A, provided that A is positive definite.

3 Solution of problems

We begin by considering the matrices (1.4)-(1.7) one by one, for which the problem (2.8) is reduced to computing the zeros of a nonlinear function.

3.1 MA(1)

The matrix in (1.4) can be rewritten as

$$B(c,\sigma) = \sigma^{2} \begin{bmatrix} 1 & c & \cdots & 0 & 0 \\ c & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & 1 & c \\ 0 & 0 & \cdots & c & 1 \end{bmatrix} = \sigma^{2}(I + cT_{1}),$$
(3.9)

where T_1 is a symmetric matrix with the first superdiagonal and subdiagonal equal to 1 and all other elements equal to 0. Note that the eigenvalues of $B(c, \sigma)$ are

$$\lambda_j = \sigma^2 (1 + 2cs_j), \quad j = 1, \cdots, m,$$

where $s_j = \cos(\pi j/(m+1))$, see, e.g., [4], Sec. 28.5. Assuming $m \ge 2$, we have $s_1 > s_2 > \cdots \ge 0 \ge \cdots > s_m$, $s_j = -s_{m+1-j}$ and hence $B(c, \sigma)$ is positive definite if and only if

$$-\frac{1}{2s_1} < c < \frac{1}{2s_1}.$$

Given a covariance matrix A, the discrepancy function in (1.3) is now

$$f(c,\sigma) := \operatorname{tr}(A^T A) - 2\sigma^2(\operatorname{tr}(A) + \operatorname{tr}(AT_1)c) + \sigma^4(m + 2(m-1)c^2).$$
(3.10)

It follows that

$$\nabla f := \begin{bmatrix} \frac{\partial f}{\partial c} \\ \frac{\partial f}{\partial \sigma} \end{bmatrix} = \begin{bmatrix} 4\sigma^4(m-1)c - 2\sigma^2 \operatorname{tr}(AT_1) \\ 4\sigma^3(m+2(m-1)c^2) - 4\sigma(\operatorname{tr}(A) + \operatorname{tr}(AT_1)c) \end{bmatrix}$$

and

$$\nabla^2 f := \begin{bmatrix} \frac{\partial^2 f}{\partial c^2} & \frac{\partial^2 f}{\partial c \partial \sigma} \\ \frac{\partial^2 f}{\partial c \partial \sigma} & \frac{\partial^2 f}{\partial \sigma^2} \end{bmatrix}$$
$$= \begin{bmatrix} 4\sigma^4(m-1) & 16\sigma^3(m-1)c - 4\sigma \operatorname{tr}(AT_1)) \\ 16\sigma^3(m-1)c - 4\sigma \operatorname{tr}(AT_1) & 12\sigma^2(m+2(m-1)c^2) - 4(\operatorname{tr}(A) + \operatorname{tr}(AT_1)c) \end{bmatrix}.$$

So that the stationary points (c, σ) of $f(c, \sigma)$ must satisfy following equations

$$\begin{cases} \sigma^2 = \frac{\operatorname{tr}(AT_1)}{2(m-1)c}, \\ h(c) := m\operatorname{tr}(AT_1) - 2(m-1)\operatorname{tr}(A)c = 0. \end{cases}$$

Thus a unique stationary point is

$$\begin{cases} \sigma^2 = \frac{\operatorname{tr}(A)}{m} \\ c = \frac{\operatorname{mtr}(AT_1)}{2(m-1)\operatorname{tr}(A)}. \end{cases}$$
(3.11)

Since

$$(\nabla^2 f)_{11} = 4\sigma^4(m-1) > 0$$

and

$$det(\nabla^2 f(c,\sigma)) = 4(m-1)\sigma^4 (12m\sigma^2 + 8tr(AT_1)c - 4tr(A)) - (4\sigma tr(AT_1))^2$$

= $16\sigma^2 (2(m-1)\sigma^2 (tr(A) + tr(AT_1)c) - (tr(AT_1))^2)$
= $32\frac{m-1}{m}\sigma^2 (tr(A))^2$
> 0

at the stationary points (c, σ) , therefore the Hessian matrix $\nabla^2 f$ is positive definite and so the stationary point is a minimum point.

We summarize the discussion above in the following theorem.

Theorem 3.1 Given a covariance matrix A, there exists a unique positive definite matrix $B(c, \sigma)$ of the form (3.9) that minimizes the discrepancy function $f(c, \sigma) := L(A, B(c, \sigma))$ in (3.10). Furthermore, the minimum is achieved at (c, σ) given in (3.11).

3.2 Compound Symmetry

The matrix in (1.5) can be rewritten as

$$B(c,\sigma) = \sigma^2 \begin{bmatrix} 1 & c & \cdots & c & c \\ c & 1 & \ddots & \ddots & c \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ c & \ddots & \ddots & 1 & c \\ c & c & \cdots & c & 1 \end{bmatrix} = \sigma^2 (I + c(ee^T - I)), \quad (3.12)$$

where $e = [1, \ldots, 1]^T \in \mathbb{R}^m$. The eigenvalues of $B(c, \sigma)$ are $\sigma^2(1 + (m-1)c)$ and $\sigma^2(1-c)$ of multiplicities 1 and m-1, respectively, so that $B(c, \sigma)$ is a positive definite matrix if and only if

$$-\frac{1}{m-1} < c < 1.$$

See, for example, [2], Lem. 2.1.

Given a covariance matrix A, denoting $t := tr(A^T(ee^T - I))$, the discrepancy function is now given by

$$f(c,\sigma) = tr(A^{T}A) - 2\sigma^{2}tr(A^{T}) - 2\sigma^{2}ct + \sigma^{4}(m+m(m-1)c^{2}).$$

It follows that

$$\nabla f := \begin{bmatrix} \frac{\partial f}{\partial c} \\ \frac{\partial f}{\partial \sigma} \end{bmatrix} = \begin{bmatrix} -2\sigma^2 t + 2\sigma^4 m(m-1)c \\ -4\sigma \operatorname{tr}(A^T) - 4\sigma ct + 4\sigma^3(m+m(m-1)c^2) \end{bmatrix}$$

and

$$\nabla^2 f := \begin{bmatrix} \frac{\partial^2 f}{\partial c^2} & \frac{\partial^2 f}{\partial c \partial \sigma} \\ \frac{\partial^2 f}{\partial c \partial \sigma} & \frac{\partial^2 f}{\partial \sigma^2} \end{bmatrix}$$
$$= \begin{bmatrix} 2\sigma^4 m(m-1) & -4\sigma t + 8\sigma^3 m(m-1)c \\ -4\sigma t + 8\sigma^3 m(m-1)c & -4\operatorname{tr}(A^T) - 4ct + 12\sigma^2(m+m(m-1)c^2) \end{bmatrix}$$

The stationary points (c, σ) of $f(c, \sigma)$ must satisfy following equations

$$\begin{cases} \sigma^2 = \frac{\operatorname{tr}(A^T) + ct}{m + m(m-1)c^2}, \\ h(c) := -2\sigma^2 t + 2\sigma^4 m(m-1)c = 0. \end{cases}$$

Thus a unique stationary point is

$$\begin{cases} c = \frac{t}{(m-1)\operatorname{tr}(A^T)} \\ \sigma^2 = \frac{\operatorname{tr}(A^T) + ct}{m+m(m-1)c^2}, \end{cases}$$
(3.13)

where $t = tr(A^T(ee^T - I))$. Since

$$(\nabla^2 f)_{11} = 2\sigma^4 m(m-1) > 0$$

and

$$det(\nabla^2 f) = 2\sigma^4 m(m-1)(-4tr(A^T) - 4ct + 12\sigma^2(m+m(m-1)c^2)) - (8\sigma^3 m(m-1)c - 4\sigma t)^2 = 16\sigma^6 m^2(m-1) > 0$$

at the stationary points (c, σ) , therefore $\nabla^2 f$ is positive definite and so the stationary point is a minimum point.

We summarize the above discussion in the following theorem.

Theorem 3.2 Given a covariance matrix A, define $f(c, \sigma) := L(A, B(c, \sigma))$, where $B(c, \sigma)$ is a positive definite covariance matrix with compound symmetry structure as in (3.12). Then the global minimum of $f(c, \sigma)$ over $\sigma > 0$ and $c \in (-1/(m-1), 1)$ is achieved at (c, σ) given in (3.13).

3.3 AR(1)

We rewrite B in (1.6) as

$$B(c,\sigma) = \sigma^{2} \begin{bmatrix} 1 & c & \cdots & c^{m-2} & c^{m-1} \\ c & 1 & \ddots & \ddots & c^{m-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ c^{m-2} & \ddots & \ddots & 1 & c \\ c^{m-1} & c^{m-2} & \cdots & c & 1 \end{bmatrix} = \sigma^{2} \sum_{i=0}^{m-1} c^{i} T_{i}, \quad (3.14)$$

where $T_0 = I$ and T_i is a symmetric matrix with ones on the *i*th superdiagonal and subdiagonal and zeros elsewhere. It can be shown that the $k \times k$ leading principal minor of $B(c, \sigma)$ is $\sigma^{2k}(1 - c^2)^{k-1}$ for $k = 2, \dots, m$, see, e.g., [5], Prob.7.2, P12. Therefore, $B(c, \sigma)$ is a positive definite covariance matrix if and only if

$$-1 < c < 1.$$

The discrepancy function in (1.3) is now

$$f(c,\sigma) := \operatorname{tr}(A^T A) - 2\sigma^2 \sum_{i=0}^{m-1} c^i \operatorname{tr}(AT_i) + \sigma^4 (m+2\sum_{i=1}^{m-1} (m-i)c^{2i}).$$

We find that

$$\nabla f := \begin{bmatrix} \frac{\partial f}{\partial c} \\ \frac{\partial f}{\partial \sigma} \end{bmatrix} = \begin{bmatrix} -2\sigma^2 \sum_{i=1}^{m-1} ic^{i-1} \operatorname{tr}(AT_i) + 4\sigma^4 \sum_{i=1}^{m-1} (m-i)ic^{2i-1} \\ -4\sigma \sum_{i=0}^{m-1} c^i \operatorname{tr}(AT_i) + 4\sigma^3 (m+2\sum_{i=1}^{m-1} (m-i)c^{2i}) \end{bmatrix}.$$

So the stationary points (c, σ) of $f(c, \sigma)$ must satisfy

$$\begin{cases} -\sum_{i=1}^{m-1} ic^{i-1} \operatorname{tr}(AT_i) + \frac{2\sum_{i=0}^{m-1} c^i \operatorname{tr}(AT_i) \sum_{i=1}^{m-1} (m-i)ic^{2i-1}}{m+2\sum_{i=1}^{m-1} (m-i)c^{2i}} = 0, \\ \sigma^2 = \frac{\sum_{i=0}^{m-1} c^i \operatorname{tr}(AT_i)}{m+2\sum_{i=1}^{m-1} (m-i)c^{2i}}. \end{cases}$$
(3.15)

Since $m + 2\sum_{i=1}^{m-1} (m-i)c^{2i} > 0$, by rearranging the first equality in (3.15) we have

$$h(c) := -\sum_{i=1}^{m-1} i c^{i-1} \operatorname{tr}(AT_i) (m+2\sum_{i=1}^{m-1} (m-i)c^{2i}) + 2\sum_{i=0}^{m-1} c^i \operatorname{tr}(AT_i) \sum_{i=1}^{m-1} (m-i)ic^{2i-1} = 0.$$

Numerical experiments show that there exists at least one root of h(c) in (-1, 1). Equivalently, the local minima of $f(c, \sigma)$ are achieved at the points (c, σ) satisfying (3.15).

We then summarize the discussion above in the following theorem.

Theorem 3.3 Given a covariance matrix $A \in \mathbb{R}^{m \times m}$, define $f(c, \sigma) := L(A, B(c, \sigma))$ where $B(c, \sigma)$ is a positive definite covariance matrix of the AR(1) model as in (3.14). Then the local minima of $f(c, \sigma)$ are attained at the points (c, σ) satisfying (3.15).

$3.4 \quad \text{ARMA}(1,1)$

Now we consider the problem for covariance matrix with structure of $\operatorname{ARMA}(1,1)$, for which

$$B(r,c,\sigma) = \sigma^{2} \begin{bmatrix} 1 & r & rc & \cdots & rc^{m-4} & rc^{m-3} & rc^{m-2} \\ r & 1 & r & \ddots & \ddots & rc^{m-4} & rc^{m-3} \\ rc & r & 1 & \ddots & \ddots & rc^{m-4} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & rc^{m-4} \\ rc^{m-4} & \ddots & \ddots & \ddots & 1 & r & rc \\ rc^{m-3} & rc^{m-4} & \ddots & \ddots & r & 1 & r \\ rc^{m-2} & rc^{m-3} & rc^{m-4} & \cdots & rc & r & 1 \end{bmatrix} .$$
 (3.16)

Let $q(t) = 1 + 2r \sum_{k=1}^{m-1} c^{k-1} \cos(kt)$, then $B(r, c, \sigma)$ is positive-definite if and only if $q(t) \ge 0$ and $q(t) \ne 0$ for all $t \in R$ (Parter, 1962, Remark II). Now the matrix B in (3.16) can be rewritten as

$$B(r, c, \sigma) = \sigma^{2} (I + r \sum_{i=1}^{m-1} c^{i-1} T_{i}),$$

where T_i is a symmetric matrix with ones on the *i*th superdiagonal and subdiagonal and zeros elsewhere.

The discrepancy function in (1.3) is now

$$f(r,c,\sigma) = \operatorname{tr}(A^T A) + \sigma^4(m + 2r^2 \sum_{i=1}^{m-1} (m-i)c^{2(i-1)}) - 2\sigma^2(\operatorname{tr}(A) + r \sum_{i=1}^{m-1} \operatorname{tr}(AT_i)c^{i-1}).$$

We then have the gradient of f

$$\nabla f := \begin{bmatrix} \frac{\partial f}{\partial r} \\ \frac{\partial f}{\partial c} \\ \frac{\partial f}{\partial \sigma} \end{bmatrix} = \begin{bmatrix} 4\sigma^4 r \sum_{i=1}^{m-1} (m-i)c^{2(i-1)} - 2\sigma^2 \sum_{i=1}^{m-1} \operatorname{tr}(AT_i)c^{i-1} \\ 4\sigma^4 r^2 \sum_{i=2}^{m-1} (i-1)(m-i)c^{2(i-1)-1} - 2\sigma^2 r \sum_{i=2}^{m-1} (i-1)\operatorname{tr}(AT_i)c^{i-2} \\ 4\sigma^3 (m+2r^2 \sum_{i=1}^{m-1} (m-i)c^{2(i-1)}) - 4\sigma(\operatorname{tr}(A) + r \sum_{i=1}^{m-1} \operatorname{tr}(AT_i)c^{i-1}) \end{bmatrix}$$

,

so that the stationary points (r, c, σ) must satisfy

$$\begin{cases} 2\sigma^2 r \sum_{i=1}^{m-1} (m-i)c^{2(i-1)} - \sum_{i=1}^{m-1} \operatorname{tr}(AT_i)c^{i-1} = 0, \\ 2\sigma^2 r^2 \sum_{i=2}^{m-1} (i-1)(m-i)c^{2(i-1)-1} - r \sum_{i=2}^{m-1} (i-1)\operatorname{tr}(AT_i)c^{i-2} = 0, \\ \sigma^2 (m+2r^2 \sum_{i=1}^{m-1} (m-i)c^{2(i-1)}) - \operatorname{tr}(A) - r \sum_{i=1}^{m-1} \operatorname{tr}(AT_i)c^{i-1} = 0. \end{cases}$$
(3.17)

By rearranging equations in (3.17), we have

$$\begin{cases} \sigma^{2} = \frac{\operatorname{tr}(A)}{m}, \\ 2r\operatorname{tr}(A) \sum_{i=1}^{m-1} (m-i)c^{2(i-1)} - m \sum_{i=1}^{m-1} \operatorname{tr}(AT_{i})c^{i-1} = 0, \\ 2r^{2}\operatorname{tr}(A) \sum_{i=2}^{m-1} (i-1)(m-i)c^{2(i-1)-1} - mr \sum_{i=2}^{m-1} (i-1)\operatorname{tr}(AT_{i})c^{i-2} = 0. \end{cases}$$
(3.18)

Numerical experiments show that there exists at least one root of equations (3.18) which ensures $B \in \mathbb{R}^{m \times m}_+$. Equivalently, the local minima of $f(r, c, \sigma)$ are achieved at the points (r, c, σ) satisfying (3.18).

We summarize the discussion above in the following theorem.

Theorem 3.4 Given a covariance matrix $A \in \mathbb{R}^{m \times m}$, define $f(r, c, \sigma) := L(A, B(r, c, \sigma))$ where $B(c, \sigma)$ is a positive definite covariance matrix of the ARMA(1,1) model as in (3.16). Then the local minima of $f(r, c, \sigma)$ are achieved at the points (r, c, σ) satisfying (3.18).

4 Simulation studies

To examine our method, in this section we carry out simulation studies. All computations are performed with MATLAB R2008b. The root-finding problem in section 3 is solved with MATLAB fzero or fsolve.

4.1 Assessment for Gaussian data

Let m be the dimension of the covariance matrices to be tested. First, we generate an $m \times n$ data matrix Q with columns randomly drawn from the multivariate normal distribution $N(\mu, \Sigma)$, where $\mu = \mathbf{0} \in \mathbb{R}^m$ is a mean vector and Σ is a covariance matrix that have the structures as discussed in section 1. Second, we compute the sample covariance matrix A with the generated data Q. Finally, we find for each structure a covariance matrix that minimizes the discrepancy function in (1.3). We test with the true covariance matrix Σ , where for each structure we consider several different values for m, c, r and σ^2 . We choose sample size $n = 1000, m \in$ $\{100, 200\}, c \in \{0.25, 0.5, 0.75\}$ and $\sigma^2 \in \{0.5, 1, 2, 4\}$ for Σ having MA(1), CS, AR(1) structures. For Σ having an ARMA(1,1) structure we use the above n, m, cand σ^2 but consider different choices of r, including $\{0.1, 0.35, 0.6\}, \{0.2, 0.45, 0.75\}$ and $\{0.25, 0.5, 0.8\}$. We summarize the experimental results in Tables 1-3 for m =100 and in Tables 4-6 for m = 200.

Tables 1-6 are about here

In Tables 1-6 each row stands for one experiment and for each experiment we report the results averaged over 1000 repeated simulations. The first column gives the true underlying covariance structure and the second column presents the discrepancy between the true covariance matrix Σ and the sample covariance matrix Aunder the F-norm measure of discrepancy function. The rest of the columns report the results from the computed matrix B with different structures. Note that we do not include a row for Σ having MA(1) with c = 0.75 because there does not exist such a positive definite covariance matrix in this case. The notation in Tables 1-6 is summarized as follows:

- Σ : the true covariance matrix;
- A: the sample covariance matrix;
- B: the computed covariance matrix that has a certain structure and minimizes the discrepancy function L(A, B) in (1.3).
- $L_{\Sigma,A}$, $L_{A,B}$ and $L_{\Sigma,B}$: the discrepancy function $L(\Sigma, A)$, L(A, B) and $L(\Sigma, B)$, respectively.

In Tables 1-6, we have the following observations.

- (1) The matrix B having the minimum $L_{\Sigma,B}$ has the same structure as the true covariance matrix Σ and $L_{\Sigma,B} < L_{\Sigma,A}$. In other words, the regularized estimator B is much better than the sample covariance matrix A in terms of the F-norm discrepancy function. This shows that regularization of the sample covariance matrix A, is necessary not only for the convenient use of known structure but also for the accuracy of covariance estimation.
- (2) For Σ having one of the structures of MA(1), CS or AR(1), among different minimizers B, there are two structures clearly winning out in the sense of having smaller $L_{A,B}$: the one having the same structure as Σ and the AR-MA(1,1), the latter always being the best. It is not surprising for the matrix B with ARMA(1,1) structure to win out because all MA(1), CS, and AR(1) are indeed special ARMA(1,1) structures. There is no doubt that minimizing among the larger feasible set will give the smaller minimum.

Note that it is extremely important to observe the discrepancy $L_{A,B}$, because in practice the true covariance Σ is usually unknown and so is $L_{\Sigma,B}$. Thus, the discrepancy $L_{A,B}$ can be used to identify the covariance structure.

(3) The observations above are common to all choices of the structure of Σ in the class we have considered, the various values of m, c, σ^2 and r. Therefore, the findings are reliable in this sense.

4.2 Assessment for high-dimensional data

In the above simulation studies, the sample covariance matrix with sample size n = 1000 and dimension m = 100,200 is used to be the available matrix A, on which its covariance structure needs to be identified. The sample covariance matrix A considered above is nonsingular because the sample size n is much bigger than the dimension m. In some practical scenarios, the given matrix A may happen to be singular and it is natural to wonder if the proposed approach still works in this case. We therefore run a further simulation study for the case of Σ having a CS structure with c = 0.5 and $\sigma^2 = 1$. This time we draw random samples with sample size n = 500 from m-dimensional normal distribution $N(0, \Sigma)$ with m = 1000. The sample covariance matrix A becomes singular due to $n \ll m$. This experiment was repeated 1000 times. The F-norm discrepancy results averaged over the 1000 simulations are summarized in Table 7 and the parameter estimates in the simulations are presented in box-plot in Figure 1.

Tables 7 is about here

From Table 7, it is clear that the CS and ARMA(1,1) structures stand out, implying that the two structures are the likely structure of the covariance matrix Σ . Note that the ARMA(1,1) includes CS as a special case, the two structures identified are actually almost identical, see Figure 1. In Figure 1, (c_t, s_t) , (c_c, s_c) and (c_A, s_A) represent the estimates of parameters (c, σ^2) in the cases of MA(1), CS and AR(1) structures, respectively, and (r_M, c_M, s_M) is the estimate of (r, c, σ^2) for ARMA(1,1) model. Thus the CS structure is correctly identified as the structure of the covariance matrix A and then Σ . An interesting finding from Figure 1 is that, although the ARMA(1,1) model has the almost same parameter estimates as the CS structure $(c = 0.5 \text{ and } \sigma^2 = 1)$, its estimate of variance σ^2 has more variability than the one with CS structure. On the other hand, when the AR(1) is misused, the resulting estimates of parameters can be very biased.

Note here that the sample covariance matrix A is singular. This is, the proposed regularization approach works well even if the given matrix A is not nonsingular. In this case, Lin et al.'s [7] method cannot be applied as it involves the use of the inverse of the sample covariance matrix A.

4.3 Comparison with the MLE method

Although the above simulated data are generated from Gaussian distribution, we stress that the proposed method does not require a distribution assumption. A reviewer raised the issue of making comparisons with existing standard parametric methods such as maximum likelihood estimation (MLE), method of moment/Yule-Walker, least square regression method, etc. In order to save space, below we only compare the proposed approach with the MLE method by intensive simulations.

Figure 1: Box plot of parameter estimates

The comparisons are made under two assumptions, i.e., the data are Gaussian and Non-Gaussian distributions. First, for the Gaussian distribution like the above we generate an $m \times n$ data matrix with each column coming from $N(0, \Sigma)$ where Σ is of the ARMA(1,1) structure with true parameters $\sigma^2 = 1$, c = 0.5 and r =0.20, 0.45, 0.75, respectively. Our proposed approach and the standard MLE method are used to estimate the parameters and the results for 1000 runs are summarized in Table 8, from which it is observed that the proposed approach performs almost equally well as the standard MLE method.

Table 8 is about here

Second, we carry out the similar simulations but for non-Gaussian data this time. Let Q_1 is an $m \times n$ data matrix with each column being m independent samples from χ_1^2 , i.e., the chi-square distribution with one degree of freedom. Assume C is an $m \times m$ matrix of being the ARMA(1,1) structure with the same true parameters σ^2 , c and r as above. Let $Q = C^{1/2}Q_1$ then each column of Q forms a multivariate sample that is not Gaussian. Obviously, $\Sigma \equiv \operatorname{Var}(q_i) = 2C$ with q_i is the *i*th column of Q (i = 1, 2, ..., n). In other words, the covariance matrix Σ is of the ARMA(1,1) structure with $\sigma^2 = 2$, c = 0.5 and r = 0.20, 0.45, 0.75. Similarly, we compare the proposed approach to the MLE method over 1000 simulation runs and report the results in Table 9. It shows that the proposed approach is able to produce very accurate estimates for the parameters in Σ even if the data are not Gaussian. The MLE method, however, can lead to very biased estimates for the parameters in Σ when data are not Gaussian.

Table 9 is about here

4.4 Assessment for non-Gaussian data

To further investigate the performance of the proposed approach for non-Gaussian data, we conduct another simulation study, in which the simulation setup is the same as above except that this time each column of Q_1 are random samples from a Bernoulli's distribution B(p) with the probability p = 0.1, 0.3, 0.5. Note this time $\Sigma \equiv \operatorname{Var}(q_i) = p(1-p)C$. Based on the data matrix Q we form the sample matrix A and calculate various F-norm discrepancy values, reported in Table 10. From Table 10, it is clear that even if the data are not Gaussian and actually generated by a linear transformation of Bernoulli distributions, the proposed approach still performs very well and is able to find the true structure of covariance matrix, just like what it does for Gaussian data. A slight difference in format reported in Table 10 is that we have now reported the adjusted F-norm discrepancy

$$L^{*}(A,B) = \operatorname{tr}\{(A-B)^{T}(A-B)\}/\operatorname{tr}(A^{T}A).$$
(4.19)

This is because the original F-norm discrepancy defined in (1.3) is somehow in the sense of absolute error and may result in a very large value as seen in Tables 1-7.

Table 10 is about here

5 Real data analysis

In the real data analysis, we consider the regularization of covariance matrices for the synthetic control chart time series data. This data set contains 600 examples of control charts synthetically generated by the process in [1]. The control charts were assigned to six different classes: Normal, Cyclic, Increasing trend, Decreasing trend, Upward shift and Downward shift. The data set is presented in an 600×60 matrix, with a single chart per row, and the classes are organized as follows: 1-100 are the Normal class, 101-200 are the Cyclic class, 201-300 are the Increasing trend class, 301-400 are the Decreasing trend class, 401-500 are the Upward shift class, and 501-600 are the Downward shift class.

These classes of data sets as well as their pooled data were tested using three test methods, IPS, Fisher-ADF and Fisher-PP tests, for their stationarity. It is concluded that apart from the Cyclic class, other five classes as well as the pooled data of those the five classes are all stationary, after taking the first order difference so as to remove the intercept and the time trend effects. Our analysis below is then for the newly transformed data by using the first order difference. The regularization of the covariance matrices for the new data of the five classes, as well as their pooled data, is now made using the adjusted F-norm in (4.19). The numerical results are reported in Table 11, where the column "Time" gives the time (in second) spent for finding the optimal matrix B with each candidate structure.

Table 11 is about here

Note that the true covariance matrix Σ is unknown for any real data, so that $L^*_{\Sigma,A}$ and $L^*_{\Sigma,B}$ are actually not available, where the given matrix A is chosen to be the sample covariance matrix. We then use the adjusted F-norm discrepancy $L^*_{A,B}$ in (4.19) to identify the most likely covariance structure among the possible candidate structures: MA(1), CS, AR(1) and ARMA(1,1).

From Table 11, it is clear that for the transformed data using the first order difference we have reasons to believe the five classes of the new data together with their pooled data are all of MA(1) structure. Note that the ARMA(1,1) seems to have a slightly smaller F-norm discrepancy value than the MA(1), but the difference is so small that it can be ignorable. Since the MA(1) is a special case of the ARMA(1,1), it is believed that the ARMA(1,1) almost reduces to the MA(1) in this case. Therefore, the MA(1) is preferred for the new data as it is more parsimonious than the ARMA(1,1).

6 Discussion

Given a matrix A and a class of candidate covariance structures, a new method was proposed to regularize available covariance matrix A so that its underlying structure becomes clear. In other words, random noise can be filtered in this sense. Our simulation studies demonstrate the reliability of the proposed method, which filters not only random noise in A but also reveal characteristics of the stochastic process structuring the covariance matrix.

In the simulation studies and real data analysis, the available matrix A considered is taken as the sample covariance matrix. In practice, it does not have to be the sample covariance matrix. In theory, the matrix A can be any available estimate of the covariance matrix, obtained by various statistical methods. As long as A is provided, our proposed method can be used to regularize the covariance matrix Aeven if the distribution of the data is unknown, the dimension of matrix A is high, or the matrix A is singular. In particular, our simulations show that by using the sample covariance matrix the proposed method works very well in identifying the true structure of the population covariance matrix Σ even for the high-dimensional case, i.e., m >> n. In this case, the established approaches such as the maximum likelihood estimation and moment estimation may not work properly, because the inverse of the sample covariance matrix is usually involved in such methods.

We also show that, for Gaussian data with n > m, the proposed approach performs almost the same as the standard MLE method in estimation of the parameters in covariance matrices. For non-Gaussian data, the proposed approach still performs very well in estimation of the parameters. In contrast, the standard MLE method that wrongly assumes normality for non-Gaussian data results in very biased estimates of the parameters in covariance matrices. In other words, our proposed method does not require any distribution assumption for the data. As long as a reasonable covariance matrix estimate A is given, the underlying structures of the population covariance matrix Σ can be captured by regularizing the estimate of A. In this sense, the proposed approach is robust against the distribution of the data.

In addition to the four likely candidate structures considered in this paper, there are a lot of other useful covariance structures in practice, such as AR(2), AR(3), factor analytic structure, general linear structure, ARMA(p, q), banded or Toeplitz structures, etc. In theory our proposed approach is applicable to any other likely structures of covariance matrix, the corresponding optimization problem and computation may become difficult, especially when the dimension of matrix A is very high and sparse. We will investigate this problem in our future work.

A referee also raised the issue of measuring the accuracy of the parameter estimates or their confidence intervals for the covariance structures we considered. Although it may be challenging, it is interesting to study the convergence rate and the asymptotic distribution of the parameter estimates based on the sample covariance matrix by assuming certain distributional conditions of the data. Alternatively, we may use Bootstrapping resampling technique to construct the confidence intervals of the parameter estimates. However, the focus here is on regularizing the covariance matrix estimate A, aiming to find the underlying structure of the population covariance matrix Σ that is usually unknown. This issue definitely deserves a further investigation.

It is worth mentioning that there are other regularization methods in the literature such as banding, tapering, thresholding (e.g., Bickel and Levina [2], 2008; Cai and Liu [4], 2011; Pourahmadi [16], 2013), and POET (Fan, et al. [6], 2016) among others. The proposed method in this paper has a clear distinction from these methods as the aim here is to find the underlying structure of the covariance matrix from a class of candidates. An interesting issue is to compare with at least some of such literature work. We will also explore such interesting topics in our future work.

Acknowledgements

We gratefully acknowledge very helpful and constructive comments and suggestions made by three anonymous referees, which leads to significant improvements to the paper.

References

 R. J. Alcock and Y. Manolopoulos. Time-Series Similarity Queries Employing a Feature-Based Approach. 7th Hellenic Conference on Informatics. August 27-29. Ioannina, Greece, 1999.

- [2] P. J. Bickel and E. Levina. Covariance regularization by thresholding. The Annals of Statistics, 36, 2577C2604, 2008
- [3] R. Borsdorf, N. J. Higham, and M. Raydan. Computing a nearest correlation matrix with factor structure. SIAM J. Matrix Anal. Appl., 31(5): 2603-2622, 2010.
- [4] T. Cai and W. Liu. Adaptive thresholding for sparse covariance matrix estimation. Journal of the American Statistical Association, 106(494): 672C684, 2011.
- [5] J. Fan, Y. Liao and M. Mincheva. Large covariance estimation by thresholding principal orthogonal complements. *Journal of Royal Statistical Society, Series* B, 75(4), 656-658, 2013.
- [6] J. Fan, Y. Liao, and H. Liu. An overview of the estimation of large covariance and precision matrices. *The Econometrics Journal*, 19(1): C1CC32, 2016.
- [7] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition, 2002. ISBN 0-89871-521-0.
- [8] R. A. Horn and C. R. Johnson. *Matrix Analysis*. Cambridge University Press, Cambridge, UK, second edition, 2013. ISBN 978-0-521-83940-2.
- [9] F. Lin and M. R. Jovanović. Least-squares approximation of structured covariances. *IEEE Trans. Automat. Control*, 54(7): 1643-1648, 2009.
- [10] L. Lin, N. J. Higham and J. Pan. Covariance structure regularization via entropy loss function. *Computational Statistics & Data Analysis*, 72, 315327, 2014.
- [11] J. R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley, Chichester, UK, revised edition, 1999. ISBN 0-471-98633-X.
- [12] J. Pan and G. Mackenzie. On modelling mean-covariance structures in longitudinal studies. *Biometrika*, 90(1): 239-244, 2003.
- [13] S. V. Parter. An observation on the numerical solution of difference equations and a theorem of Szegö. Numerische Mathematik, 4: 293-295, 1962.
- [14] F. Pascal, Y. Chitour, J. P. Ovarlez, P. Forster, and P. Larzabal. Covariance structure maximum-likelihood estimates in compound Gaussian noise: existence and algorithm analysis. *IEEE Trans. Signal Processing*, 56(1): 34-48, 2008.

- [15] M. Pourahmadi. Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. *Biometrika*, 86(3): 677-690, 1999. ISSN 0006-3444.
- [16] M. Pourahmadi. High-Dimensional Covariance Estimation: With High-Dimensional Data. John Wiley & Sons, Inc., Hoboken, New Jersey, 2013.
- [17] V. Vinciotti and H. Hashem. Robust methods for inferring sparse network structures. Computational Statistics & Data Analysis, 67, 84-94, 2013.
- [18] H. Ye and J. Pan. Modelling of covariance structures in generalised estimating equations for longitudinal data. *Biometrika*, 93(4): 927-941, 2006. ISSN 0006-3444.

		В							
$\sigma^2 = 0.8$	50	MA	A(1)	C	S	AR	(1)	ARMA	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
MA(1)	2.5327	2.5315	0.0012	5.5630	3.0337	2.6943	0.1638	2.5309	0.0018
\mathbf{CS}	2.6833	154.1047	151.6041	2.3516	0.3317	15.9702	13.9584	2.3496	0.3337
AR(1)	2.5308	2.7341	0.2052	5.7147	3.1905	2.5294	0.0015	2.5288	0.0020
ARMA-r=0.1	2.5253	2.5571	0.0337	3.0325	0.5114	2.5363	0.0131	2.5237	0.0016
ARMA-r=0.35	2.5340	2.9336	0.4012	8.7838	6.2519	2.5848	0.0548	2.5316	0.0023
ARMA-r=0.6	2.5467	3.7187	1.1772	20.9075	18.3702	3.8263	1.2868	2.5430	0.0037
					В				
$\sigma^2 = 1$		MA	A(1)	C	S	AR	(1)	ARMA	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
MA(1)	10.1308	10.1259	0.0049	22.2522	12.1347	10.7770	0.6550	10.1235	0.0072
CS	10.7333	616.4186	606.4165	9.4064	1.3269	63.8807	55.8334	9.3983	1.3350
AR(1)	10.1233	10.9363	0.8209	22.8589	12.7620	10.1174	0.0059	10.1153	0.0080
ARMA-r=0.1	10.1012	10.2285	0.1349	12.1299	2.0457	10.1454	0.0525	10.0946	0.0065
ARMA-r=0.35	10.1359	11.7343	1.6048	35.1352	25.0077	10.3391	0.2190	10.1265	0.0094
ARMA-r=0.6	10.1869	14.8749	4.7090	83.6298	73.4807	15.3052	5.1472	10.1719	0.0150
					В				
$\sigma^2 = 2$	2	MA	A(1)	С	B	AR	(1)	ARMA	A(1,1)
$\frac{\sigma^2 = 2}{\Sigma}$	$L_{\Sigma,A}$	MA L _{A,B}	$L_{\Sigma,B}$	$L_{A,B}$	$\frac{B}{S}$ $L_{\Sigma,B}$	$\frac{AR}{L_{A,B}}$	$(1) \\ L_{\Sigma,B}$	$\begin{array}{c} \text{ARMA} \\ L_{A,B} \end{array}$	$\frac{A(1,1)}{L_{\Sigma,B}}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}}$	$L_{\Sigma,A}$ 40.5230	$\begin{tabular}{c} & MA \\ \hline & L_{A,B} \\ \hline & 40.5035 \end{tabular}$	$L_{\Sigma,B} = 0.0195$	$L_{A,B}$ 89.0088	$\frac{B}{L_{\Sigma,B}}$ 48.5388	$\begin{array}{c} & \text{AR} \\ \\ \hline L_{A,B} \\ \hline 43.1081 \end{array}$	(1) $L_{\Sigma,B}$ 2.6201	$\begin{array}{c} \text{ARMA}\\ \hline L_{A,B}\\ \hline 40.4940 \end{array}$	A(1,1) $L_{\Sigma,B}$ 0.0290
$\frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}}$	$L_{\Sigma,A}$ 40.5230 42.9331	$\begin{tabular}{c} & MA \\ \hline $L_{A,B}$ \\ \hline 40.5035 \\ 2465.6745 \\ \end{tabular}$	$L_{\Sigma,B}$ 0.0195 2425.6661	$\begin{array}{c} & C \\ L_{A,B} \\ 89.0088 \\ 37.6255 \end{array}$	$ B \\ S \\ \underline{L_{\Sigma,B}} \\ 48.5388 \\ 5.3076 $	AR $L_{A,B}$ 43.1081 255.5229	$ \begin{array}{r} (1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 $	$\frac{ARMA}{L_{A,B}}$ 40.4940 37.5931	$egin{array}{c} \Lambda(1,1) & \ L_{\Sigma,B} & \ 0.0290 & \ 5.3399 & \ \end{array}$
$ \frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}} $ $ \frac{MA(1)}{CS} $ $ AR(1) $	$L_{\Sigma,A}$ 40.5230 42.9331 40.4932	$\begin{tabular}{ c c c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 40.5035 \\ \hline 2465.6745 \\ \hline 43.7452 \\ \hline \end{tabular}$	$\begin{array}{c} \Lambda(1) \\ L_{\Sigma,B} \\ 0.0195 \\ 2425.6661 \\ 3.2836 \end{array}$	$\begin{array}{c} & \\ & L_{A,B} \\ \hline 89.0088 \\ 37.6255 \\ 91.4355 \end{array}$	$ B S L_{\Sigma,B} 48.5388 5.3076 51.0478 $	$\begin{array}{c} & {\rm AR} \\ L_{A,B} \\ 43.1081 \\ 255.5229 \\ 40.4697 \end{array}$	$(1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 \\ 0.0235 \\ \end{cases}$	$\begin{array}{c} \text{ARMA} \\ L_{A,B} \\ 40.4940 \\ 37.5931 \\ 40.4613 \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0290 \\ \hline 5.3399 \\ 0.0319 \end{array}$
$ \frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}} $ $ \frac{MA(1)}{CS} $ $ \frac{AR(1)}{ARMA-r=0.1} $	$\begin{array}{c} L_{\Sigma,A} \\ 40.5230 \\ 42.9331 \\ 40.4932 \\ 40.4047 \end{array}$	$\begin{tabular}{ c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 40.5035 \\ \hline 2465.6745 \\ \hline 43.7452 \\ \hline 40.9139 \\ \hline \end{tabular}$	$L_{\Sigma,B}$ 0.0195 2425.6661 3.2836 0.5394	$\begin{array}{c} & C\\ L_{A,B}\\ 89.0088\\ 37.6255\\ 91.4355\\ 48.5194 \end{array}$	$\begin{tabular}{ c c c c c } \hline B \\ \hline S \\ \hline $L_{\Sigma,B}$ \\ \hline 48.5388 \\ \hline 5.3076 \\ \hline 51.0478 \\ \hline 8.1828 \\ \hline \end{tabular}$	$\begin{tabular}{c} AR \\ $L_{A,B}$ \\ 43.1081 \\ 255.5229 \\ 40.4697 \\ 40.5814 \\ \end{tabular}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 \\ 0.0235 \\ 0.2098 \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.4940\\ 37.5931\\ 40.4613\\ 40.3786 \end{array}$	$\begin{array}{c} A(1,1) \\ L_{\Sigma,B} \\ 0.0290 \\ 5.3399 \\ 0.0319 \\ 0.0262 \end{array}$
$\boxed{\begin{array}{c} \sigma^2 = 2\\ \overline{\Sigma}\\ \overline{MA(1)}\\ \overline{CS}\\ \overline{AR(1)}\\ \overline{ARMA-r=0.1}\\ \overline{ARMA-r=0.35} \end{array}}$	$\begin{array}{c} L_{\Sigma,A} \\ 40.5230 \\ 42.9331 \\ 40.4932 \\ 40.4047 \\ 40.5435 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L_{\Sigma,B} \\ 0.0195 \\ 2425.6661 \\ 3.2836 \\ 0.5394 \\ 6.4191 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 89.0088\\ 37.6255\\ 91.4355\\ 48.5194\\ 140.5408 \end{array}$	$\begin{array}{r} & & B \\ \hline S \\ \hline L_{\Sigma,B} \\ 48.5388 \\ \hline 5.3076 \\ \hline 51.0478 \\ \hline 8.1828 \\ \hline 100.0307 \end{array}$	$\begin{array}{c} & {\rm AR} \\ \\ \underline{L}_{A,B} \\ 43.1081 \\ 255.5229 \\ 40.4697 \\ 40.5814 \\ 41.3564 \end{array}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 \\ 0.0235 \\ 0.2098 \\ 0.8761 \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.4940\\ 37.5931\\ 40.4613\\ 40.3786\\ 40.5060\\ \end{array}$	$egin{array}{c} A(1,1) & L_{\Sigma,B} & \ 0.0290 & \ 5.3399 & \ 0.0319 & \ 0.0262 & \ 0.0375 & \ \end{array}$
$\boxed{\begin{array}{c} \sigma^2 = 2\\ \overline{\Sigma}\\ \hline MA(1)\\ \hline CS\\ AR(1)\\ \hline ARMA-r=0.1\\ \hline ARMA-r=0.35\\ \hline ARMA-r=0.6\\ \end{array}}$	$L_{\Sigma,A}$ 40.5230 42.9331 40.4932 40.4047 40.5435 40.7475	$\begin{tabular}{ c c c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 40.5035 \\ \hline 2465.6745 \\ \hline 43.7452 \\ \hline 40.9139 \\ \hline 46.9372 \\ \hline 59.4996 \\ \hline \end{tabular}$	$L_{\Sigma,B}$ 0.0195 2425.6661 3.2836 0.5394 6.4191 18.8360	$\begin{array}{c} & C\\ L_{A,B}\\ 89.0088\\ 37.6255\\ 91.4355\\ 48.5194\\ 140.5408\\ 334.5192 \end{array}$	$\begin{array}{r} & B \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 48.5388 \\ \hline 5.3076 \\ \hline 51.0478 \\ \hline 8.1828 \\ \hline 100.0307 \\ \hline 293.9228 \end{array}$	$\begin{array}{c} & {\rm AR} \\ \\ \underline{L}_{A,B} \\ 43.1081 \\ 255.5229 \\ 40.4697 \\ 40.5814 \\ 41.3564 \\ 61.2207 \end{array}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 \\ 0.0235 \\ 0.2098 \\ 0.8761 \\ 20.5887 \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.4940\\ 37.5931\\ 40.4613\\ 40.3786\\ 40.5060\\ 40.6876\end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0290 \\ 5.3399 \\ 0.0319 \\ 0.0262 \\ 0.0375 \\ 0.0600 \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{\Sigma}{\text{MA}(1)}}}$ $\frac{\text{CS}}{\text{AR}(1)}$ $\frac{\text{ARMA-r=0.1}}{\text{ARMA-r=0.35}}$ $\frac{\text{ARMA-r=0.6}}{\text{ARMA-r=0.6}}$	$L_{\Sigma,A}$ 40.5230 42.9331 40.4932 40.4047 40.5435 40.7475	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L_{\Sigma,B} \\ 0.0195 \\ 2425.6661 \\ 3.2836 \\ 0.5394 \\ 6.4191 \\ 18.8360 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 89.0088\\ 37.6255\\ 91.4355\\ 48.5194\\ 140.5408\\ 334.5192\\ \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline {\rm S} \\ \hline L_{\Sigma,B} \\ 48.5388 \\ \hline 5.3076 \\ \hline 51.0478 \\ 8.1828 \\ 100.0307 \\ \hline 293.9228 \\ \hline {\rm B} \end{array}$	$\begin{array}{c} & {\rm AR} \\ \\ \underline{L}_{A,B} \\ 43.1081 \\ 255.5229 \\ 40.4697 \\ 40.5814 \\ 41.3564 \\ 61.2207 \end{array}$	$(1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 \\ 0.0235 \\ 0.2098 \\ 0.8761 \\ 20.5887 \\ (1)$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.4940\\ 37.5931\\ 40.4613\\ 40.3786\\ 40.5060\\ 40.6876\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0290 \\ 5.3399 \\ 0.0319 \\ 0.0262 \\ 0.0375 \\ 0.0600 \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.1 ARMA-r=0.35 ARMA-r=0.6 $\sigma^{2} = 4$	$L_{\Sigma,A}$ 40.5230 42.9331 40.4932 40.4047 40.5435 40.7475	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L_{\Sigma,B} \\ 0.0195 \\ 2425.6661 \\ 3.2836 \\ 0.5394 \\ 6.4191 \\ 18.8360 \\ \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ \hline 89.0088\\ \hline 37.6255\\ 91.4355\\ \hline 48.5194\\ \hline 140.5408\\ \hline 334.5192\\ \hline \end{array}$	$\begin{array}{c} & & B \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 48.5388 \\ \hline 5.3076 \\ \hline 51.0478 \\ \hline 8.1828 \\ \hline 100.0307 \\ \hline 293.9228 \\ \hline B \\ \hline S \\ \hline \end{array}$	$\begin{array}{c} & \text{AR} \\ \hline L_{A,B} \\ \hline 43.1081 \\ 255.5229 \\ 40.4697 \\ \hline 40.5814 \\ \hline 41.3564 \\ \hline 61.2207 \\ \hline \\ \text{AR} \\ \hline \end{array}$	$(1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 \\ 0.0235 \\ 0.2098 \\ 0.8761 \\ 20.5887 \\ (1) \\ -$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.4940\\ 37.5931\\ 40.4613\\ 40.3786\\ 40.5060\\ 40.6876\\ \hline \\ \text{ARMA}\\ \hline \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0290 \\ 5.3399 \\ 0.0319 \\ 0.0262 \\ 0.0375 \\ 0.0600 \\ \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{\Sigma}{\frac{MA(1)}{CS}}}}$ $\frac{AR(1)}{ARMA-r=0.1}$ $\frac{ARMA-r=0.35}{ARMA-r=0.6}$ $\frac{\sigma^2 = 4}{\frac{\Sigma}{\frac{\Sigma}{\frac{\Sigma}{\frac{\Delta}{\Delta}}}}}$	$L_{\Sigma,A}$ 40.5230 42.9331 40.4932 40.4047 40.5435 40.7475 40.7475	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L_{\Sigma,B} \\ \hline \\ 0.0195 \\ 2425.6661 \\ \hline \\ 3.2836 \\ \hline \\ 0.5394 \\ \hline \\ 6.4191 \\ \hline \\ 18.8360 \\ \hline \\ A(1) \\ \hline \\ L_{\Sigma,B} \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ \hline 89.0088\\ 37.6255\\ 91.4355\\ 48.5194\\ 140.5408\\ 334.5192\\ \hline \\ C\\ L_{A,B}\\ \end{array}$	$\begin{array}{r} & & {\rm B} \\ \hline {\rm S} \\ \hline L_{\Sigma,B} \\ 48.5388 \\ \hline 5.3076 \\ \hline 51.0478 \\ 8.1828 \\ 100.0307 \\ \hline 293.9228 \\ \hline {\rm B} \\ \hline {\rm S} \\ \hline L_{\Sigma,B} \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$(1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 \\ 0.0235 \\ 0.2098 \\ 0.8761 \\ 20.5887 \\ (1) \\ L_{\Sigma,B} $	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.4940\\ 37.5931\\ 40.4613\\ 40.3786\\ 40.5060\\ 40.6876\\ \hline\\ \text{ARMA}\\ L_{A,B} \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0290 \\ 5.3399 \\ 0.0319 \\ 0.0262 \\ 0.0375 \\ 0.0600 \\ \hline \Lambda(1,1) \\ L_{\Sigma,B} \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{\Sigma}{\frac{MA(1)}{CS}}}}$ $\frac{AR(1)}{ARMA-r=0.1}$ $\frac{ARMA-r=0.35}{ARMA-r=0.6}$ $\frac{\sigma^2 = 4}{\frac{\Sigma}{\frac{MA(1)}{2}}}$	$L_{\Sigma,A}$ 40.5230 42.9331 40.4932 40.4047 40.5435 40.7475 40.7475 40.7475	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L_{\Sigma,B} \\ \hline \\ 0.0195 \\ 2425.6661 \\ \hline \\ 3.2836 \\ 0.5394 \\ \hline \\ 6.4191 \\ 18.8360 \\ \hline \\ L_{\Sigma,B} \\ \hline \\ 0.0780 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ \hline 89.0088\\ 37.6255\\ 91.4355\\ 48.5194\\ 140.5408\\ 334.5192\\ \hline \\ C\\ L_{A,B}\\ 356.0350\\ \end{array}$	$\begin{array}{r} & & B \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 48.5388 \\ \hline 5.3076 \\ \hline 51.0478 \\ \hline 8.1828 \\ \hline 100.0307 \\ \hline 293.9228 \\ \hline B \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 194.1550 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$(1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 \\ 0.0235 \\ 0.2098 \\ 0.8761 \\ 20.5887 \\ (1) \\ L_{\Sigma,B} \\ 10.4803 \\ (1)$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.4940\\ 37.5931\\ 40.4613\\ 40.3786\\ 40.5060\\ 40.6876\\ \hline\\ \text{ARMA}\\ L_{A,B}\\ 161.9761\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0290 \\ 5.3399 \\ 0.0319 \\ 0.0262 \\ 0.0375 \\ 0.0600 \\ \hline \\ \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.1159 \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.1 ARMA-r=0.35 ARMA-r=0.6 $\sigma^{2} = 4$ Σ MA(1) CS	$L_{\Sigma,A}$ 40.5230 42.9331 40.4932 40.4047 40.5435 40.7475 40.7475 40.7475 40.7475 40.7475	$\begin{tabular}{ c c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 40.5035 \\ \hline 2465.6745 \\ \hline 43.7452 \\ \hline 40.9139 \\ \hline 46.9372 \\ \hline 59.4996 \\ \hline MA \\ \hline $L_{A,B}$ \\ \hline 162.0140 \\ \hline 9862.6978 \\ \hline \end{tabular}$	$\begin{array}{c} L_{\Sigma,B} \\ \hline \\ 0.0195 \\ 2425.6661 \\ \hline \\ 3.2836 \\ \hline \\ 0.5394 \\ \hline \\ 6.4191 \\ \hline \\ 18.8360 \\ \hline \\ (1) \\ \hline \\ L_{\Sigma,B} \\ \hline \\ 0.0780 \\ \hline \\ 9702.6643 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 89.0088\\ 37.6255\\ 91.4355\\ 48.5194\\ 140.5408\\ 334.5192\\ \hline \\ C\\ L_{A,B}\\ 356.0350\\ 150.5020\\ \end{array}$	$\begin{array}{r} & & B \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 48.5388 \\ \hline 5.3076 \\ \hline 51.0478 \\ \hline 8.1828 \\ \hline 100.0307 \\ \hline 293.9228 \\ \hline B \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 194.1550 \\ \hline 21.2303 \\ \hline \end{array}$	$\begin{array}{c} & {\rm AR} \\ \\ L_{A,B} \\ \\ 43.1081 \\ 255.5229 \\ 40.4697 \\ 40.5814 \\ \\ 41.3564 \\ 61.2207 \\ \\ \\ \\ \\ \\ L_{A,B} \\ \\ 172.4323 \\ \\ 1022.0915 \\ \end{array}$	$(1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 \\ 0.0235 \\ 0.2098 \\ 0.8761 \\ 20.5887 \\ (1) \\ L_{\Sigma,B} \\ 10.4803 \\ 893.3348 \\ \end{cases}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.4940\\ 37.5931\\ 40.4613\\ 40.3786\\ 40.5060\\ 40.6876\\ \hline\\ \text{ARMA}\\ L_{A,B}\\ 161.9761\\ 150.3725\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0290 \\ 5.3399 \\ 0.0319 \\ 0.0262 \\ 0.0375 \\ 0.0600 \\ \hline \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.1159 \\ 21.3597 \\ \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.1 ARMA-r=0.35 ARMA-r=0.6 $\sigma^{2} = 4$ Σ MA(1) CS AR(1) CS AR(1)	$L_{\Sigma,A}$ 40.5230 42.9331 40.4932 40.4047 40.5435 40.7475 40.75755 40.75755 40.757555 40.7575555555555555555555555555555555555	$\begin{tabular}{ c c c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 40.5035 \\ \hline 2465.6745 \\ \hline 43.7452 \\ \hline 40.9139 \\ \hline 46.9372 \\ \hline 59.4996 \\ \hline MA \\ \hline $L_{A,B}$ \\ \hline 162.0140 \\ \hline 9862.6978 \\ \hline 174.9810 \\ \hline \end{tabular}$	$\begin{array}{c} L_{\Sigma,B} \\ \hline L_{\Sigma,B} \\ \hline 0.0195 \\ 2425.6661 \\ \hline 3.2836 \\ \hline 0.5394 \\ \hline 6.4191 \\ \hline 18.8360 \\ \hline \\ L_{\Sigma,B} \\ \hline 0.0780 \\ \hline 9702.6643 \\ \hline 13.1344 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 89.0088\\ 37.6255\\ 91.4355\\ 48.5194\\ 140.5408\\ 334.5192\\ \hline \\ C\\ L_{A,B}\\ 356.0350\\ 150.5020\\ 365.7421\\ \end{array}$	$\begin{array}{r} & & B \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 48.5388 \\ \hline 5.3076 \\ \hline 51.0478 \\ \hline 8.1828 \\ \hline 100.0307 \\ \hline 293.9228 \\ \hline B \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 194.1550 \\ \hline 21.2303 \\ \hline 204.1913 \\ \hline \end{array}$	$\begin{array}{c} & {\rm AR} \\ & L_{A,B} \\ & 43.1081 \\ & 255.5229 \\ & 40.4697 \\ & 40.5814 \\ & 41.3564 \\ & 61.2207 \\ \\ & {\rm AR} \\ & L_{A,B} \\ & 172.4323 \\ & 1022.0915 \\ & 161.8790 \\ \end{array}$	$(1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 \\ 0.0235 \\ 0.2098 \\ 0.8761 \\ 20.5887 \\ (1) \\ L_{\Sigma,B} \\ 10.4803 \\ 893.3348 \\ 0.0940 \\ (1)$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.4940\\ 37.5931\\ 40.4613\\ 40.3786\\ 40.5060\\ 40.6876\\ \hline\\ \text{ARMA}\\ L_{A,B}\\ 161.9761\\ 150.3725\\ 161.8454\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0290 \\ 5.3399 \\ 0.0319 \\ 0.0262 \\ 0.0375 \\ 0.0600 \\ \hline \\ \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.1159 \\ 21.3597 \\ 0.1276 \\ \end{array}$
$\boxed{\begin{array}{c} \sigma^2 = 2\\ \Sigma\\ \hline MA(1)\\ \hline CS\\ AR(1)\\ \hline ARMA-r=0.1\\ \hline ARMA-r=0.35\\ \hline ARMA-r=0.6\\ \hline \\ \sigma^2 = 4\\ \hline \\ \Sigma\\ \hline \\ MA(1)\\ \hline \\ CS\\ \hline \\ AR(1)\\ \hline \\ ARMA-r=0.1\\ \hline \end{array}}$	$L_{\Sigma,A}$ 40.5230 42.9331 40.4932 40.4047 40.5435 40.7475 40.7475 40.7475 40.7475 162.0920 171.7322 161.9729 161.6188	$\begin{tabular}{ c c c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 40.5035 \\ \hline 2465.6745 \\ \hline 43.7452 \\ \hline 40.9139 \\ \hline 46.9372 \\ \hline 59.4996 \\ \hline MA \\ \hline $L_{A,B}$ \\ \hline 162.0140 \\ \hline 9862.6978 \\ \hline 174.9810 \\ \hline 163.6558 \\ \hline \end{tabular}$	$\begin{array}{c} L(1) \\ L_{\Sigma,B} \\ 0.0195 \\ 2425.6661 \\ 3.2836 \\ 0.5394 \\ 6.4191 \\ 18.8360 \\ L(1) \\ L_{\Sigma,B} \\ 0.0780 \\ 9702.6643 \\ 13.1344 \\ 2.1576 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 89.0088\\ 37.6255\\ 91.4355\\ 48.5194\\ 140.5408\\ 334.5192\\ \hline \\ C\\ L_{A,B}\\ 356.0350\\ 150.5020\\ 365.7421\\ 194.0777\\ \end{array}$	$\begin{array}{r} & & & & \\ & & & \\ S \\ \hline & & & \\ & &$	$\begin{array}{c} & {\rm AR} \\ & L_{A,B} \\ & 43.1081 \\ & 255.5229 \\ & 40.4697 \\ & 40.5814 \\ & 41.3564 \\ & 61.2207 \\ \\ & {\rm AR} \\ & L_{A,B} \\ & 172.4323 \\ & 1022.0915 \\ & 161.8790 \\ & 162.3257 \\ \end{array}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 \\ 0.0235 \\ 0.2098 \\ 0.8761 \\ 20.5887 \\ (1) \\ L_{\Sigma,B} \\ 10.4803 \\ 893.3348 \\ 0.0940 \\ 0.8392 \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.4940\\ 37.5931\\ 40.4613\\ 40.3786\\ 40.5060\\ 40.6876\\ \hline\\ \text{ARMA}\\ L_{A,B}\\ 161.9761\\ 150.3725\\ 161.8454\\ 161.5142\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0290 \\ 5.3399 \\ 0.0319 \\ 0.0262 \\ 0.0375 \\ 0.0600 \\ \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.1159 \\ 21.3597 \\ 0.1276 \\ 0.1048 \\ \end{array}$
$\boxed{\begin{array}{c} \sigma^2 = 2\\ \Sigma\\ \hline MA(1)\\ \hline CS\\ AR(1)\\ \hline ARMA-r=0.1\\ \hline ARMA-r=0.35\\ \hline ARMA-r=0.6\\ \hline \\ \sigma^2 = 4\\ \hline \\ \Sigma\\ \hline MA(1)\\ \hline CS\\ \hline AR(1)\\ \hline \\ ARMA-r=0.1\\ \hline \\ ARMA-r=0.35\\ \hline \end{array}}$	$L_{\Sigma,A}$ 40.5230 42.9331 40.4932 40.4047 40.5435 40.7475 40.7475 $L_{\Sigma,A}$ 162.0920 171.7322 161.9729 161.6188 162.1740	$\begin{tabular}{ c c c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 40.5035 \\ \hline 2465.6745 \\ \hline 43.7452 \\ \hline 40.9139 \\ \hline 46.9372 \\ \hline 59.4996 \\ \hline MA \\ \hline $L_{A,B}$ \\ \hline 162.0140 \\ \hline 9862.6978 \\ \hline 174.9810 \\ \hline 163.6558 \\ \hline 187.7489 \\ \hline \end{tabular}$	$\begin{array}{c} L(1) \\ L_{\Sigma,B} \\ 0.0195 \\ 2425.6661 \\ 3.2836 \\ 0.5394 \\ 6.4191 \\ 18.8360 \\ L(1) \\ L_{\Sigma,B} \\ 0.0780 \\ 9702.6643 \\ 13.1344 \\ 2.1576 \\ 25.6766 \\ \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 89.0088\\ 37.6255\\ 91.4355\\ 48.5194\\ 140.5408\\ 334.5192\\ \hline \\ C\\ L_{A,B}\\ 356.0350\\ 150.5020\\ 365.7421\\ 194.0777\\ 562.1630\\ \end{array}$	$\begin{array}{r} & & & B \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 48.5388 \\ \hline 5.3076 \\ \hline 51.0478 \\ \hline 8.1828 \\ \hline 100.0307 \\ \hline 293.9228 \\ \hline B \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 194.1550 \\ \hline 21.2303 \\ \hline 204.1913 \\ \hline 32.7313 \\ \hline 400.1229 \\ \end{array}$	$\begin{array}{c} & {\rm AR} \\ & L_{A,B} \\ & 43.1081 \\ & 255.5229 \\ & 40.4697 \\ & 40.5814 \\ & 41.3564 \\ & 61.2207 \\ \\ & {\rm AR} \\ & L_{A,B} \\ & 172.4323 \\ & 1022.0915 \\ & 161.8790 \\ & 162.3257 \\ & 165.4256 \\ \end{array}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 2.6201 \\ 223.3337 \\ 0.0235 \\ 0.2098 \\ 0.8761 \\ 20.5887 \\ (1) \\ L_{\Sigma,B} \\ 10.4803 \\ 893.3348 \\ 0.0940 \\ 0.8392 \\ 3.5043 \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.4940\\ 37.5931\\ 40.4613\\ 40.3786\\ 40.5060\\ 40.6876\\ \hline\\ \text{ARMA}\\ L_{A,B}\\ 161.9761\\ 150.3725\\ 161.8454\\ 161.5142\\ 162.0241\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0290 \\ 5.3399 \\ 0.0319 \\ 0.0262 \\ 0.0375 \\ 0.0600 \\ \hline \\ \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.1159 \\ 21.3597 \\ 0.1276 \\ 0.1048 \\ 0.1501 \\ \end{array}$

Table 1: Simulation results with m = 100; c = 0.25.

0				-	В				
$\sigma^2 = 0.8$	50	MA	(1)	C	s	AR	t(1)	ARMA	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
MA(1)	2.5443	2.5426	0.0017	14.6677	12.1304	4.3834	1.8420	2.5418	0.0025
\mathbf{CS}	3.1941	608.7943	606.4146	1.8749	1.3192	7.9307	7.3818	1.8724	1.3217
AR(1)	2.5452	6.6103	4.0714	18.0074	15.4796	2.5413	0.0040	2.5405	0.0047
ARMA-r=0.2	2.5275	3.1773	0.6524	4.9969	2.4780	2.7801	0.2556	2.5251	0.0025
ARMA-r=0.45	2.5410	5.8378	3.2980	15.0778	12.5387	2.5632	0.0294	2.5367	0.0044
ARMA-r=0.75	2.5657	11.7168	9.1595	37.3788	34.8265	3.5500	1.0001	2.5574	0.0083
					В				
$\sigma^2 = 1$	-	MA(1) CS AR(1)			(1)	ARMA	A(1,1)		
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
MA(1)	10.1773	10.1704	0.0069	58.6707	48.5216	17.5336	7.3679	10.1673	0.0100
\mathbf{CS}	12.7764	2435.1774	2425.6584	7.4996	5.2768	31.7229	29.5270	7.4896	5.2867
AR(1)	10.1809	26.4412	16.2858	72.0295	61.9184	10.1651	0.0158	10.1621	0.0188
ARMA-r=0.2	10.1101	12.7090	2.6095	19.9875	9.9118	11.1202	1.0225	10.1003	0.0098
ARMA-r=0.45	10.1641	23.3513	13.1920	60.3113	50.1550	10.2527	0.1174	10.1467	0.0174
ARMA-r=0.75	10.2628	46.8672	36.6379	149.5151	139.3059	14.2002	4.0003	10.2296	0.0332
					В				
$\sigma^2 = 2$	2	MA	A(1)	С	B	AR	a(1)	ARMA	A(1,1)
$\frac{\sigma^2 = 2}{\Sigma}$	$L_{\Sigma,A}$	MA L _{A,B}	$L_{\Sigma,B}$	$L_{A,B}$	${\rm B}$	AR $L_{A,B}$	L(1) $L_{\Sigma,B}$	$ARMA$ $L_{A,B}$	A(1,1) $L_{\Sigma,B}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}}$	$L_{\Sigma,A}$ 40.7091	$\begin{tabular}{c} & & & \\ \hline & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	$L_{\Sigma,B} = 0.0275$	$\begin{array}{c} & \\ & \\ L_{A,B} \\ 234.6828 \end{array}$	$\frac{\text{B}}{L_{\Sigma,B}}$ 194.0864	AR $L_{A,B}$ 70.1342	L(1) $L_{\Sigma,B}$ 29.4718	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.6691 \end{array}$	A(1,1) $L_{\Sigma,B}$ 0.0400
$\frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}}$	$L_{\Sigma,A}$ 40.7091 51.1055	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$L_{\Sigma,B}$ 0.0275 9702.6337	$\begin{array}{c} & \\ & \\ \hline L_{A,B} \\ \hline 234.6828 \\ \hline 29.9984 \end{array}$	$\frac{B}{2S} \\ \frac{L_{\Sigma,B}}{194.0864} \\ 21.1070 \\ \end{array}$	$\begin{array}{c} & \text{AR} \\ \hline L_{A,B} \\ \hline 70.1342 \\ 126.8915 \end{array}$	$ \frac{L_{\Sigma,B}}{29.4718} \\ 118.1081 $	$\begin{array}{c} \text{ARMA} \\ L_{A,B} \\ 40.6691 \\ 29.9586 \end{array}$	$ \begin{array}{r} A(1,1) \\ L_{\Sigma,B} \\ \hline 0.0400 \\ \hline 21.1469 \end{array} $
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{MA(1)}{CS}}}$	$L_{\Sigma,A}$ 40.7091 51.1055 40.7236	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L_{\Sigma,B} \\ \hline 0.0275 \\ 9702.6337 \\ \hline 65.1431 \end{array}$	$\begin{array}{c} & C \\ L_{A,B} \\ 234.6828 \\ 29.9984 \\ 288.1179 \end{array}$	$\begin{array}{r} & \text{B} \\ \hline \\ S \\ \hline \\ 194.0864 \\ \hline \\ 21.1070 \\ \hline \\ 247.6735 \end{array}$	$\begin{array}{c} & AR \\ \hline L_{A,B} \\ \hline 70.1342 \\ 126.8915 \\ \hline 40.6603 \end{array}$	L(1) $L_{\Sigma,B}$ 29.4718 118.1081 0.0634	$\begin{array}{c} \text{ARMA} \\ L_{A,B} \\ 40.6691 \\ 29.9586 \\ 40.6483 \end{array}$	$\begin{array}{r} A(1,1) \\ L_{\Sigma,B} \\ 0.0400 \\ \hline 21.1469 \\ 0.0753 \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{MA(1)}{CS}}}$	$\begin{array}{c} L_{\Sigma,A} \\ 40.7091 \\ 51.1055 \\ 40.7236 \\ 40.4406 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L_{\Sigma,B} \\ \hline 0.0275 \\ 9702.6337 \\ \hline 65.1431 \\ 10.4379 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 234.6828\\ 29.9984\\ 288.1179\\ 79.9501 \end{array}$	$\begin{array}{r} & \text{B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 194.0864 \\ \hline 21.1070 \\ \hline 247.6735 \\ \hline 39.6472 \end{array}$	$\begin{array}{c} & {\rm AR} \\ L_{A,B} \\ \hline 70.1342 \\ 126.8915 \\ 40.6603 \\ 44.4809 \end{array}$	$\begin{array}{c} L(1) \\ \underline{L}_{\Sigma,B} \\ 29.4718 \\ 118.1081 \\ 0.0634 \\ 4.0900 \end{array}$	$\begin{array}{c} \text{ARM} \\ L_{A,B} \\ 40.6691 \\ 29.9586 \\ 40.6483 \\ 40.4013 \end{array}$	$\begin{array}{c} A(1,1) \\ L_{\Sigma,B} \\ 0.0400 \\ 21.1469 \\ 0.0753 \\ 0.0393 \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}}$ $\frac{MA(1)}{CS}$ $\frac{AR(1)}{ARMA-r=0.2}$ $\frac{ARMA-r=0.45}{ARMA-r=0.45}$	$\begin{array}{c} L_{\Sigma,A} \\ 40.7091 \\ 51.1055 \\ 40.7236 \\ 40.4406 \\ 40.6563 \end{array}$	$\begin{tabular}{ c c c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 40.6816 \\ \hline 9740.7095 \\ \hline 105.7649 \\ \hline 50.8361 \\ \hline 93.4052 \\ \hline \end{tabular}$	$\begin{array}{c} L(1) \\ L_{\Sigma,B} \\ 0.0275 \\ 9702.6337 \\ 65.1431 \\ 10.4379 \\ 52.7681 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 234.6828\\ 29.9984\\ 288.1179\\ 79.9501\\ 241.2454 \end{array}$	$\begin{array}{r} & B \\ \hline L_{\Sigma,B} \\ \hline 194.0864 \\ \hline 21.1070 \\ \hline 247.6735 \\ \hline 39.6472 \\ \hline 200.6198 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L(1) \\ \hline L_{\Sigma,B} \\ 29.4718 \\ \hline 118.1081 \\ \hline 0.0634 \\ \hline 4.0900 \\ \hline 0.4697 \end{array}$	$\begin{array}{c} \text{ARM} \\ L_{A,B} \\ 40.6691 \\ 29.9586 \\ 40.6483 \\ 40.4013 \\ 40.5867 \end{array}$	$\begin{array}{c} A(1,1) \\ \hline L_{\Sigma,B} \\ 0.0400 \\ 21.1469 \\ \hline 0.0753 \\ 0.0393 \\ 0.0697 \end{array}$
$\frac{\sigma^2 = 2}{\Sigma}$ $\frac{MA(1)}{CS}$ $\frac{AR(1)}{ARMA-r=0.2}$ $\frac{ARMA-r=0.45}{ARMA-r=0.75}$	$L_{\Sigma,A}$ 40.7091 51.1055 40.7236 40.4406 40.6563 41.0512	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L(1) \\ L_{\Sigma,B} \\ 0.0275 \\ 9702.6337 \\ 65.1431 \\ 10.4379 \\ 52.7681 \\ 146.5514 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 234.6828\\ 29.9984\\ 288.1179\\ 79.9501\\ 241.2454\\ 598.0605\\ \end{array}$	$\begin{array}{r} & B \\ \hline L_{\Sigma,B} \\ \hline 194.0864 \\ \hline 21.1070 \\ 247.6735 \\ \hline 39.6472 \\ \hline 200.6198 \\ \hline 557.2238 \end{array}$	$\begin{array}{c} & {\rm AR} \\ \hline L_{A,B} \\ \hline 70.1342 \\ 126.8915 \\ \hline 40.6603 \\ \hline 44.4809 \\ \hline 41.0107 \\ \hline 56.8007 \end{array}$	$\begin{array}{c} L(1)\\ L_{\Sigma,B}\\ \hline 29.4718\\ 118.1081\\ 0.0634\\ 4.0900\\ \hline 0.4697\\ 16.0012\\ \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.6691\\ 29.9586\\ 40.6483\\ 40.4013\\ 40.5867\\ 40.9186\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ {\rm $L_{\Sigma,B}$}\\ {\rm 0.0400}\\ {\rm 21.1469}\\ {\rm 0.0753}\\ {\rm 0.0393}\\ {\rm 0.0697}\\ {\rm 0.1327} \end{array}$
$\sigma^2 = 2$ Σ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75	$L_{\Sigma,A}$ 40.7091 51.1055 40.7236 40.4406 40.6563 41.0512	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L(1) \\ L_{\Sigma,B} \\ 0.0275 \\ 9702.6337 \\ 65.1431 \\ 10.4379 \\ 52.7681 \\ 146.5514 \end{array}$	$\begin{array}{c} C\\ L_{A,B}\\ 234.6828\\ 29.9984\\ 288.1179\\ 79.9501\\ 241.2454\\ 598.0605\\ \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline {} S \\ \hline L_{\Sigma,B} \\ 194.0864 \\ \hline 21.1070 \\ 247.6735 \\ \hline 39.6472 \\ 200.6198 \\ \hline 557.2238 \\ \hline {\rm B} \end{array}$	$\begin{array}{c} & {\rm AR} \\ \hline L_{A,B} \\ \hline 70.1342 \\ 126.8915 \\ \hline 40.6603 \\ \hline 44.4809 \\ \hline 41.0107 \\ \hline 56.8007 \\ \end{array}$	$\begin{array}{c} L(1) \\ \hline L_{\Sigma,B} \\ \hline 29.4718 \\ \hline 118.1081 \\ \hline 0.0634 \\ \hline 4.0900 \\ \hline 0.4697 \\ \hline 16.0012 \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.6691\\ 29.9586\\ 40.6483\\ 40.4013\\ 40.5867\\ 40.9186\\ \end{array}$	$\begin{array}{c} A(1,1) \\ L_{\Sigma,B} \\ 0.0400 \\ 21.1469 \\ 0.0753 \\ 0.0393 \\ 0.0697 \\ 0.1327 \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\sigma^{2} = 4$	$L_{\Sigma,A}$ 40.7091 51.1055 40.7236 40.4406 40.6563 41.0512	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0275 \\ 9702.6337 \\ 65.1431 \\ 10.4379 \\ 52.7681 \\ 146.5514 \\ (1) \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 234.6828\\ 29.9984\\ 288.1179\\ 79.9501\\ 241.2454\\ 598.0605\\ \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline L_{\Sigma,B} \\ \hline 194.0864 \\ \hline 21.1070 \\ \hline 247.6735 \\ \hline 39.6472 \\ \hline 200.6198 \\ \hline 557.2238 \\ \hline {\rm B} \\ \hline S \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L(1) \\ \hline L_{\Sigma,B} \\ \hline 29.4718 \\ \hline 118.1081 \\ \hline 0.0634 \\ \hline 4.0900 \\ \hline 0.4697 \\ \hline 16.0012 \\ \hline L(1) \end{array}$	$\begin{array}{c} \text{ARM} \\ L_{A,B} \\ 40.6691 \\ 29.9586 \\ 40.6483 \\ 40.4013 \\ 40.5867 \\ 40.9186 \\ \end{array}$	$\begin{array}{c} & \\ A(1,1) \\ L_{\Sigma,B} \\ \hline 0.0400 \\ 21.1469 \\ 0.0753 \\ \hline 0.0393 \\ \hline 0.0697 \\ 0.1327 \\ \hline A(1,1) \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\sigma^{2} = 4$ Σ	$L_{\Sigma,A}$ 40.7091 51.1055 40.7236 40.4406 40.6563 41.0512 $L_{\Sigma,A}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0275 \\ 9702.6337 \\ 65.1431 \\ 10.4379 \\ 52.7681 \\ 146.5514 \\ 146.5514 \\ (1) \\ L_{\Sigma,B} \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 234.6828\\ 29.9984\\ 288.1179\\ 79.9501\\ 241.2454\\ 598.0605\\ \hline \\ L_{A,B}\\ \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline L_{\Sigma,B} \\ \hline 194.0864 \\ \hline 21.1070 \\ \hline 247.6735 \\ \hline 39.6472 \\ \hline 200.6198 \\ \hline 557.2238 \\ \hline {\rm B} \\ \hline S \\ L_{\Sigma,B} \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L(1) \\ L_{\Sigma,B} \\ \hline 29.4718 \\ 118.1081 \\ 0.0634 \\ 4.0900 \\ \hline 0.4697 \\ 16.0012 \\ \hline L_{\Sigma,B} \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.6691\\ 29.9586\\ 40.6483\\ 40.4013\\ 40.5867\\ 40.9186\\ \hline\\ \text{ARMA}\\ L_{A,B} \end{array}$	$\begin{array}{c} & \\ A(1,1) \\ L_{\Sigma,B} \\ \hline 0.0400 \\ 21.1469 \\ 0.0753 \\ \hline 0.0393 \\ \hline 0.0697 \\ 0.1327 \\ \hline A(1,1) \\ L_{\Sigma,B} \end{array}$
$\frac{\sigma^2 = 2}{\Sigma}$ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\frac{\sigma^2 = 4}{\Sigma}$ MA(1)	$L_{\Sigma,A}$ 40.7091 51.1055 40.7236 40.4406 40.6563 41.0512 $L_{\Sigma,A}$ 162.8363	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L}_{\Sigma,B} \\ 0.0275 \\ 9702.6337 \\ 65.1431 \\ 10.4379 \\ 52.7681 \\ 146.5514 \\ \hline \underline{L}_{\Sigma,B} \\ 0.1100 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 234.6828\\ 29.9984\\ 288.1179\\ 79.9501\\ 241.2454\\ 598.0605\\ \hline \\ C\\ L_{A,B}\\ 938.7311\\ \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline L_{\Sigma,B} \\ \hline 194.0864 \\ \hline 21.1070 \\ \hline 247.6735 \\ \hline 39.6472 \\ \hline 200.6198 \\ \hline 557.2238 \\ \hline {\rm B} \\ \hline S \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 776.3455 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L(1) \\ L_{\Sigma,B} \\ \hline 29.4718 \\ \hline 118.1081 \\ \hline 0.0634 \\ \hline 4.0900 \\ \hline 0.4697 \\ \hline 16.0012 \\ \hline L(1) \\ L_{\Sigma,B} \\ \hline 117.8872 \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.6691\\ 29.9586\\ 40.6483\\ 40.4013\\ 40.5867\\ 40.9186\\ \hline\\ \text{ARMA}\\ L_{A,B}\\ 162.6765\\ \end{array}$	$\begin{array}{c} & \\ A(1,1) \\ L_{\Sigma,B} \\ \hline 0.0400 \\ 21.1469 \\ 0.0753 \\ \hline 0.0393 \\ \hline 0.0697 \\ 0.1327 \\ \hline A(1,1) \\ L_{\Sigma,B} \\ \hline 0.1599 \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\sigma^{2} = 4$ Σ MA(1) CS	$L_{\Sigma,A}$ 40.7091 51.1055 40.7236 40.4406 40.6563 41.0512 $L_{\Sigma,A}$ 162.8363 204.4220	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L}_{\Sigma,B} \\ 0.0275 \\ 9702.6337 \\ 65.1431 \\ 10.4379 \\ 52.7681 \\ 146.5514 \\ \underline{L}_{\Sigma,B} \\ 0.1100 \\ 38810.5348 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 234.6828\\ 29.9984\\ 288.1179\\ 79.9501\\ 241.2454\\ 598.0605\\ \hline \\ C\\ L_{A,B}\\ 938.7311\\ 119.9938\\ \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline {\rm L}_{\Sigma,B} \\ 194.0864 \\ \hline 21.1070 \\ 247.6735 \\ 39.6472 \\ 200.6198 \\ 557.2238 \\ {\rm B} \\ \hline {\rm S} \\ {\rm L}_{\Sigma,B} \\ 776.3455 \\ 84.4282 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L(1) \\ \hline L_{\Sigma,B} \\ \hline 29.4718 \\ \hline 118.1081 \\ \hline 0.0634 \\ \hline 4.0900 \\ \hline 0.4697 \\ \hline 16.0012 \\ \hline L(1) \\ \hline L_{\Sigma,B} \\ \hline 117.8872 \\ \hline 472.4326 \\ \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.6691\\ 29.9586\\ 40.6483\\ 40.4013\\ 40.5867\\ 40.9186\\ \hline\\ \text{ARMA}\\ L_{A,B}\\ 162.6765\\ 119.8344\\ \end{array}$	$\begin{array}{c} \mathbf{A}(1,1) \\ L_{\Sigma,B} \\ 0.0400 \\ 21.1469 \\ 0.0753 \\ 0.0393 \\ 0.0697 \\ 0.1327 \\ \hline \mathbf{A}(1,1) \\ L_{\Sigma,B} \\ 0.1599 \\ 84.5876 \\ \end{array}$
$\frac{\sigma^2 = 2}{\Sigma}$ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\frac{\sigma^2 = 4}{\Sigma}$ MA(1) CS AR(1) CS AR(1)	$L_{\Sigma,A}$ 40.7091 51.1055 40.7236 40.4406 40.6563 41.0512 $L_{\Sigma,A}$ 162.8363 204.4220 162.8946	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L}_{\Sigma,B} \\ 0.0275 \\ 9702.6337 \\ 65.1431 \\ 10.4379 \\ 52.7681 \\ 146.5514 \\ \hline \underline{L}_{\Sigma,B} \\ 0.1100 \\ 38810.5348 \\ 260.5722 \end{array}$	$\begin{array}{c} & \\ \hline \\ L_{A,B} \\ 234.6828 \\ 29.9984 \\ 288.1179 \\ 79.9501 \\ 241.2454 \\ 598.0605 \\ \hline \\ \hline \\ L_{A,B} \\ 938.7311 \\ 119.9938 \\ 1152.4717 \\ \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline L_{\Sigma,B} \\ \hline 194.0864 \\ \hline 21.1070 \\ \hline 247.6735 \\ \hline 39.6472 \\ \hline 200.6198 \\ \hline 557.2238 \\ \hline {\rm B} \\ \hline 557.2238 \\ \hline {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 776.3455 \\ \hline 84.4282 \\ \hline 990.6942 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L(1)\\ L_{\Sigma,B}\\ \hline 29.4718\\ \hline 118.1081\\ \hline 0.0634\\ \hline 4.0900\\ \hline 0.4697\\ \hline 16.0012\\ \hline L(1)\\ L_{\Sigma,B}\\ \hline 117.8872\\ \hline 472.4326\\ \hline 0.2534\\ \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 40.6691\\ 29.9586\\ 40.6483\\ 40.4013\\ 40.5867\\ 40.9186\\ \hline\\ \text{ARMA}\\ L_{A,B}\\ 162.6765\\ 119.8344\\ 162.5933\\ \end{array}$	$\begin{array}{c} \mathbf{A}(1,1) \\ L_{\Sigma,B} \\ 0.0400 \\ 21.1469 \\ 0.0753 \\ 0.0393 \\ 0.0697 \\ 0.1327 \\ \hline \mathbf{A}(1,1) \\ L_{\Sigma,B} \\ 0.1599 \\ 84.5876 \\ 0.3012 \\ \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\sigma^{2} = 4$ Σ MA(1) CS AR(1) CS AR(1) ARMA-r=0.2	$L_{\Sigma,A}$ 40.7091 51.1055 40.7236 40.4406 40.6563 41.0512 $L_{\Sigma,A}$ 162.8363 204.4220 162.8946 161.7623	$\begin{tabular}{ c c c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 40.6816 \\ \hline 9740.7095 \\ \hline 105.7649 \\ \hline 50.8361 \\ \hline 93.4052 \\ \hline 187.4690 \\ \hline MA \\ \hline $L_{A,B}$ \\ \hline 162.7264 \\ \hline 38962.8381 \\ \hline 423.0596 \\ \hline 203.3442 \\ \hline \end{tabular}$	$\begin{array}{c} \underline{L}_{\Sigma,B} \\ 0.0275 \\ 9702.6337 \\ 65.1431 \\ 10.4379 \\ 52.7681 \\ 146.5514 \\ \hline \underline{L}_{\Sigma,B} \\ 0.1100 \\ 38810.5348 \\ 260.5722 \\ 41.7517 \end{array}$	$\begin{array}{c} & \\ \hline \\ L_{A,B} \\ 234.6828 \\ 29.9984 \\ 288.1179 \\ \hline \\ 79.9501 \\ 241.2454 \\ 598.0605 \\ \hline \\ \hline \\ L_{A,B} \\ 938.7311 \\ 119.9938 \\ 1152.4717 \\ \hline \\ 319.8004 \\ \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline {\rm L}_{\Sigma,B} \\ \hline 194.0864 \\ \hline 21.1070 \\ \hline 247.6735 \\ \hline 39.6472 \\ \hline 200.6198 \\ \hline 557.2238 \\ \hline {\rm B} \\ \hline 557.2238 \\ \hline {\rm B} \\ \hline S \\ \hline {\rm L}_{\Sigma,B} \\ \hline 776.3455 \\ \hline 84.4282 \\ \hline 990.6942 \\ \hline 158.5889 \\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L(1)\\ L_{\Sigma,B}\\ \hline 29.4718\\ \hline 118.1081\\ \hline 0.0634\\ \hline 4.0900\\ \hline 0.4697\\ \hline 16.0012\\ \hline L(1)\\ L_{\Sigma,B}\\ \hline 117.8872\\ \hline 472.4326\\ \hline 0.2534\\ \hline 16.3600\\ \end{array}$	$\begin{array}{c} {\rm ARMA}\\ L_{A,B}\\ 40.6691\\ 29.9586\\ 40.6483\\ 40.4013\\ 40.5867\\ 40.9186\\ \\ {\rm ARMA}\\ L_{A,B}\\ 162.6765\\ 119.8344\\ 162.5933\\ 161.6052\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ {\rm $L_{\Sigma,B}$}\\ {\rm 0.0400}\\ {\rm 21.1469}\\ {\rm 0.0753}\\ {\rm 0.0393}\\ {\rm 0.0697}\\ {\rm 0.1327}\\ {\rm 0.1327}\\ {\rm $A(1,1)$}\\ {\rm $L_{\Sigma,B}$}\\ {\rm 0.1599}\\ {\rm 84.5876}\\ {\rm 0.3012}\\ {\rm 0.1570}\\ \end{array}$
$\sigma^2 = 2$ Σ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\sigma^2 = 4$ Σ MA(1) CS AR(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45	$\begin{array}{c} L_{\Sigma,A} \\ 40.7091 \\ 51.1055 \\ 40.7236 \\ 40.4406 \\ 40.6563 \\ 41.0512 \\ \\ L_{\Sigma,A} \\ 162.8363 \\ 204.4220 \\ 162.8946 \\ 161.7623 \\ 162.6254 \\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L}_{\Sigma,B} \\ 0.0275 \\ 9702.6337 \\ 65.1431 \\ 10.4379 \\ 52.7681 \\ 146.5514 \\ \hline \underline{L}_{\Sigma,B} \\ 0.1100 \\ 38810.5348 \\ 260.5722 \\ 41.7517 \\ 211.0724 \\ \end{array}$	$\begin{array}{c} & \\ \hline \\ L_{A,B} \\ 234.6828 \\ 29.9984 \\ 288.1179 \\ \hline \\ 79.9501 \\ 241.2454 \\ 598.0605 \\ \hline \\ \hline \\ U_{A,B} \\ 938.7311 \\ 119.9938 \\ 1152.4717 \\ \hline \\ 319.8004 \\ 964.9816 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c c c }\hline & B \\ \hline $L_{\Sigma,B}$ \\ \hline 194.0864 \\ \hline 21.1070 \\ \hline 247.6735 \\ \hline 39.6472 \\ \hline 200.6198 \\ \hline 557.2238 \\ \hline B \\ \hline 557.2238 \\ \hline 577.2238 \\ \hline 577.22	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} L(1)\\ L_{\Sigma,B}\\ \hline 29.4718\\ \hline 118.1081\\ \hline 0.0634\\ \hline 4.0900\\ \hline 0.4697\\ \hline 16.0012\\ \hline L(1)\\ L_{\Sigma,B}\\ \hline 117.8872\\ \hline 472.4326\\ \hline 0.2534\\ \hline 16.3600\\ \hline 1.8788\\ \hline \end{array}$	$\begin{array}{c} {\rm ARMA}\\ L_{A,B}\\ 40.6691\\ 29.9586\\ 40.6483\\ 40.4013\\ 40.5867\\ 40.9186\\ \\ {\rm ARMA}\\ L_{A,B}\\ 162.6765\\ 119.8344\\ 162.5933\\ 161.6052\\ 162.3468\\ \end{array}$	$\begin{array}{c} {\rm A}(1,1)\\ L_{\Sigma,B}\\ 0.0400\\ 21.1469\\ 0.0753\\ 0.0393\\ 0.0697\\ 0.1327\\ {\rm A}(1,1)\\ L_{\Sigma,B}\\ 0.1599\\ 84.5876\\ 0.3012\\ 0.1570\\ 0.2786\\ \end{array}$

Table 2: Simulation results with m = 100; c = 0.5.

				В					
$\sigma^{2} = 0.5$	50	MA	.(1)	C	S	AR	L(1)	ARM	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
CS	3.9150	1365.2677	1364.4280	1.0904	2.8246	2.6037	4.3421	1.0883	2.8267
AR(1)	2.5794	37.5059	34.9775	56.9499	54.4603	2.5581	0.0214	2.5568	0.0226
ARMA-r=0.25	2.5353	6.4169	3.8873	8.5743	6.0536	10.6511	8.1262	2.5303	0.0051
ARMA-r=0.5	2.5534	18.0680	15.5462	26.6927	24.2067	3.6861	1.1573	2.5411	0.0123
ARMA-r=0.8	2.5991	42.3503 39.7962		64.5068	61.9660	2.6285	0.0783	2.5727	0.0263
					В				
$\sigma^2 = 1$		MA	.(1)	C	S	AR	a(1)	ARM	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
CS	15.6600	5461.0707	5457.7122	4.3617	11.2982	10.4146	17.3684	4.3531	11.3069
AR(1)	10.3177	150.0234	139.9098	227.7995	217.8411	10.2323	0.0855	10.2274	0.0904
ARMA-r=0.25	10.1412	25.6677	15.5493	34.2971	24.2145	42.6044	32.5047	10.1210	0.0202
ARMA-r=0.5	10.2136	72.2720	62.1848	106.7706	96.8267	14.7445	4.6293	10.1645	0.0491
ARMA-r=0.8	10.3964	169.4013	159.1847	258.0274	247.8641	10.5138	0.3134	10.2910	0.1053
					В				
$\sigma^2 = 2$	2	MA	.(1)	C	S	AR(1)		ARM	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
\mathbf{CS}	62.6399	21844.2828	21830.8487	17.4469	45.1930	41.6585	69.4735	17.4122	45.2277
AR(1)	41.2710	600.0936	559.6393	911.1980	871.3646	40.9290	0.3421	40.9096	0.3616
ARMA-r=0.25	40.5649	102.6708	62.1972	137.1884	96.8581	170.4176	130.0189	40.4841	0.0808
ARMA-r=0.5	40.8546	289.0882	248.7394	427.0825	387.3069	58.9779	18.5174	40.6580	0.1966
ARMA-r=0.8	41.5857	677.6053	636.7388	1032.1095	991.4565	42.0552	1.2536	41.1639	0.4213
_					В			4	
$\sigma^2 = 4$		MA	.(1)	C	S	AR	(1)	ARM	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
CS	250.5596	87377.1312	87323.3948	69.7876	180.7720	166.6339	277.8940	69.6488	180.9108
AR(1)	165.0840	2400.3746	2238.5573	3644.7921	3485.4583	163.7160	1.3683	163.6382	1.4462
ARMA-r=0.25	162.2595	410.6833	248.7886	$5\overline{48.7534}$	$3\overline{87.4326}$	681.6706	$5\overline{20.0755}$	$1\overline{61.9362}$	0.3233
ARMA-r=0.5	163.4182	1156.3527	994.9574	1708.3300	1549.2275	$2\overline{35.9115}$	74.0694	162.6318	0.7862
ARMA-r=0.8	166.3429	2710.4212	2546.9553	4128.4380	3965.8260	168.2210	5.0143	164.6555	1.6853

Table 3: Simulation results with m = 100; c = 0.75.

$\sigma^2 = 0.8$	50	MA	.(1)	C	S	AR	L(1)	ARMA	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
MA(1)	10.0649	10.0637	0.0012	16.2196	6.1583	10.3926	0.3291	10.0632	0.0018
CS	10.6463	625.0203	615.6754	9.3896	1.2567	37.0791	28.9558	9.3855	1.2608
AR(1)	10.0648	10.4757	0.4135	16.5833	6.5228	10.0633	0.0014	10.0628	0.0020
ARMA-r=0.1	10.0623	10.1270	0.0670	11.1042	1.0447	10.0853	0.0253	10.0606	0.0017
ARMA-r=0.35	10.0679	10.8734	0.8096	22.8366	12.7836	10.1725	0.1088	10.0654	0.0024
ARMA-r=0.6	10.0936	12.4643	2.3773	47.6369	37.5648	12.6792	2.5914	10.0897	0.0039
					В				
$\sigma^2 = 1$	-	MA	.(1)	C	S	AR	(1)	ARMA	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
MA(1)	40.2597	40.2550	0.0048	64.8785	24.6331	41.5704	1.3165	40.2527	0.0070
\mathbf{CS}	42.5852	2500.0814	2462.7015	37.5582	5.0270	148.3163	115.8232	37.5421	5.0431
AR(1)	40.2590	41.9030	1.6540	66.3333	26.0913	40.2534	0.0056	40.2511	0.0079
ARMA-r=0.1	40.2493	40.5082	0.2680	44.4167	4.1786	40.3412	0.1013	40.2426	0.0067
ARMA-r=0.35	40.2715	43.4934	3.2385	91.3463	51.1345	40.6900	0.4351	40.2617	0.0098
ARMA-r=0.6	40.3743	49.8570	9.5093	190.5475	150.2592	50.7169	10.3654	40.3589	0.0155
		1							
					В				
$\sigma^2 = 2$	2	MA	.(1)	C	B	AR	L(1)	ARMA	A(1,1)
$\frac{\sigma^2 = 2}{\Sigma}$	$L_{\Sigma,A}$	MA L _{A,B}	$L_{\Sigma,B}$	$L_{A,B}$	$\frac{B}{L_{\Sigma,B}}$	AR $L_{A,B}$	L(1) $L_{\Sigma,B}$	$\frac{\text{ARMA}}{L_{A,B}}$	$\frac{A(1,1)}{L_{\Sigma,B}}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}}$	$L_{\Sigma,A}$ 161.0390	$\begin{tabular}{ c c c c c } \hline & & & & & \\ \hline & & & & & & \\ \hline & & & &$	$L_{\Sigma,B}$ 0.0191	$L_{A,B}$ 259.5139	$\frac{B}{L_{\Sigma,B}}$ 98.5325	$\frac{{\rm AR}}{L_{A,B}} \\ 166.2815$	L(1) $L_{\Sigma,B}$ 5.2659	$\frac{\text{ARMA}}{L_{A,B}}$ 161.0109	A(1,1) $L_{\Sigma,B}$ 0.0280
$\frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}}$	$L_{\Sigma,A}$ 161.0390 170.3408	$\begin{tabular}{ c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 161.0198 \\ \hline 10000.3254 \\ \hline \end{tabular}$	$ \frac{L_{\Sigma,B}}{0.0191} $ 9850.8060	$\begin{array}{c} & \\ & \\ \hline L_{A,B} \\ \hline 259.5139 \\ \hline 150.2330 \end{array}$	$\frac{B}{S} \\ \frac{L_{\Sigma,B}}{98.5325} \\ 20.1079 \\ \end{array}$	$\begin{array}{c} & {\rm AR} \\ \\ L_{A,B} \\ 166.2815 \\ 593.2651 \end{array}$	L(1) $L_{\Sigma,B}$ 5.2659 463.2930	$\begin{array}{c} \text{ARMA} \\ L_{A,B} \\ 161.0109 \\ 150.1686 \end{array}$	$ \begin{array}{r} \Lambda(1,1) \\ L_{\Sigma,B} \\ \hline 0.0280 \\ \hline 20.1723 \end{array} $
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{MA(1)}{CS}}}$	$L_{\Sigma,A}$ 161.0390 170.3408 161.0361	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} .(1) \\ \underline{L_{\Sigma,B}} \\ 0.0191 \\ 9850.8060 \\ 6.6162 \end{array}$	$\begin{array}{c} & C \\ \hline L_{A,B} \\ 259.5139 \\ 150.2330 \\ 265.3330 \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 98.5325 \\ \hline 20.1079 \\ 104.3650 \end{array}$	$\begin{array}{c} & {\rm AR} \\ L_{A,B} \\ 166.2815 \\ 593.2651 \\ 161.0136 \end{array}$	$ \frac{L_{\Sigma,B}}{5.2659} \\ \frac{463.2930}{0.0225} $	$\begin{array}{c} \text{ARMA} \\ \hline L_{A,B} \\ \hline 161.0109 \\ \hline 150.1686 \\ \hline 161.0044 \end{array}$	$ \begin{array}{r} A(1,1) \\ \hline L_{\Sigma,B} \\ \hline 0.0280 \\ \hline 20.1723 \\ \hline 0.0317 \end{array} $
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{MA(1)}{CS}}}$	$L_{\Sigma,A}$ 161.0390 170.3408 161.0361 160.9971	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0191 \\ 9850.8060 \\ 6.6162 \\ 1.0721 \end{array}$	$\begin{array}{c} & & \\ & L_{A,B} \\ \hline 259.5139 \\ 150.2330 \\ 265.3330 \\ 177.6666 \end{array}$	$\begin{array}{r} & \text{B} \\ \hline L_{\Sigma,B} \\ \hline 98.5325 \\ \hline 20.1079 \\ \hline 104.3650 \\ \hline 16.7144 \end{array}$	$\begin{array}{c} & {\rm AR} \\ \\ L_{A,B} \\ 166.2815 \\ 593.2651 \\ 161.0136 \\ 161.3649 \end{array}$	$\begin{array}{c} L(1) \\ \hline L_{\Sigma,B} \\ \hline 5.2659 \\ \hline 463.2930 \\ \hline 0.0225 \\ \hline 0.4053 \end{array}$	$\begin{array}{c} {\rm ARMA}\\ L_{A,B}\\ 161.0109\\ 150.1686\\ 161.0044\\ 160.9703 \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0280 \\ \hline 20.1723 \\ 0.0317 \\ 0.0269 \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}}$ $\frac{MA(1)}{CS}$ $\frac{AR(1)}{ARMA-r=0.1}$ $\frac{ARMA-r=0.35}{ARMA-r=0.35}$	$L_{\Sigma,A}$ 161.0390 170.3408 161.0361 160.9971 161.0859	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0191 \\ 9850.8060 \\ 6.6162 \\ 1.0721 \\ 12.9539 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 259.5139\\ 150.2330\\ 265.3330\\ 177.6666\\ 365.3852 \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline S \\ \hline & L_{\Sigma,B} \\ \hline & 98.5325 \\ \hline & 20.1079 \\ \hline & 104.3650 \\ \hline & 16.7144 \\ \hline & 204.5380 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L(1)} \\ \underline{L_{\Sigma,B}} \\ 5.2659 \\ 463.2930 \\ 0.0225 \\ 0.4053 \\ 1.7404 \end{array}$	$\begin{array}{c} {\rm ARMA}\\ L_{A,B}\\ 161.0109\\ 150.1686\\ 161.0044\\ 160.9703\\ 161.0469\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0280 \\ \hline 20.1723 \\ 0.0317 \\ \hline 0.0269 \\ 0.0391 \end{array}$
$\begin{array}{c} \sigma^2 = 2\\ \hline \Sigma\\ \hline MA(1)\\ \hline CS\\ \hline AR(1)\\ \hline ARMA-r=0.1\\ \hline ARMA-r=0.35\\ \hline ARMA-r=0.6\\ \hline \end{array}$	$L_{\Sigma,A}$ 161.0390 170.3408 161.0361 160.9971 161.0859 161.4973	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0191 \\ 9850.8060 \\ 6.6162 \\ 1.0721 \\ 12.9539 \\ 38.0372 \end{array}$	$\begin{array}{c} & \\ & \\ \hline L_{A,B} \\ \hline 259.5139 \\ \hline 150.2330 \\ \hline 265.3330 \\ \hline 177.6666 \\ \hline 365.3852 \\ \hline 762.1900 \\ \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline S \\ \hline {} 98.5325 \\ \hline 20.1079 \\ \hline 104.3650 \\ \hline 16.7144 \\ 204.5380 \\ \hline 601.0367 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L(1)} \\ \underline{L_{\Sigma,B}} \\ \underline{5.2659} \\ \underline{463.2930} \\ 0.0225 \\ 0.4053 \\ 1.7404 \\ \underline{41.4616} \end{array}$	$\begin{array}{c} {\rm ARMA}\\ L_{A,B}\\ 161.0109\\ 150.1686\\ 161.0044\\ 160.9703\\ 161.0469\\ 161.4354 \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ \hline L_{\Sigma,B} \\ 0.0280 \\ 20.1723 \\ 0.0317 \\ 0.0269 \\ 0.0391 \\ 0.0619 \end{array}$
$\sigma^2 = 2$ Σ MA(1) CS AR(1) ARMA-r=0.1 ARMA-r=0.35 ARMA-r=0.6	$L_{\Sigma,A}$ 161.0390 170.3408 161.0361 160.9971 161.0859 161.4973	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0191 \\ 9850.8060 \\ 6.6162 \\ 1.0721 \\ 12.9539 \\ 38.0372 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 259.5139\\ 150.2330\\ 265.3330\\ 177.6666\\ 365.3852\\ 762.1900\\ \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline S \\ \hline 28, 8 \\ \hline 98.5325 \\ \hline 20.1079 \\ \hline 104.3650 \\ \hline 16.7144 \\ \hline 204.5380 \\ \hline 601.0367 \\ \hline {\rm B} \end{array}$	$\begin{array}{c} & {\rm AR} \\ L_{A,B} \\ 166.2815 \\ 593.2651 \\ 161.0136 \\ 161.3649 \\ 162.7599 \\ 202.8675 \end{array}$	$\begin{array}{c} L(1) \\ L_{\Sigma,B} \\ \overline{5.2659} \\ 463.2930 \\ 0.0225 \\ 0.4053 \\ 1.7404 \\ 41.4616 \end{array}$	$\begin{array}{c} {\rm ARMA}\\ L_{A,B}\\ 161.0109\\ 150.1686\\ 161.0044\\ 160.9703\\ 161.0469\\ 161.4354 \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ \hline L_{\Sigma,B} \\ \hline 0.0280 \\ \hline 20.1723 \\ \hline 0.0317 \\ \hline 0.0269 \\ \hline 0.0391 \\ \hline 0.0619 \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.1 ARMA-r=0.35 ARMA-r=0.6 $\sigma^{2} = 4$	$L_{\Sigma,A}$ 161.0390 170.3408 161.0361 160.9971 161.0859 161.4973	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0191 \\ 9850.8060 \\ 6.6162 \\ 1.0721 \\ 12.9539 \\ 38.0372 \\ (1) \end{array}$	$\begin{array}{c} & \\ & \\ \hline L_{A,B} \\ \hline 259.5139 \\ \hline 150.2330 \\ \hline 265.3330 \\ \hline 177.6666 \\ \hline 365.3852 \\ \hline 762.1900 \\ \hline \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline {\rm S} \\ \hline {\rm 2S} \\ \hline {\rm 98.5325} \\ \hline {\rm 20.1079} \\ 104.3650 \\ \hline {\rm 16.7144} \\ 204.5380 \\ \hline {\rm 601.0367} \\ \hline {\rm B} \\ \hline {\rm S} \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L}(1) \\ \underline{L}_{\Sigma,B} \\ 5.2659 \\ \underline{463.2930} \\ 0.0225 \\ 0.4053 \\ 1.7404 \\ \underline{41.4616} \\ \underline{L}(1) \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 161.0109\\ 150.1686\\ 161.0044\\ 160.9703\\ 161.0469\\ 161.4354\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ \hline 0.0280 \\ 20.1723 \\ \hline 0.0317 \\ \hline 0.0269 \\ \hline 0.0391 \\ \hline 0.0619 \\ \hline \Lambda(1,1) \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.1 ARMA-r=0.35 ARMA-r=0.6 $\sigma^{2} = 4$ Σ	$L_{\Sigma,A}$ 161.0390 170.3408 161.0361 160.9971 161.0859 161.4973 $L_{\Sigma,A}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0191 \\ 9850.8060 \\ 6.6162 \\ 1.0721 \\ 12.9539 \\ 38.0372 \\ (1) \\ L_{\Sigma,B} \end{array}$	$\begin{array}{c} & \\ & \\ \hline L_{A,B} \\ \hline 259.5139 \\ \hline 150.2330 \\ \hline 265.3330 \\ \hline 177.6666 \\ \hline 365.3852 \\ \hline 762.1900 \\ \hline \\ \hline \\ L_{A,B} \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 98.5325 \\ \hline 20.1079 \\ 104.3650 \\ \hline 16.7144 \\ 204.5380 \\ \hline 601.0367 \\ \hline {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L}(1) \\ \underline{L}_{\Sigma,B} \\ 5.2659 \\ \underline{463.2930} \\ 0.0225 \\ 0.4053 \\ 1.7404 \\ \underline{41.4616} \\ \underline{L}(1) \\ \underline{L}_{\Sigma,B} \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 161.0109\\ 150.1686\\ 161.0044\\ 160.9703\\ 161.0469\\ 161.4354\\ \hline\\ \text{ARMA}\\ L_{A,B} \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ \hline 0.0280 \\ 20.1723 \\ \hline 0.0317 \\ \hline 0.0269 \\ \hline 0.0391 \\ \hline 0.0619 \\ \hline \Lambda(1,1) \\ L_{\Sigma,B} \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.1 ARMA-r=0.35 ARMA-r=0.6 $\sigma^{2} = 4$ Σ MA(1)	$L_{\Sigma,A}$ 161.0390 170.3408 161.0361 160.9971 161.0859 161.4973 $L_{\Sigma,A}$ 644.1559	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0191 \\ 9850.8060 \\ 6.6162 \\ 1.0721 \\ 12.9539 \\ 38.0372 \\ (1) \\ L_{\Sigma,B} \\ 0.0766 \end{array}$	$\begin{array}{c} & \\ & \\ \hline L_{A,B} \\ \hline 259.5139 \\ \hline 150.2330 \\ \hline 265.3330 \\ \hline 177.6666 \\ \hline 365.3852 \\ \hline 762.1900 \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ L_{A,B} \\ \hline 1038.0555 \\ \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 98.5325 \\ \hline 20.1079 \\ 104.3650 \\ \hline 16.7144 \\ 204.5380 \\ \hline 601.0367 \\ \hline {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 394.1299 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L}(1) \\ \underline{L}_{\Sigma,B} \\ 5.2659 \\ 463.2930 \\ 0.0225 \\ 0.4053 \\ 1.7404 \\ 41.4616 \\ \hline \underline{L}(1) \\ \underline{L}_{\Sigma,B} \\ 21.0635 \end{array}$	$\begin{array}{c} \text{ARMA}\\ L_{A,B}\\ 161.0109\\ 150.1686\\ 161.0044\\ 160.9703\\ 161.0469\\ 161.4354\\ \hline\\ \text{ARMA}\\ L_{A,B}\\ 644.0438\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ \hline 0.0280 \\ \hline 20.1723 \\ \hline 0.0317 \\ \hline 0.0269 \\ \hline 0.0391 \\ \hline 0.0619 \\ \hline \Lambda(1,1) \\ L_{\Sigma,B} \\ \hline 0.1122 \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.1 ARMA-r=0.35 ARMA-r=0.6 $\sigma^{2} = 4$ Σ MA(1) CS	$L_{\Sigma,A}$ 161.0390 170.3408 161.0361 160.9971 161.0859 161.4973 $L_{\Sigma,A}$ 644.1559 681.3634	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0191 \\ 9850.8060 \\ 6.6162 \\ 1.0721 \\ 12.9539 \\ 38.0372 \\ (1) \\ L_{\Sigma,B} \\ 0.0766 \\ 39403.2242 \end{array}$	$\begin{array}{c} & \\ & \\ \hline L_{A,B} \\ \hline 259.5139 \\ \hline 150.2330 \\ \hline 265.3330 \\ \hline 177.6666 \\ \hline 365.3852 \\ \hline 762.1900 \\ \hline \\$	$\begin{array}{r} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 98.5325 \\ \hline 20.1079 \\ 104.3650 \\ \hline 16.7144 \\ 204.5380 \\ \hline 601.0367 \\ \hline {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 394.1299 \\ \hline 80.4314 \\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L}(1) \\ \underline{L}_{\Sigma,B} \\ 5.2659 \\ 463.2930 \\ 0.0225 \\ 0.4053 \\ 1.7404 \\ 41.4616 \\ \underline{L}(1) \\ \underline{L}_{\Sigma,B} \\ 21.0635 \\ 1853.1720 \end{array}$	$\begin{array}{c} {\rm ARMA}\\ L_{A,B}\\ 161.0109\\ 150.1686\\ 161.0044\\ 160.9703\\ 161.0469\\ 161.4354\\ \\ {\rm ARMA}\\ L_{A,B}\\ 644.0438\\ 600.6743\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ \hline 0.0280 \\ 20.1723 \\ \hline 0.0317 \\ \hline 0.0269 \\ \hline 0.0391 \\ \hline 0.0619 \\ \hline \Lambda(1,1) \\ L_{\Sigma,B} \\ \hline 0.1122 \\ \hline 80.6890 \\ \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.1 ARMA-r=0.35 ARMA-r=0.6 $\sigma^{2} = 4$ Σ MA(1) CS AR(1) CS AR(1)	$L_{\Sigma,A}$ 161.0390 170.3408 161.0361 160.9971 161.0859 161.4973 $L_{\Sigma,A}$ 644.1559 681.3634 644.1444	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0191 \\ 9850.8060 \\ 6.6162 \\ 1.0721 \\ 12.9539 \\ 38.0372 \\ (1) \\ L_{\Sigma,B} \\ 0.0766 \\ 39403.2242 \\ 26.4646 \\ \end{array}$	$\begin{array}{c} & \\ & \\ \hline L_{A,B} \\ \hline 259.5139 \\ \hline 150.2330 \\ \hline 265.3330 \\ \hline 177.6666 \\ \hline 365.3852 \\ \hline 762.1900 \\ \hline \\$	$\begin{array}{r} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 98.5325 \\ \hline 20.1079 \\ \hline 104.3650 \\ \hline 16.7144 \\ 204.5380 \\ \hline 601.0367 \\ \hline {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 394.1299 \\ \hline 80.4314 \\ \hline 417.4602 \\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L}(1) \\ \underline{L}_{\Sigma,B} \\ 5.2659 \\ 463.2930 \\ 0.0225 \\ 0.4053 \\ 1.7404 \\ 41.4616 \\ \hline \\ \underline{L}(1) \\ \underline{L}_{\Sigma,B} \\ 21.0635 \\ 1853.1720 \\ 0.0902 \\ \end{array}$	$\begin{array}{c} {\rm ARMA}\\ L_{A,B}\\ 161.0109\\ 150.1686\\ 161.0044\\ 160.9703\\ 161.0469\\ 161.4354\\ \\ {\rm ARMA}\\ L_{A,B}\\ 644.0438\\ 600.6743\\ 644.0175\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ \hline 0.0280 \\ \hline 20.1723 \\ \hline 0.0317 \\ \hline 0.0269 \\ \hline 0.0391 \\ \hline 0.0619 \\ \hline \Lambda(1,1) \\ L_{\Sigma,B} \\ \hline 0.1122 \\ \hline 80.6890 \\ \hline 0.1268 \\ \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.1 ARMA-r=0.35 ARMA-r=0.6 $\sigma^{2} = 4$ Σ MA(1) CS AR(1) ARMA-r=0.1	$L_{\Sigma,A}$ 161.0390 170.3408 161.0361 160.9971 161.0859 161.4973 $L_{\Sigma,A}$ 644.1559 681.3634 644.1444 643.9886	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0191 \\ 9850.8060 \\ 6.6162 \\ 1.0721 \\ 12.9539 \\ 38.0372 \\ (1) \\ L_{\Sigma,B} \\ 0.0766 \\ 39403.2242 \\ 26.4646 \\ 4.2885 \\ \end{array}$	$\begin{array}{c} & \\ & \\ \hline L_{A,B} \\ \hline 259.5139 \\ \hline 150.2330 \\ \hline 265.3330 \\ \hline 177.6666 \\ \hline 365.3852 \\ \hline 762.1900 \\ \hline \\$	$\begin{array}{r} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 98.5325 \\ \hline 20.1079 \\ \hline 104.3650 \\ \hline 16.7144 \\ 204.5380 \\ \hline 601.0367 \\ \hline {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 394.1299 \\ \hline 80.4314 \\ \hline 417.4602 \\ \hline 66.8577 \\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L}(1) \\ \underline{L}_{\Sigma,B} \\ 5.2659 \\ 463.2930 \\ 0.0225 \\ 0.4053 \\ 1.7404 \\ 41.4616 \\ \hline \\ \underline{L}(1) \\ \underline{L}_{\Sigma,B} \\ 21.0635 \\ 1853.1720 \\ 0.0902 \\ 1.6213 \end{array}$	$\begin{array}{c} {\rm ARMA}\\ L_{A,B}\\ 161.0109\\ 150.1686\\ 161.0044\\ 160.9703\\ 161.0469\\ 161.4354\\ \hline\\ {\rm ARMA}\\ L_{A,B}\\ 644.0438\\ 600.6743\\ 644.0175\\ 643.8811\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0280 \\ 20.1723 \\ 0.0317 \\ 0.0269 \\ 0.0391 \\ 0.0619 \\ \hline \\ \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.1122 \\ 80.6890 \\ 0.1268 \\ 0.1075 \\ \end{array}$
$\sigma^2 = 2$ Σ MA(1) CS AR(1) ARMA-r=0.1 ARMA-r=0.35 ARMA-r=0.6 $\sigma^2 = 4$ Σ MA(1) CS AR(1) ARMA-r=0.1 ARMA-r=0.35	$L_{\Sigma,A}$ 161.0390 170.3408 161.0361 160.9971 161.0859 161.4973 $L_{\Sigma,A}$ 644.1559 681.3634 644.1444 643.9886 644.3437	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 0.0191 \\ 9850.8060 \\ 6.6162 \\ 1.0721 \\ 12.9539 \\ 38.0372 \\ \end{array}$	$\begin{array}{c} & \\ & \\ \hline \\ L_{A,B} \\ \hline \\ 259.5139 \\ \hline \\ 150.2330 \\ \hline \\ 265.3330 \\ \hline \\ 177.6666 \\ \hline \\ 365.3852 \\ \hline \\ 762.1900 \\ \hline \\$	$\begin{array}{r} & & & & \\ & & & \\ & & \\ S \\ \hline \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ &$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \underline{L}(1) \\ \underline{L}_{\Sigma,B} \\ 5.2659 \\ 463.2930 \\ 0.0225 \\ 0.4053 \\ 1.7404 \\ 41.4616 \\ \hline \\ \underline{L}(1) \\ \underline{L}_{\Sigma,B} \\ 21.0635 \\ 1853.1720 \\ 0.0902 \\ 1.6213 \\ 6.9615 \\ \hline \end{array}$	$\begin{array}{c} {\rm ARMA}\\ L_{A,B}\\ 161.0109\\ 150.1686\\ 161.0044\\ 160.9703\\ 161.0469\\ 161.4354\\ \hline\\ {\rm ARMA}\\ L_{A,B}\\ 644.0438\\ 600.6743\\ 644.0175\\ 643.8811\\ 644.1877\\ \end{array}$	$\begin{array}{c} \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.0280 \\ 20.1723 \\ 0.0317 \\ 0.0269 \\ 0.0391 \\ 0.0619 \\ \hline \\ \Lambda(1,1) \\ L_{\Sigma,B} \\ 0.1122 \\ 80.6890 \\ 0.1268 \\ 0.1075 \\ 0.1562 \\ \end{array}$

Table 4: Simulation results with m = 200; c = 0.25.

		B							
$\sigma^2 = 0.8$	50	MA	.(1)	C	S	AR	.(1)	ARM	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
MA(1)	10.0876	10.0859	0.0017	34.7046	24.6290	13.7978	3.7121	10.0852	0.0024
CS	12.4924	2471.9393	2462.6999	7.4777	5.0147	19.7831	17.3309	7.4727	5.0197
AR(1)	10.0917	18.3236	8.2380	42.2092	32.1312	10.0877	0.0040	10.0869	0.0048
ARMA-r=0.2	10.0669	11.3824	1.3190	15.2032	5.1423	10.5789	0.5160	10.0643	0.0025
ARMA-r=0.45	10.0812	16.7480	6.6731	36.0862	26.0271	10.1301	0.0558	10.0767	0.0045
ARMA-r=0.75	10.1277	28.6442	28.6442 18.5346		72.2929	12.1208	2.0087	10.1190	0.0086
					В				
$\sigma^2 = 1$		MA	.(1)	C	S	AR	.(1)	ARM	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
MA(1)	40.3505	40.3436	0.0068	138.8182	98.5162	55.1911	14.8485	40.3408	0.0097
CS	49.9696	9887.7572	9850.7994	29.9107	20.0589	79.1323	69.3236	29.8907	20.0789
AR(1)	40.3669	73.2942	32.9521	168.8369	128.5248	40.3506	0.0162	40.3476	0.0193
ARMA-r=0.2	40.2674	45.5297	5.2761	60.8128	20.5693	42.3155	2.0638	40.2573	0.0102
ARMA-r=0.45	40.3248	66.9918	26.6926	144.3447	104.1083	40.5203	0.2231	40.3069	0.0179
ARMA-r=0.75	40.5106	114.5767	74.1384	329.4581	289.1715	48.4832	8.0346	40.4761	0.0345
					В				
$\sigma^2 = 2$	2	MA	.(1)	C	B	AR	.(1)	ARM	A(1,1)
$\frac{\sigma^2 = 2}{\sum}$	$L_{\Sigma,A}$	MA L _{A,B}	L(1) $L_{\Sigma,B}$	$L_{A,B}$	$\frac{B}{L_{\Sigma,B}}$	$\frac{AR}{L_{A,B}}$	L(1) $L_{\Sigma,B}$	$\begin{array}{c} \text{ARM}_{A}\\ L_{A,B} \end{array}$	$\begin{array}{c} \mathbf{A}(1,1) \\ L_{\Sigma,B} \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}}$	$L_{\Sigma,A}$ 161.4019	$\begin{tabular}{ c c c c c } & MA \\ \hline $L_{A,B}$ \\ \hline 161.3746 \\ \end{tabular}$	$L_{\Sigma,B} = 0.0273$	$L_{A,B}$ 555.2729	$\frac{\text{B}}{L_{\Sigma,B}}$ 394.0647	AR $L_{A,B}$ 220.7645	$L_{\Sigma,B} = 59.3939$	$\begin{array}{c} \text{ARM}_{L}\\ L_{A,B}\\ 161.3631 \end{array}$	$\frac{A(1,1)}{L_{\Sigma,B}} \\ 0.0389$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}}$	$L_{\Sigma,A}$ 161.4019 199.8784	$\begin{tabular}{ c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 161.3746 \\ \hline 39551.0287 \\ \hline \end{tabular}$	$\begin{array}{c} .(1) \\ L_{\Sigma,B} \\ 0.0273 \\ 39403.1976 \end{array}$	$\begin{array}{c} & C \\ \\ L_{A,B} \\ \\ 555.2729 \\ \\ 119.6429 \end{array}$	$\frac{B}{^{2}S} \\ \frac{L_{\Sigma,B}}{394.0647} \\ 80.2355 \\ \end{array}$	$\begin{array}{c} & \text{AR} \\ \\ \hline L_{A,B} \\ \hline 220.7645 \\ \hline 316.5294 \end{array}$	L(1) $L_{\Sigma,B}$ 59.3939 277.2944	$\begin{array}{c} {\rm ARM}\\ L_{A,B}\\ 161.3631\\ 119.5628 \end{array}$	$ \begin{array}{c} A(1,1) \\ L_{\Sigma,B} \\ \hline 0.0389 \\ 80.3156 \end{array} $
$ \frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}} $ $ \frac{MA(1)}{CS} $ $ AR(1) $	$L_{\Sigma,A}$ 161.4019 199.8784 161.4674	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} .(1) \\ L_{\Sigma,B} \\ 0.0273 \\ \hline 39403.1976 \\ 131.8082 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 555.2729\\ 119.6429\\ 675.3478 \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 394.0647 \\ \hline 80.2355 \\ \hline 514.0994 \end{array}$	$\begin{array}{c} & {\rm AR} \\ \\ L_{A,B} \\ 220.7645 \\ 316.5294 \\ 161.4026 \end{array}$	L(1) $L_{\Sigma,B}$ 59.3939 277.2944 0.0648	$\begin{array}{c} {\rm ARM}_{A}\\ L_{A,B}\\ 161.3631\\ 119.5628\\ 161.3903 \end{array}$	$\begin{array}{r} \underline{A(1,1)}\\ \underline{L_{\Sigma,B}}\\ 0.0389\\ \hline 80.3156\\ \hline 0.0770 \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{MA(1)}}$ $\frac{MA(1)}{CS}$ $\frac{AR(1)}{ARMA-r=0.2}$	$L_{\Sigma,A}$ 161.4019 199.8784 161.4674 161.0696	$\begin{tabular}{ c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 161.3746 \\ \hline 39551.0287 \\ \hline 293.1770 \\ \hline 182.1187 \\ \hline \end{tabular}$	$\begin{array}{c} .(1) \\ L_{\Sigma,B} \\ 0.0273 \\ 39403.1976 \\ 131.8082 \\ 21.1042 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 555.2729\\ 119.6429\\ 675.3478\\ 243.2512 \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 394.0647 \\ \hline 80.2355 \\ \hline 514.0994 \\ \hline 82.2772 \end{array}$	$\begin{array}{c} & {\rm AR} \\ L_{A,B} \\ 220.7645 \\ 316.5294 \\ 161.4026 \\ 169.2620 \end{array}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 59.3939 \\ 277.2944 \\ 0.0648 \\ 8.2554 \end{array}$	$\begin{array}{c} {\rm ARM}\\ L_{A,B}\\ 161.3631\\ 119.5628\\ 161.3903\\ 161.0291 \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ {L_{\Sigma,B}}\\ 0.0389\\ 80.3156\\ \hline 0.0770\\ \hline 0.0406 \end{array}$
$\boxed{\begin{array}{c} \sigma^2 = 2\\ \overline{\Sigma}\\ \overline{MA(1)}\\ \overline{CS}\\ \overline{AR(1)}\\ \overline{ARMA-r=0.2}\\ \overline{ARMA-r=0.45} \end{array}}$	$L_{\Sigma,A}$ 161.4019 199.8784 161.4674 161.0696 161.2993	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} .(1)\\ L_{\Sigma,B}\\ 0.0273\\ 39403.1976\\ 131.8082\\ 21.1042\\ 106.7704 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 555.2729\\ 119.6429\\ 675.3478\\ 243.2512\\ 577.3788 \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 394.0647 \\ 80.2355 \\ \hline 514.0994 \\ 82.2772 \\ \hline 416.4330 \end{array}$	$\begin{array}{c} & {\rm AR} \\ \\ L_{A,B} \\ 220.7645 \\ 316.5294 \\ 161.4026 \\ 169.2620 \\ 162.0813 \end{array}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 59.3939 \\ 277.2944 \\ 0.0648 \\ 8.2554 \\ 0.8923 \end{array}$	$\begin{array}{c} \text{ARM}\\ L_{A,B}\\ 161.3631\\ 119.5628\\ 161.3903\\ 161.0291\\ 161.2277\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ {L_{\Sigma,B}}\\ 0.0389\\ 80.3156\\ 0.0770\\ \hline 0.0406\\ 0.0716\\ \end{array}$
$\boxed{\begin{array}{c} \sigma^2 = 2\\ \overline{\Sigma}\\ \overline{MA(1)}\\ \overline{CS}\\ \overline{AR(1)}\\ \overline{ARMA-r=0.2}\\ \overline{ARMA-r=0.45}\\ \overline{ARMA-r=0.75} \end{array}}$	$L_{\Sigma,A}$ 161.4019 199.8784 161.4674 161.0696 161.2993 162.0426	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} .(1)\\ L_{\Sigma,B}\\ 0.0273\\ 39403.1976\\ 131.8082\\ 21.1042\\ 106.7704\\ 296.5535 \end{array}$	$\begin{array}{c} C\\ L_{A,B}\\ 555.2729\\ 119.6429\\ 675.3478\\ 243.2512\\ 577.3788\\ 1317.8325 \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 394.0647 \\ 80.2355 \\ \hline 514.0994 \\ 82.2772 \\ \hline 416.4330 \\ 1156.6861 \end{array}$	$\begin{array}{c} & {\rm AR} \\ \\ L_{A,B} \\ 220.7645 \\ 316.5294 \\ 161.4026 \\ 169.2620 \\ 162.0813 \\ 193.9327 \end{array}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 59.3939 \\ 277.2944 \\ 0.0648 \\ 8.2554 \\ 0.8923 \\ 32.1385 \end{array}$	$\begin{array}{c} {\rm ARM}\\ L_{A,B}\\ 161.3631\\ 119.5628\\ 161.3903\\ 161.0291\\ 161.2277\\ 161.9044 \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ {L_{\Sigma,B}}\\ 0.0389\\ 80.3156\\ 0.0770\\ 0.0406\\ 0.0716\\ 0.1382 \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{\Delta R(1)}{\frac{\Delta R(1)}{\frac{\Delta R(1)}{\frac{\Delta RMA-r=0.2}{\frac{\Delta RMA-r=0.45}{\frac{\Delta RMA-r=0.75}{\frac{\Delta RMA-r=0.75}{\frac{2}}}}}$	$L_{\Sigma,A}$ 161.4019 199.8784 161.4674 161.0696 161.2993 162.0426	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} .(1) \\ L_{\Sigma,B} \\ 0.0273 \\ 39403.1976 \\ 131.8082 \\ 21.1042 \\ 106.7704 \\ 296.5535 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 555.2729\\ 119.6429\\ 675.3478\\ 243.2512\\ 577.3788\\ 1317.8325\\ \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 394.0647 \\ 80.2355 \\ \hline 514.0994 \\ 82.2772 \\ 416.4330 \\ 1156.6861 \\ {\rm B} \end{array}$	$\begin{array}{c} & {\rm AR} \\ \\ L_{A,B} \\ 220.7645 \\ 316.5294 \\ 161.4026 \\ 169.2620 \\ 162.0813 \\ 193.9327 \end{array}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 59.3939 \\ 277.2944 \\ 0.0648 \\ 8.2554 \\ 0.8923 \\ 32.1385 \end{array}$	$\begin{array}{c} {\rm ARM}\\ L_{A,B}\\ 161.3631\\ 119.5628\\ 161.3903\\ 161.0291\\ 161.2277\\ 161.9044\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ {L_{\Sigma,B}}\\ 0.0389\\ 80.3156\\ 0.0770\\ 0.0406\\ 0.0716\\ 0.1382\\ \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\sigma^{2} = 4$	$L_{\Sigma,A}$ 161.4019 199.8784 161.4674 161.0696 161.2993 162.0426	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} .(1) \\ L_{\Sigma,B} \\ 0.0273 \\ 39403.1976 \\ 131.8082 \\ 21.1042 \\ 106.7704 \\ 296.5535 \\ .(1) \\ \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 555.2729\\ 119.6429\\ 675.3478\\ 243.2512\\ 577.3788\\ 1317.8325\\ \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 394.0647 \\ 80.2355 \\ \hline 514.0994 \\ 82.2772 \\ 416.4330 \\ 1156.6861 \\ \hline {\rm B} \\ S \\ \hline \end{array}$	$\begin{array}{c} & \text{AR} \\ \hline L_{A,B} \\ 220.7645 \\ 316.5294 \\ 161.4026 \\ 169.2620 \\ 162.0813 \\ 193.9327 \\ \hline \end{array}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 59.3939 \\ 277.2944 \\ 0.0648 \\ 8.2554 \\ 0.8923 \\ 32.1385 \end{array}$	$\begin{array}{c} \text{ARM}_{L_{A,B}} \\ \hline L_{A,B} \\ \hline 161.3631 \\ \hline 119.5628 \\ \hline 161.3903 \\ \hline 161.0291 \\ \hline 161.2277 \\ \hline 161.9044 \\ \hline \\ \text{ARM}_{L_{1}} \\ \hline \\ \end{array}$	$\begin{array}{c} {\rm A}(1,1) \\ L_{\Sigma,B} \\ 0.0389 \\ 80.3156 \\ 0.0770 \\ 0.0406 \\ 0.0716 \\ 0.1382 \\ \\ {\rm A}(1,1) \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\sigma^{2} = 4$ Σ	$L_{\Sigma,A}$ 161.4019 199.8784 161.4674 161.0696 161.2993 162.0426 $L_{\Sigma,A}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} .(1) \\ L_{\Sigma,B} \\ 0.0273 \\ 39403.1976 \\ 131.8082 \\ 21.1042 \\ 106.7704 \\ 296.5535 \\ .(1) \\ L_{\Sigma,B} \\ L_{\Sigma,B} \\ \\ L_{\Sigma,B} \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ 555.2729\\ 119.6429\\ 675.3478\\ 243.2512\\ 577.3788\\ 1317.8325\\ \hline \\ C\\ L_{A,B}\\ 1317.8325\\ \hline \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 394.0647 \\ 80.2355 \\ \hline 514.0994 \\ 82.2772 \\ 416.4330 \\ 1156.6861 \\ \hline {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline \end{array}$	$\begin{array}{c} & \text{AR} \\ \hline L_{A,B} \\ 220.7645 \\ 316.5294 \\ 161.4026 \\ 169.2620 \\ 162.0813 \\ 193.9327 \\ \hline \\ AR \\ \hline \\ L_{A,B} \\ \hline \\ \end{array}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 59.3939 \\ 277.2944 \\ 0.0648 \\ 8.2554 \\ 0.8923 \\ 32.1385 \\ (1) \\ L_{\Sigma,B} \\ L_{\Sigma,B} \end{array}$	$\begin{array}{c} \text{ARM}\\ L_{A,B}\\ 161.3631\\ 119.5628\\ 161.3903\\ 161.0291\\ 161.2277\\ 161.9044\\\\\hline\\\text{ARM}\\ L_{A,B}\\\\\hline\\ L_{A,B}\\\hline\\ \end{array}$	$\begin{array}{c} \mathbf{A}(1,1) \\ L_{\Sigma,B} \\ 0.0389 \\ 80.3156 \\ 0.0770 \\ 0.0406 \\ 0.0716 \\ 0.1382 \\ \mathbf{A}(1,1) \\ L_{\Sigma,B} \\ L_{\Sigma,B} \\ \mathbf{b}_{\Sigma,B} \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\sigma^{2} = 4$ Σ MA(1) $\sigma^{2} = 4$	$L_{\Sigma,A}$ 161.4019 199.8784 161.4674 161.0696 161.2993 162.0426 $L_{\Sigma,A}$ 645.6077	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} .(1) \\ L_{\Sigma,B} \\ 0.0273 \\ 39403.1976 \\ 131.8082 \\ 21.1042 \\ 106.7704 \\ 296.5535 \\ .(1) \\ L_{\Sigma,B} \\ 0.1094 \\ 0.1094 \end{array}$	$\begin{array}{c} & \\ & \\ L_{A,B} \\ 555.2729 \\ 119.6429 \\ 675.3478 \\ 243.2512 \\ 577.3788 \\ 1317.8325 \\ \hline \\ & \\ L_{A,B} \\ 2221.0916 \\ \hline \\ 2221.0916 \\ \hline \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ 394.0647 \\ 80.2355 \\ \hline 514.0994 \\ 82.2772 \\ 416.4330 \\ 1156.6861 \\ \hline {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ 1576.2587 \end{array}$	$\begin{array}{c} & {\rm AR} \\ & L_{A,B} \\ 220.7645 \\ 316.5294 \\ 161.4026 \\ 169.2620 \\ 162.0813 \\ 193.9327 \\ \\ & {\rm AR} \\ \\ & L_{A,B} \\ 883.0582 \\ \\ \hline \end{array}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 59.3939 \\ 277.2944 \\ 0.0648 \\ 8.2554 \\ 0.8923 \\ 32.1385 \\ (1) \\ L_{\Sigma,B} \\ 237.5758 \end{array}$	$\begin{array}{c} \text{ARM}\\ L_{A,B}\\ 161.3631\\ 119.5628\\ 161.3903\\ 161.0291\\ 161.2277\\ 161.9044\\\\\hline\\ \text{ARM}\\ L_{A,B}\\ 645.4523\\\\\hline\\ 645.4523\\\\\hline\end{array}$	$\begin{array}{c} \mathbf{A}(1,1) \\ L_{\Sigma,B} \\ 0.0389 \\ 80.3156 \\ 0.0770 \\ 0.0406 \\ 0.0716 \\ 0.1382 \\ \hline \mathbf{A}(1,1) \\ L_{\Sigma,B} \\ 0.1554 \\ \hline \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\sigma^{2} = 4$ Σ MA(1) CS	$L_{\Sigma,A}$ 161.4019 199.8784 161.4674 161.0696 161.2993 162.0426 $L_{\Sigma,A}$ 645.6077 799.5137	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} .(1)\\ L_{\Sigma,B}\\ 0.0273\\ 39403.1976\\ 131.8082\\ 21.1042\\ 106.7704\\ 296.5535\\ .(1)\\ L_{\Sigma,B}\\ 0.1094\\ 157612.7905\\ \end{array}$	$\begin{array}{c} & \\ & \\ \hline L_{A,B} \\ 555.2729 \\ 119.6429 \\ 675.3478 \\ 243.2512 \\ 577.3788 \\ 1317.8325 \\ \hline \\ \hline \\ L_{A,B} \\ 2221.0916 \\ 478.5715 \\ \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ 394.0647 \\ 80.2355 \\ \hline 514.0994 \\ 82.2772 \\ 416.4330 \\ 1156.6861 \\ \hline {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ 1576.2587 \\ \hline 320.9421 \\ \end{array}$	$\begin{array}{c} & {\rm AR} \\ & L_{A,B} \\ 220.7645 \\ 316.5294 \\ 161.4026 \\ 169.2620 \\ 162.0813 \\ 193.9327 \\ \\ & {\rm AR} \\ \\ & L_{A,B} \\ 883.0582 \\ 1266.1176 \\ \end{array}$	$\begin{array}{c} .(1)\\ L_{\Sigma,B}\\ 59.3939\\ 277.2944\\ 0.0648\\ 8.2554\\ 0.8923\\ 32.1385\\ .(1)\\ L_{\Sigma,B}\\ 237.5758\\ 1109.1776\\ \end{array}$	$\begin{array}{c} {\rm ARM}\\ L_{A,B}\\ 161.3631\\ 119.5628\\ 161.3903\\ 161.0291\\ 161.2277\\ 161.9044\\ \\ {\rm ARM}\\ L_{A,B}\\ 645.4523\\ 478.2513\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ L_{\Sigma,B}\\ 0.0389\\ 80.3156\\ 0.0770\\ 0.0406\\ 0.0716\\ 0.1382\\ \hline {\rm A(1,1)}\\ L_{\Sigma,B}\\ 0.1554\\ \hline 321.2624 \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\sigma^{2} = 4$ Σ MA(1) CS AR(1) CS AR(1)	$L_{\Sigma,A}$ 161.4019 199.8784 161.4674 161.0696 161.2993 162.0426 $L_{\Sigma,A}$ 645.6077 799.5137 645.8696	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} .(1)\\ L_{\Sigma,B}\\ 0.0273\\ 39403.1976\\ 131.8082\\ 21.1042\\ 106.7704\\ 296.5535\\ .(1)\\ L_{\Sigma,B}\\ 0.1094\\ 157612.7905\\ 527.2330\\ \end{array}$	$\begin{array}{c} & \\ & \\ L_{A,B} \\ 555.2729 \\ 119.6429 \\ 675.3478 \\ 243.2512 \\ 577.3788 \\ 1317.8325 \\ \hline \\ & \\ L_{A,B} \\ 2221.0916 \\ 478.5715 \\ 2701.3912 \\ \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ 394.0647 \\ 80.2355 \\ \hline 514.0994 \\ 82.2772 \\ 416.4330 \\ 1156.6861 \\ \hline {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ 1576.2587 \\ \hline 320.9421 \\ 2056.3975 \\ \end{array}$	$\begin{array}{c} & {\rm AR} \\ L_{A,B} \\ 220.7645 \\ 316.5294 \\ 161.4026 \\ 169.2620 \\ 162.0813 \\ 193.9327 \\ \\ \\ {\rm AR} \\ L_{A,B} \\ 883.0582 \\ 1266.1176 \\ 645.6104 \\ \end{array}$	$\begin{array}{c} .(1)\\ L_{\Sigma,B}\\ 59.3939\\ 277.2944\\ 0.0648\\ 8.2554\\ 0.8923\\ 32.1385\\ .(1)\\ L_{\Sigma,B}\\ 237.5758\\ 1109.1776\\ 0.2592\\ \end{array}$	$\begin{array}{c} {\rm ARM}\\ L_{A,B}\\ 161.3631\\ 119.5628\\ 161.3903\\ 161.0291\\ 161.2277\\ 161.9044\\ \\ {\rm ARM}\\ L_{A,B}\\ 645.4523\\ 478.2513\\ 645.5613\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ L_{\Sigma,B}\\ 0.0389\\ 80.3156\\ 0.0770\\ 0.0406\\ 0.0716\\ 0.1382\\ \\ {\rm A(1,1)}\\ L_{\Sigma,B}\\ 0.1554\\ 321.2624\\ 0.3082\\ \end{array}$
$\sigma^{2} = 2$ Σ MA(1) CS AR(1) ARMA-r=0.2 ARMA-r=0.45 ARMA-r=0.75 $\sigma^{2} = 4$ Σ MA(1) CS AR(1) ARMA-r=0.2	$L_{\Sigma,A}$ 161.4019 199.8784 161.4674 161.0696 161.2993 162.0426 $L_{\Sigma,A}$ 645.6077 799.5137 645.8696 644.2785	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} .(1)\\ L_{\Sigma,B}\\ 0.0273\\ 39403.1976\\ 131.8082\\ 21.1042\\ 106.7704\\ 296.5535\\ .(1)\\ L_{\Sigma,B}\\ 0.1094\\ 157612.7905\\ 527.2330\\ 84.4170\\ \end{array}$	$\begin{array}{c} & \\ & \\ L_{A,B} \\ 555.2729 \\ 119.6429 \\ 675.3478 \\ 243.2512 \\ 577.3788 \\ 1317.8325 \\ \hline \\ & \\ L_{A,B} \\ 2221.0916 \\ 478.5715 \\ 2701.3912 \\ 973.0047 \\ \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ 394.0647 \\ 80.2355 \\ \hline 514.0994 \\ 82.2772 \\ 416.4330 \\ 1156.6861 \\ \hline {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ 1576.2587 \\ \hline 320.9421 \\ 2056.3975 \\ \hline 329.1090 \\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 59.3939 \\ 277.2944 \\ 0.0648 \\ 8.2554 \\ 0.8923 \\ 32.1385 \\ (1) \\ L_{\Sigma,B} \\ 237.5758 \\ 1109.1776 \\ 0.2592 \\ 33.0215 \end{array}$	$\begin{array}{c} {\rm ARM}\\ L_{A,B}\\ 161.3631\\ 119.5628\\ 161.3903\\ 161.0291\\ 161.2277\\ 161.9044\\ \\ {\rm ARM}\\ L_{A,B}\\ 645.4523\\ 478.2513\\ 645.5613\\ 644.1162\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ L_{\Sigma,B}\\ 0.0389\\ 80.3156\\ 0.0770\\ 0.0406\\ 0.0716\\ 0.1382\\ \hline {\rm A(1,1)}\\ L_{\Sigma,B}\\ 0.1554\\ 321.2624\\ 0.3082\\ 0.1625\\ \end{array}$
$\frac{\sigma^2 = 2}{\Sigma}$ $\frac{MA(1)}{CS}$ $AR(1)$ $ARMA-r=0.2$ $ARMA-r=0.45$ $ARMA-r=0.75$ $\sigma^2 = 4$ Σ $MA(1)$ CS $AR(1)$ $AR(1)$ $ARMA-r=0.2$ $ARMA-r=0.45$	$L_{\Sigma,A}$ 161.4019 199.8784 161.4674 161.0696 161.2993 162.0426 $L_{\Sigma,A}$ 645.6077 799.5137 645.8696 644.2785 645.1971	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} .(1)\\ L_{\Sigma,B}\\ 0.0273\\ 39403.1976\\ 131.8082\\ 21.1042\\ 106.7704\\ 296.5535\\ .(1)\\ L_{\Sigma,B}\\ 0.1094\\ 157612.7905\\ 527.2330\\ 84.4170\\ 427.0815\\ \end{array}$	$\begin{array}{c} & \\ & \\ L_{A,B} \\ 555.2729 \\ 119.6429 \\ 675.3478 \\ 243.2512 \\ 577.3788 \\ 1317.8325 \\ \hline \\ & \\ L_{A,B} \\ 2221.0916 \\ 478.5715 \\ 22701.3912 \\ 973.0047 \\ 2309.5151 \\ \end{array}$	$\begin{array}{r} & & & \\ & & & \\ & & \\ \hline S \\ & & \\ &$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 59.3939 \\ 277.2944 \\ 0.0648 \\ 8.2554 \\ 0.8923 \\ 32.1385 \\ (1) \\ L_{\Sigma,B} \\ 237.5758 \\ 1109.1776 \\ 0.2592 \\ 33.0215 \\ 3.5693 \\ \end{array}$	$\begin{array}{c} {\rm ARM}\\ L_{A,B}\\ 161.3631\\ 119.5628\\ 161.3903\\ 161.0291\\ 161.2277\\ 161.9044\\ \hline\\ {\rm ARM}\\ L_{A,B}\\ 645.4523\\ 478.2513\\ 645.5613\\ 644.1162\\ 644.9110\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ L_{\Sigma,B}\\ 0.0389\\ 80.3156\\ 0.0770\\ 0.0406\\ 0.0716\\ 0.1382\\ \hline\\ {\rm A(1,1)}\\ L_{\Sigma,B}\\ 0.1554\\ 321.2624\\ 0.3082\\ 0.1625\\ 0.2862\\ \hline\end{array}$

Table 5: Simulation results with m = 200; c = 0.5.

					В				
$\sigma^2 = 0.8$	50	MA	(1)	C	S	AR	R(1)	ARM	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
\mathbf{CS}	15.6162	5554.8375	5541.0741	4.3933	11.2229	7.4676	14.3044	4.3897	11.2265
AR(1)	10.1738	81.2141	71.1382	128.4485	118.4413	10.1514	0.0224	10.1501	0.0236
ARMA-r=0.25	10.0724	17.9662	7.9052	23.2171	13.1621	42.9548	32.9090	10.0673	0.0052
ARMA-r=0.5	10.1182	41.7266	31.6179	62.7155	52.6420	12.4233	2.3290	10.1046	0.0136
ARMA-r=0.8	10.1966	91.1004 80.9393		144.8784	134.7604	10.2791	0.1328	10.1699	0.0266
					В				
$\sigma^2 = 1$		MA	(1)	C	S	AR	R(1)	ARM	A(1,1)
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$
CS	62.4648	22219.3499	22164.2965	17.5733	44.8914	29.8703	57.2177	17.5589	44.9058
AR(1)	40.6950	324.8565	284.5529	513.7938	473.7654	40.6056	0.0894	40.6005	0.0945
ARMA-r=0.25	40.2896	71.8649	31.6206	92.8685	52.6485	171.8192	131.6359	40.2690	0.0206
ARMA-r=0.5	40.4727	166.9065	126.4714	250.8619	210.5680	49.6933	9.3161	40.4183	0.0545
ARMA-r=0.8	40.7863	364.4014	323.7570	579.5136	539.0417	41.1164	0.5312	40.6798	0.1065
		304.4014 323.7370							
					В				
$\sigma^2 = 2$	2	MA	L(1)	С	B	AR	R(1)	ARM	A(1,1)
$\frac{\sigma^2 = 2}{\Sigma}$	$L_{\Sigma,A}$	MA L _{A,B}	$L_{\Sigma,B}$	$L_{A,B}$	$\frac{B}{L_{\Sigma,B}}$	AR $L_{A,B}$	$R(1)$ $L_{\Sigma,B}$	$ARM L_{A,B}$	$\frac{A(1,1)}{L_{\Sigma,B}}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\text{CS}}}$	$L_{\Sigma,A}$ 249.8591	MA <i>L_{A,B}</i> 88877.3996	$L_{\Sigma,B}$ 88657.1860	$\begin{array}{c} & C \\ L_{A,B} \\ \hline 70.2933 \end{array}$	$\frac{\text{B}}{\frac{L_{\Sigma,B}}{179.5658}}$	$\frac{AR}{L_{A,B}} \\ 119.4813$	$\frac{L_{\Sigma,B}}{228.8706}$	$\begin{array}{c} \text{ARM}\\ L_{A,B}\\ \hline 70.2358 \end{array}$	$\frac{A(1,1)}{L_{\Sigma,B}}$ 179.6233
$\frac{\frac{\sigma^2 = 2}{\Sigma}}{\frac{CS}{AR(1)}}$	$L_{\Sigma,A}$ 249.8591 162.7801	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$L_{\Sigma,B}$ 88657.1860 1138.2116	$\begin{array}{c} & C \\ \hline L_{A,B} \\ \hline 70.2933 \\ 2055.1753 \end{array}$	$\frac{B}{2S} \\ \frac{L_{\Sigma,B}}{179.5658} \\ 1895.0615 \\ \end{array}$	$\begin{array}{c} & \text{AR} \\ \\ \hline L_{A,B} \\ 119.4813 \\ \hline 162.4223 \end{array}$	$\frac{L_{\Sigma,B}}{228.8706}$ 0.3577	$\begin{array}{c} \text{ARM} \\ L_{A,B} \\ \hline 70.2358 \\ 162.4018 \end{array}$	$ \begin{array}{r} A(1,1) \\ \hline L_{\Sigma,B} \\ \hline 179.6233 \\ \hline 0.3781 \end{array} $
$\frac{\frac{\sigma^2 = 2}{\Sigma}}{\frac{CS}{AR(1)}}$ ARMA-r=0.25	$\begin{array}{c} L_{\Sigma,A} \\ 249.8591 \\ 162.7801 \\ 161.1585 \end{array}$	$\begin{tabular}{ c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 88877.3996 \\ \hline 1299.4259 \\ \hline 287.4597 \\ \hline \end{tabular}$	$\begin{array}{c} (1) \\ \underline{L_{\Sigma,B}} \\ 88657.1860 \\ 1138.2116 \\ 126.4825 \end{array}$	$\begin{array}{c} & C \\ \hline L_{A,B} \\ \hline 70.2933 \\ 2055.1753 \\ \hline 371.4739 \end{array}$	$\begin{array}{r} & {\rm B} \\ {\rm SS} \\ \hline L_{\Sigma,B} \\ 179.5658 \\ 1895.0615 \\ 210.5941 \end{array}$	$\begin{array}{c} & \text{AR} \\ \hline L_{A,B} \\ 119.4813 \\ 162.4223 \\ 687.2768 \end{array}$	$\begin{array}{c} \underline{L_{\Sigma,B}} \\ \underline{228.8706} \\ 0.3577 \\ 526.5434 \end{array}$	$\begin{array}{c} \text{ARM.}\\ L_{A,B}\\ \hline 70.2358\\ \hline 162.4018\\ \hline 161.0761 \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ \underline{L_{\Sigma,B}}\\ 179.6233\\ \underline{0.3781}\\ 0.0824 \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{CS}{AR(1)}}}$ $\frac{AR(1)}{ARMA - r = 0.25}$ $ARMA - r = 0.5$	$\begin{array}{c} L_{\Sigma,A} \\ 249.8591 \\ 162.7801 \\ 161.1585 \\ 161.8909 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 88657.1860 \\ 1138.2116 \\ 126.4825 \\ 505.8857 \end{array}$	$\begin{array}{c} & C\\ \hline L_{A,B}\\ \hline 70.2933\\ 2055.1753\\ 371.4739\\ 1003.4478 \end{array}$	$\begin{array}{r} & \text{B} \\ \hline L_{\Sigma,B} \\ \hline 179.5658 \\ \hline 1895.0615 \\ \hline 210.5941 \\ \hline 842.2721 \end{array}$	$\begin{array}{c} & {\rm AR} \\ \\ L_{A,B} \\ 119.4813 \\ 162.4223 \\ 687.2768 \\ 198.7730 \end{array}$	$\begin{array}{c} (1) \\ \underline{L_{\Sigma,B}} \\ 228.8706 \\ 0.3577 \\ 526.5434 \\ 37.2644 \end{array}$	$\begin{array}{c} \text{ARM.}\\ L_{A,B}\\ \hline 70.2358\\ 162.4018\\ 161.0761\\ 161.6732 \end{array}$	$\begin{array}{r} A(1,1) \\ \hline L_{\Sigma,B} \\ 179.6233 \\ \hline 0.3781 \\ \hline 0.0824 \\ \hline 0.2179 \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{CS}{AR(1)}}}$ $\frac{AR(1)}{ARMA-r=0.25}$ $\frac{ARMA-r=0.5}{ARMA-r=0.8}$	$L_{\Sigma,A}$ 249.8591 162.7801 161.1585 161.8909 163.1453	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 88657.1860 \\ 1138.2116 \\ 126.4825 \\ 505.8857 \\ 1295.0282 \end{array}$	$\begin{array}{c} C\\ L_{A,B}\\ \hline 70.2933\\ 2055.1753\\ 371.4739\\ 1003.4478\\ 2318.0545\\ \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline {} S \\ \hline L_{\Sigma,B} \\ 179.5658 \\ 1895.0615 \\ \hline 210.5941 \\ 842.2721 \\ \hline 2156.1670 \end{array}$	$\begin{array}{c} & {\rm AR} \\ \\ L_{A,B} \\ 119.4813 \\ 162.4223 \\ 687.2768 \\ 198.7730 \\ 164.4658 \end{array}$	$\begin{array}{c} L_{\Sigma,B} \\ \hline \\ 228.8706 \\ \hline \\ 0.3577 \\ \hline \\ 526.5434 \\ \hline \\ 37.2644 \\ \hline \\ 2.1248 \end{array}$	$\begin{array}{c} \text{ARM.}\\ L_{A,B}\\ \hline 70.2358\\ 162.4018\\ 161.0761\\ 161.6732\\ 162.7191\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ {L_{\Sigma,B}}\\ 179.6233\\ \hline 0.3781\\ \hline 0.0824\\ \hline 0.2179\\ \hline 0.4259 \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\text{CS}}}$ $\frac{\text{AR}(1)}{\text{ARMA-r}=0.25}$ $\frac{\text{ARMA-r}=0.5}{\text{ARMA-r}=0.8}$	$L_{\Sigma,A}$ 249.8591 162.7801 161.1585 161.8909 163.1453	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 88657.1860 \\ 1138.2116 \\ 126.4825 \\ 505.8857 \\ 1295.0282 \end{array}$	$\begin{array}{c} C\\ L_{A,B}\\ \hline 70.2933\\ 2055.1753\\ 371.4739\\ 1003.4478\\ 2318.0545\\ \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ 179.5658 \\ 1895.0615 \\ \hline 210.5941 \\ 842.2721 \\ \hline 2156.1670 \\ {\rm B} \end{array}$	$\begin{array}{c} & {\rm AR} \\ L_{A,B} \\ 119.4813 \\ 162.4223 \\ 687.2768 \\ 198.7730 \\ 164.4658 \end{array}$	$\begin{array}{c} L_{\Sigma,B} \\ \hline \\ 228.8706 \\ \hline \\ 0.3577 \\ \hline \\ 526.5434 \\ \hline \\ 37.2644 \\ \hline \\ 2.1248 \end{array}$	$\begin{array}{c} \text{ARM.}\\ L_{A,B}\\ \hline 70.2358\\ 162.4018\\ 161.0761\\ 161.6732\\ 162.7191\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ {\color{black}{L_{\Sigma,B}}}\\ {\color{black}{179.6233}}\\ {\color{black}{0.3781}}\\ {\color{black}{0.0824}}\\ {\color{black}{0.2179}}\\ {\color{black}{0.4259}} \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{CS}}$ $\frac{AR(1)}{ARMA-r=0.25}$ $\frac{ARMA-r=0.5}{ARMA-r=0.8}$ $\sigma^2 = 4$	$L_{\Sigma,A}$ 249.8591 162.7801 161.1585 161.8909 163.1453	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 88657.1860 \\ 1138.2116 \\ 126.4825 \\ 505.8857 \\ 1295.0282 \\ (1) \end{array}$	$\begin{array}{c} C\\ L_{A,B}\\ \hline 70.2933\\ 2055.1753\\ 371.4739\\ 1003.4478\\ 2318.0545\\ \hline C\end{array}$	$\begin{array}{c} & {\rm B} \\ \hline S \\ \hline L_{\Sigma,B} \\ \hline 179.5658 \\ \hline 1895.0615 \\ \hline 210.5941 \\ \hline 842.2721 \\ \hline 2156.1670 \\ \hline {\rm B} \\ \hline S \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \mathcal{R}(1) \\ \hline L_{\Sigma,B} \\ 228.8706 \\ \hline 0.3577 \\ 526.5434 \\ 37.2644 \\ \hline 2.1248 \\ \mathcal{R}(1) \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} {\rm A(1,1)}\\ {\color{black}{L_{\Sigma,B}}}\\ {\color{black}{179.6233}}\\ {\color{black}{0.3781}}\\ {\color{black}{0.0824}}\\ {\color{black}{0.2179}}\\ {\color{black}{0.4259}}\\ {\color{black}{A(1,1)}} \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{CS}{AR(1)}}}$ $\frac{AR(1)}{ARMA - r = 0.25}$ $\frac{ARMA - r = 0.8}{\sigma^2 = 4}$ $\frac{\sigma^2 = 4}{\Sigma}$	$L_{\Sigma,A}$ 249.8591 162.7801 161.1585 161.8909 163.1453 4 $L_{\Sigma,A}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 88657.1860 \\ 1138.2116 \\ 126.4825 \\ 505.8857 \\ 1295.0282 \\ (1) \\ L_{\Sigma,B} \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ \hline 70.2933\\ 2055.1753\\ 371.4739\\ 1003.4478\\ 2318.0545\\ \hline C\\ L_{A,B}\\ \end{array}$	$\begin{array}{c} & {\rm B} \\ \hline {} S \\ \hline {} L_{\Sigma,B} \\ \hline 179.5658 \\ \hline 1895.0615 \\ \hline 210.5941 \\ \hline 842.2721 \\ \hline 2156.1670 \\ \hline {} B \\ \hline S \\ \hline {} L_{\Sigma,B} \end{array}$	$\begin{array}{c} & {\rm AR} \\ & L_{A,B} \\ \hline 119.4813 \\ 162.4223 \\ 687.2768 \\ \hline 198.7730 \\ \hline 164.4658 \\ \hline {\rm AR} \\ L_{A,B} \end{array}$	$\begin{array}{c} \mathcal{R}(1) \\ \hline L_{\Sigma,B} \\ \hline 228.8706 \\ \hline 0.3577 \\ \hline 526.5434 \\ \hline 37.2644 \\ \hline 2.1248 \\ \hline \mathcal{R}(1) \\ \hline L_{\Sigma,B} \end{array}$	$\begin{array}{c} \text{ARM.}\\ L_{A,B}\\ \hline 70.2358\\ 162.4018\\ 161.0761\\ 161.6732\\ 162.7191\\ \hline \text{ARM.}\\ L_{A,B}\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ {L_{\Sigma,B}}\\ 179.6233\\ \hline 0.3781\\ \hline 0.0824\\ \hline 0.2179\\ \hline 0.4259\\ \hline {\rm A(1,1)}\\ {L_{\Sigma,B}} \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{CS}}$ $\frac{AR(1)}{ARMA-r=0.25}$ $\frac{ARMA-r=0.5}{ARMA-r=0.8}$ $\frac{\sigma^2 = 4}{\frac{\Sigma}{CS}}$	$L_{\Sigma,A}$ 249.8591 162.7801 161.1585 161.8909 163.1453 4 $L_{\Sigma,A}$ 999.4362	$\begin{tabular}{ c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 88877.3996 \\ \hline 1299.4259 \\ \hline 287.4597 \\ \hline 667.6259 \\ \hline 1457.6058 \\ \hline MA \\ \hline $L_{A,B}$ \\ \hline 355509.5984 \\ \hline \end{tabular}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 88657.1860 \\ 1138.2116 \\ 126.4825 \\ 505.8857 \\ 1295.0282 \\ (1) \\ L_{\Sigma,B} \\ 354628.7442 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ \hline 70.2933\\ 2055.1753\\ 371.4739\\ 1003.4478\\ 2318.0545\\ \hline C\\ L_{A,B}\\ 281.1731\\ \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline {} S \\ \hline {} L_{\Sigma,B} \\ 179.5658 \\ 1895.0615 \\ 210.5941 \\ 842.2721 \\ 2156.1670 \\ {\rm B} \\ \hline {} S \\ \hline {} L_{\Sigma,B} \\ 718.2632 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} R(1) \\ \hline L_{\Sigma,B} \\ \hline 228.8706 \\ \hline 0.3577 \\ \hline 526.5434 \\ \hline 37.2644 \\ \hline 2.1248 \\ R(1) \\ \hline L_{\Sigma,B} \\ \hline 915.4825 \end{array}$	$\begin{array}{c} \text{ARM.}\\ L_{A,B}\\ \hline 70.2358\\ 162.4018\\ 161.0761\\ 161.6732\\ 162.7191\\ \hline \text{ARM.}\\ L_{A,B}\\ 280.9431\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ {\color{black}{L_{\Sigma,B}}}\\ {\color{black}{179.6233}}\\ {\color{black}{0.3781}}\\ {\color{black}{0.0824}}\\ {\color{black}{0.2179}}\\ {\color{black}{0.2179}}\\ {\color{black}{0.4259}}\\ {\color{black}{A(1,1)}}\\ {\color{black}{L_{\Sigma,B}}}\\ {\color{black}{718.4931}} \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{CS}{AR(1)}}}$ $\frac{AR(1)}{ARMA - r = 0.25}$ $\frac{ARMA - r = 0.5}{ARMA - r = 0.8}$ $\frac{\sigma^2 = 4}{\frac{\Sigma}{CS}}$ $\frac{CS}{AR(1)}$	$L_{\Sigma,A}$ 249.8591 162.7801 161.1585 161.8909 163.1453 $L_{\Sigma,A}$ 999.4362 651.1205	$\begin{tabular}{ c c c c c c c c } \hline MA \\ \hline $L_{A,B}$ \\ \hline 88877.3996 \\ \hline 1299.4259 \\ \hline 287.4597 \\ \hline 667.6259 \\ \hline 1457.6058 \\ \hline MA \\ \hline $L_{A,B}$ \\ \hline 355509.5984 \\ \hline 5197.7035 \\ \hline \end{tabular}$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 88657.1860 \\ 1138.2116 \\ 126.4825 \\ 505.8857 \\ 1295.0282 \\ (1) \\ L_{\Sigma,B} \\ 354628.7442 \\ 4552.8464 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ \hline 70.2933\\ 2055.1753\\ 371.4739\\ 1003.4478\\ 2318.0545\\ \hline C\\ L_{A,B}\\ 281.1731\\ 8220.7013\\ \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline {} S \\ \hline {} L_{\Sigma,B} \\ 179.5658 \\ 1895.0615 \\ 210.5941 \\ 842.2721 \\ 2156.1670 \\ {\rm B} \\ \hline {} S \\ \hline {} L_{\Sigma,B} \\ \hline {} 718.2632 \\ \hline {} 7580.2462 \\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} R(1) \\ \hline L_{\Sigma,B} \\ \hline 228.8706 \\ \hline 0.3577 \\ \hline 526.5434 \\ \hline 37.2644 \\ \hline 2.1248 \\ \hline R(1) \\ \hline L_{\Sigma,B} \\ \hline 915.4825 \\ \hline 1.4307 \\ \end{array}$	$\begin{array}{c} \text{ARM.}\\ L_{A,B}\\ \hline 70.2358\\ 162.4018\\ 161.0761\\ 161.6732\\ 162.7191\\ \hline \\ \text{ARM.}\\ L_{A,B}\\ 280.9431\\ \hline \\ 649.6073\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ \\ L_{\Sigma,B}\\ \hline 179.6233\\ \hline 0.3781\\ \hline 0.0824\\ \hline 0.2179\\ \hline 0.4259\\ \hline \\ {\rm A(1,1)}\\ \\ L_{\Sigma,B}\\ \hline 718.4931\\ \hline 1.5125\\ \end{array}$
$\frac{\sigma^2 = 2}{\frac{\Sigma}{\frac{CS}{AR(1)}}}$ $\frac{AR(1)}{ARMA-r=0.25}$ $\frac{ARMA-r=0.8}{ARMA-r=0.8}$ $\frac{\sigma^2 = 4}{\frac{\Sigma}{\frac{CS}{AR(1)}}}$	$L_{\Sigma,A}$ 249.8591 162.7801 161.1585 161.8909 163.1453 $L_{\Sigma,A}$ 999.4362 651.1205 644.6341	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 88657.1860 \\ 1138.2116 \\ 126.4825 \\ 505.8857 \\ 1295.0282 \\ (1) \\ L_{\Sigma,B} \\ 354628.7442 \\ 4552.8464 \\ 505.9300 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ \hline 70.2933\\ 2055.1753\\ 371.4739\\ 1003.4478\\ 2318.0545\\ \hline C\\ L_{A,B}\\ 281.1731\\ 8220.7013\\ 1485.8957\\ \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ 179.5658 \\ 1895.0615 \\ 210.5941 \\ 842.2721 \\ 2156.1670 \\ {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ \hline 718.2632 \\ \hline 7580.2462 \\ \hline 842.3765 \\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \mathbb{R}(1) \\ \hline L_{\Sigma,B} \\ 228.8706 \\ 0.3577 \\ 526.5434 \\ 37.2644 \\ 2.1248 \\ \mathbb{R}(1) \\ \hline L_{\Sigma,B} \\ 915.4825 \\ 1.4307 \\ 2106.1737 \end{array}$	$\begin{array}{c} \text{ARM.}\\ L_{A,B}\\ \hline 70.2358\\ 162.4018\\ 161.0761\\ 161.6732\\ 162.7191\\ \hline \\ \text{ARM.}\\ L_{A,B}\\ 280.9431\\ \hline \\ 649.6073\\ \hline \\ 644.3042\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ \\ L_{\Sigma,B}\\ \hline 179.6233\\ \hline 0.3781\\ \hline 0.0824\\ \hline 0.2179\\ \hline 0.4259\\ \hline \\ {\rm A(1,1)}\\ \\ L_{\Sigma,B}\\ \hline 718.4931\\ \hline 1.5125\\ \hline 0.3297\\ \end{array}$
$\boxed{\begin{array}{c} \sigma^2 = 2\\ \Sigma\\ \hline CS\\ \hline AR(1)\\ \hline ARMA-r=0.25\\ \hline ARMA-r=0.5\\ \hline ARMA-r=0.8\\ \hline \\ \sigma^2 = 4\\ \hline \\ \Sigma\\ \hline \\ CS\\ \hline \\ AR(1)\\ \hline \\ ARMA-r=0.25\\ \hline \\ ARMA-r=0.5\\ \hline \end{array}}$	$\begin{array}{c} L_{\Sigma,A} \\ 249.8591 \\ 162.7801 \\ 161.1585 \\ 161.8909 \\ 163.1453 \\ \\ L_{\Sigma,A} \\ 999.4362 \\ 651.1205 \\ 644.6341 \\ 647.5636 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 88657.1860 \\ 1138.2116 \\ 126.4825 \\ 505.8857 \\ 1295.0282 \\ (1) \\ L_{\Sigma,B} \\ 354628.7442 \\ 4552.8464 \\ 505.9300 \\ 2023.5428 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ \hline 70.2933\\ 2055.1753\\ 371.4739\\ 1003.4478\\ 2318.0545\\ \hline C\\ L_{A,B}\\ 281.1731\\ 8220.7013\\ 1485.8957\\ 4013.7910\\ \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ 179.5658 \\ 1895.0615 \\ 210.5941 \\ 842.2721 \\ 2156.1670 \\ {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ \hline {\rm 718.2632} \\ \hline {\rm 7580.2462} \\ 842.3765 \\ \hline {\rm 3369.0885} \\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} R(1) \\ \hline L_{\Sigma,B} \\ \hline 228.8706 \\ \hline 0.3577 \\ \hline 526.5434 \\ \hline 37.2644 \\ \hline 2.1248 \\ \hline R(1) \\ \hline L_{\Sigma,B} \\ \hline 915.4825 \\ \hline 1.4307 \\ \hline 2106.1737 \\ \hline 149.0575 \\ \hline \end{array}$	$\begin{array}{c} \text{ARM.}\\ L_{A,B}\\ \hline 70.2358\\ 162.4018\\ 161.0761\\ 161.6732\\ 162.7191\\ \hline \\ \text{ARM.}\\ L_{A,B}\\ 280.9431\\ 649.6073\\ 644.3042\\ 646.6929\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ \\ L_{\Sigma,B}\\ \hline 179.6233\\ \hline 0.3781\\ \hline 0.0824\\ \hline 0.2179\\ \hline 0.4259\\ \hline \\ {\rm A(1,1)}\\ \hline L_{\Sigma,B}\\ \hline 718.4931\\ \hline 1.5125\\ \hline 0.3297\\ \hline 0.8714\\ \end{array}$
$\frac{\sigma^2 = 2}{\Sigma}$ $\frac{\Sigma}{CS}$ $\frac{AR(1)}{ARMA-r=0.25}$ $\frac{ARMA-r=0.8}{ARMA-r=0.8}$ $\frac{\sigma^2 = 4}{\Sigma}$ $\frac{\Sigma}{CS}$ $\frac{AR(1)}{ARMA-r=0.25}$ $\frac{ARMA-r=0.5}{ARMA-r=0.8}$	$\begin{array}{c} L_{\Sigma,A} \\ 249.8591 \\ 162.7801 \\ 161.1585 \\ 161.8909 \\ 163.1453 \\ \\ L_{\Sigma,A} \\ 999.4362 \\ 651.1205 \\ 644.6341 \\ 647.5636 \\ 652.5812 \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} (1) \\ L_{\Sigma,B} \\ 88657.1860 \\ 1138.2116 \\ 126.4825 \\ 505.8857 \\ 1295.0282 \\ (1) \\ L_{\Sigma,B} \\ 354628.7442 \\ 4552.8464 \\ 505.9300 \\ 2023.5428 \\ 5180.1127 \end{array}$	$\begin{array}{c} & C\\ L_{A,B}\\ \hline 70.2933\\ 2055.1753\\ 371.4739\\ 1003.4478\\ 2318.0545\\ \hline C\\ L_{A,B}\\ 281.1731\\ 8220.7013\\ 1485.8957\\ 4013.7910\\ 9272.2180\\ \end{array}$	$\begin{array}{r} & {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ 179.5658 \\ 1895.0615 \\ 210.5941 \\ 842.2721 \\ 2156.1670 \\ {\rm B} \\ \hline {\rm S} \\ \hline {\rm L}_{\Sigma,B} \\ 718.2632 \\ 7580.2462 \\ 842.3765 \\ 3369.0885 \\ 8624.6679 \\ \end{array}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \mathcal{R}(1) \\ \hline L_{\Sigma,B} \\ \hline 228.8706 \\ \hline 0.3577 \\ \hline 526.5434 \\ \hline 37.2644 \\ \hline 2.1248 \\ \hline \\ \mathcal{R}(1) \\ \hline L_{\Sigma,B} \\ \hline 915.4825 \\ \hline 1.4307 \\ \hline 2106.1737 \\ \hline 149.0575 \\ \hline 8.4994 \\ \end{array}$	$\begin{array}{c} \text{ARM.}\\ L_{A,B}\\ \hline 70.2358\\ 162.4018\\ 161.0761\\ 161.6732\\ 162.7191\\ \hline \\ \text{ARM.}\\ L_{A,B}\\ 280.9431\\ 649.6073\\ 644.3042\\ 646.6929\\ 650.8763\\ \end{array}$	$\begin{array}{c} {\rm A(1,1)}\\ \\ L_{\Sigma,B}\\ \hline 179.6233\\ \hline 0.3781\\ \hline 0.0824\\ \hline 0.2179\\ \hline 0.4259\\ \hline 0.4259\\ \hline {\rm A(1,1)}\\ \\ L_{\Sigma,B}\\ \hline 718.4931\\ \hline 1.5125\\ \hline 0.3297\\ \hline 0.8714\\ \hline 1.7036\\ \hline \end{array}$

Table 6: Simulation results with m = 200; c = 0.75.

Table 7: Simulation results for CS with $(c, \sigma^2) = (0.5, 1)$ and (m, n) = (1000, 500)

			В								
		MA	L(1)	C	S	AR	.(1)	ARMA(1,1)			
Σ	$L_{\Sigma,A}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$	$L_{A,B}$	$L_{\Sigma,B}$		
CS	2507.9700	251256.3608	249253.5243	1500.7138	1007.2562	1749.7276	1256.7082	1500.5837	1007.6397		

Table 8: Comparison for Gaussian data with (m, n) = (100, 1000)

	-				(/	/ (, ,
$\sigma^2 = 1$		σ^2_mean	σ^2_std	c_mean	c_std	r_mean	r_std
	Our approach	1.00015	0.00076	0.49967	0.01152	0.20019	0.00043
r=0.2	MLE	1.01999	0.00080	0.49972	0.00849	0.20092	0.00039
	Our approach	1.00330	0.00126	0.49856	0.00269	0.45074	0.00047
r=0.45	MLE	1.02386	0.00135	0.49723	0.00204	0.45133	0.00041
	Our approach	0.99761	0.00179	0.50528	0.00201	0.74577	0.00019
r = 0.75	MLE	1.03601	0.01091	0.50636	0.00088	0.77189	0.00032

Table 9: Comparison for non-Gaussian data with (m, n) = (100, 1000)

	1				()		,
degree of freedom=1		σ^2_mean	σ^2_std	c_mean	c_std	r_mean	r_std
	Our approach	2.00006	0.00085	0.50168	0.00018	0.19982	0.00001
r=0.2	MLE	3.71577	0.01514	0.82444	0.00035	0.28089	0.00015
	Our approach	1.99947	0.00058	0.50000	0.00006	0.44981	0.00001
r=0.45	MLE	4.58252	0.57929	0.88007	0.00259	0.69203	0.00298
	Our approach	1.99781	0.00064	0.49956	0.00001	0.74987	0.00000
r = 0.75	MLE	2.09557	0.00083	0.49442	0.00005	0.78559	0.00001

Table 10: Simulations for non-Gaussian data with (m, n) = (100, 1000)

		B							
Parameter p	p=0.1	MA	A(1)	C	S	AR	L(1)	ARM.	A(1,1)
Σ	$L^*_{\Sigma,A}$	$L^*_{A,B}$	$L^*_{\Sigma,B}$	$L^*_{A,B}$	$L^*_{\Sigma,B}$	$L^*_{A,B}$	$L^*_{\Sigma,B}$	$L^*_{A,B}$	$L^*_{\Sigma,B}$
MA(1)	0.06663	0.06655	0.00007	0.36927	0.30286	0.11244	0.04601	0.06654	0.00009
CS	0.00524	0.94214	0.94107	0.00305	0.00218	0.01244	0.01159	0.00305	0.00219
AR(1)	0.06041	0.15275	0.09222	0.41155	0.35050	0.06028	0.00014	0.06026	0.00015
ARMA-r=0.2	0.08802	0.10912	0.02158	0.16939	0.08187	0.09613	0.00848	0.08790	0.00011
ARMA-r=0.45	0.06531	0.14559	0.08015	0.37091	0.30455	0.06578	0.00078	0.06513	0.00018
ARMA-r=0.75	0.04163	0.18330	0.14164	0.57976	0.53837	0.05665	0.01551	0.04145	0.00018
					I	3			
Parameter p	b =0.3	MA	A(1)	C	S	AR	L(1)	ARM	A(1,1)
Σ	$L^*_{\Sigma,A}$	$L^*_{A,B}$	$L^*_{\Sigma,B}$	$L^*_{A,B}$	$L^*_{\Sigma,B}$	$L^*_{A,B}$	$L^*_{\Sigma,B}$	$L^*_{A,B}$	$L^*_{\Sigma,B}$
MA(1)	0.06300	0.06298	0.00002	0.36733	0.30392	0.10899	0.04613	0.06297	0.00004
CS	0.00475	0.94201	0.94421	0.00282	0.00193	0.01226	0.01137	0.00281	0.00194
AR(1)	0.05711	0.14909	0.09279	0.40836	0.35279	0.05702	0.00009	0.05700	0.00011
ARMA-r=0.2	0.08294	0.10453	0.02163	0.16472	0.08222	0.09139	0.00847	0.08286	0.00007
ARMA-r=0.45	0.06165	0.14208	0.08084	0.36822	0.30737	0.06220	0.00071	0.06156	0.00009
ARMA-r=0.75	0.03919	0.18074	0.14204	0.57774	0.54009	0.05446	0.01550	0.03907	0.00012
					I	3			
Parameter p	=0.5	MA	A(1)	C	S	AR	L(1)	ARM.	A(1,1)
Σ	$L^*_{\Sigma,A}$	$L^*_{A,B}$	$L^*_{\Sigma,B}$	$L^*_{A,B}$	$L^*_{\Sigma,B}$	$L^*_{A,B}$	$L^*_{\Sigma,B}$	$L^*_{A,B}$	$L^*_{\Sigma,B}$
MA(1)	0.06268	0.06266	0.00002	0.36660	0.30441	0.10878	0.04620	0.06264	0.00004
CS	0.00450	0.94196	0.94690	0.00288	0.00162	0.01234	0.01109	0.00287	0.00162
AR(1)	0.05669	0.14935	0.09256	0.40908	0.35198	0.05660	0.00008	0.05659	0.00010
ARMA-r=0.2	0.08228	0.10385	0.02164	0.16453	0.08227	0.09064	0.00847	0.08221	0.00006
ARMA-r=0.45	0.06128	0.14192	0.08085	0.36803	0.30742	0.06181	0.00072	0.06117	0.00011
ARMA-r=0.75	0.03923	0.18107	0.14227	0.57884	0.54100	0.05449	0.01551	0.03913	0.00010

Table 11: Regularization results for the transformed control chart data

	0								
	MA	A(1)	C	s	AR	L(1)	ARMA(1,1)		
	$L^*_{A,B}$	Time	$L^*_{A,B}$	Time	$L^*_{A,B}$	Time	$L^*_{A,B}$	Time	
Normal	0.29221	0.00676	0.51449	0.00511	0.33031	0.01434	0.29204	0.01846	
Increasing trend	0.28062	0.00023	0.51337	0.00025	0.31407	0.00933	0.28058	0.01452	
Decreasing trend	0.28445	0.00023	0.51078	0.00025	0.31609	0.00925	0.28442	0.01464	
Upward shift	0.29431	0.00023	0.47325	0.00025	0.32145	0.00870	0.29394	0.01129	
Downward shift	0.32414	0.00023	0.50201	0.00025	0.35293	0.00927	0.32339	0.01168	
pooled data	0.17392	0.00820	0.30127	0.00593	0.17342	0.01344	0.17022	0.01464	