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Abstract 
 
Neuroglial contribution to Alzheimer's disease (AD) is pathologically relevant and highly 
heterogeneous. Reactive astrogliosis and activation of microglia contribute to 
neuroinflammation, whereas astroglial and oligodendroglial atrophy affect synaptic 
transmission and underlie the overall disruption of the central nervous system (CNS) 
connectome. Astroglial function is tightly integrated with the intracellular ionic signalling 
mediated by complex dynamics of cytosolic concentrations of free Ca2+ and Na+. Astroglial 
ionic signalling is mediated by plasmalemmal ion channels, mainly associated with ionotropic 
receptors, pumps and solute carrier transporters, and by intracellular organelles comprised of 
the endoplasmic reticulum and mitochondria. The relative contribution of these molecular 
cascades/organelles can be plastically remodelled in development and under environmental 
stress. In AD astroglial Ca2+ signalling undergoes substantial reorganisation due to an 
abnormal regulation of expression of Ca2+ handling molecular cascades.  
 

Key words: Neuroglia; Alzheimer's disease; Astrocyte; Calcium signalling; InsP3 receptors; 
Glutamate receptors; β-amyloid; astrogliosis; astroglial atrophy 
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1. Calcium hypothesis of ageing and AD 

The main risk factor for the development of neurodegeneration and Alzheimer’s disease (AD) 
is ageing [1]. There are several stages of AD, but the most familiar one, a late stage of AD 
with severe dementia, is linked to the presence of extracellular deposits of fibrillar β-amyloid 
peptide and intraneuronal accumulation of aggregates of hyper-phosphorylated Tau protein 
[2]. Neurodegeneration occurs gradually and dementia may reflect the end stage of an 
accumulation of pathological changes that start to develop decade(s) before the onset of the 
clinical symptoms [3]. 

The calcium hypothesis of ageing and neurodegeneration, inspired by pioneering experiments 
of Philipp Landfield, emerged more than 30 years ago [4-6]. This hypothesis postulated that 
slow and mounting deregulation in Ca2+ homeostatic cascades with age progressively affects 
cellular homeostasis, cellular signalling, synaptic transmission and ultimately cell survival; in 
neurodegeneration this process of Ca2+ deregulation is accelerated, which leads to massive 
cell death, brain atrophy and dementia, such as are observed in AD [7, 8].    
 
Several Ca2+ regulating molecular cascades seem to be deregulated in neurones undergoing 
degenerative transformations. These changes arise either from direct interactions between β-
amyloid and Ca2+ handling molecules or can develop independently of the former, being 
probably a part of pathological evolution. The ability of β-amyloid to form plasmalemmal 
Ca2+ permeable channels and cause massive and deleterious Ca2+ influx into neuronal cells 
have been noted in the early 1990s ([9], for further details see [10-12]). The mechanism for 
this Ca2+ influx was arguably associated with ionophoretic abilities of β-amyloid that forms 
Ca2+ permeable transmembrane pores; Ca2+ influx can be further amplified through Ca2+ 
release from the endoplasmic reticulum (ER) Ca2+ store [13]. The "β-amyloid calcium pore" 
hypothesis has evolved into β-amyloid-induced modulation of physiologically-relevant Ca2+ 
homeostatic/signalling pathways. Exposure to β-amyloid affects several types of Ca2+ 
permeable membrane channels. In particular β-amyloid binds to and modulates Ca2+ -
permeable neuronal acetylcholine receptors in α7 (homomeric), α7β2 and α4β2 
compositions; β-amyloid activates α7 receptors in picomolar concentrations, while inhibits 
the both of above heteromeric  receptors in nanomolar concentrations [14, 15]. There are 
certain arguments that β-amyloid excitotoxicity is mediated by extra-synaptic NMDA 
receptors [16], although this might be an indirect effect (for example, through an inhibition of 
astroglial glutamate clearance systems [17]). Polymorphism of the encoding gene of the 
recently identified Ca2+ homeostasis modulator 1 channel (CALHM1), which is present in 
neuronal plasmalemma and endomembranes [18, 19], has been associated with some forms of 
AD [20]; the aberrant form of CALHM1 arguably deregulated neuronal Ca2+ homeostasis [21, 
22]. In the animal models bearing AD-associated mutations of presenilins, depletion of the 
ER Ca2+ stores and modification of inositol 1,4,5 trisphosphate (InsP3) receptors gating are a 
common finding [23, 24]. It is generally agreed that mutated presenilins increase Ca2+ release 
from the ER through both InsP3 receptors and ryanodine receptors [25-27]. Finally, mutant 
presenilins affect Ca2+ handling by mitochondria and ER-mitochondria cross-talk [28]. All 
these changes in the status of Ca2+ handling may be relevant for progression of the AD; 
nonetheless, mostly Ca2+ handling cascades were studied in neurones. In this review we shall 
focus on astrocytes, the homeostatic cells of CNS which significantly contribute to the AD 
pathology.    
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2. Ionic excitability of astroglia 
 
The substrate of astroglial excitability is associated with dynamic spatio-temporal changes in 
intracellular ionic concentrations, with Ca2+ and Na+ being the main players. Astroglial 
calcium signalling has been identified in the early 1990s when it become obvious that 
chemical (neurotransmitters) or mechanical stimulation of astrocytes in vitro triggers 
elevations of free cytosolic Ca2+ ([Ca2+] i) that spread through astroglial syncytia in a form of 
propagating Ca2+  waves [29-32]. Astroglial calcium signals have been subsequently 
characterised in in vitro and in vivo settings (see [33-35] for details and critical discussion). 
 
Calcium ions are the most ubiquitous and evolutionary ancient intracellular second messenger 
that controls various vital cellular functions and regulate physiological responses in virtually 
every living organism [36-40]. Generation of astroglial Ca2+ signals utilises several tightly 
coordinated molecular pathways that include Ca2+ release from the ER stores, plasmalemmal 
Ca2+ entry, cytosolic Ca2+ buffering, Ca2+ sequestration into the ER and mitochondria and 
Ca2+ extrusion mainly via plasmalemmal Ca2+ pumps [33]. Expression of molecular 
components of Ca2+ homoeostatic/signalling system can be dynamically modified, being an 
important part of cellular plasticity. Specific combinations of Ca2+ handling molecules,  
generally referred to Ca2+ signalling toolkits [41], may also be a part of the pathological 
development, with aberrant Ca2+  handling contributing to cellular pathology [42]. 
Intracellular Ca2+ release from the ER, predominantly mediated by activation of type II InsP3 
receptors, was generally considered to be the leading mechanism for astroglial Ca2+ 
signalling; indeed, activation of various metabotropic receptors may trigger this pathway [33, 
43, 44]. The ER Ca2+ release, however, is mainly responsible for generation of global Ca2+ 
signals and propagating Ca2+ waves; local Ca2+ signalling in perisynaptic astroglial processes 
generally devoid of the ER seems to rely mostly on plasmalemmal Ca2+ entry. This latter is 
mediated by a plethora of ionotropic receptors (i.e. glutamatergic, purinergic and cholinergic 
[45-47]), transient receptor potential (TRP) channels [48, 49] and sodium calcium exchanger 
(NCX), operating in the reverse mode [50]. The TRPC-containing channels [51] also 
contribute to the store-operated Ca2+ entry initiated by the depletion of the ER store of 
releasable Ca2+ [52, 53].   
 
The role for sodium signalling in astroglial excitability has been considered rather recently 
[54-57]. It appeared that stimulation of astrocytes with neurotransmitters released from 
neuronal terminals triggers long lasting elevation of cytosolic Na+ ([Na+] i) with amplitudes of 
5 - 20 mM [58-61]; this [Na+] i increase resulted from Na+ entry through plasmalemmal 
channels (mainly ionotropic receptors) and transporters (mainly Na+-dependent glutamate 
transporters). Astroglial Na+ signals are also able to spread trough astroglial syncytia in a 
form of propagating waves; this propagation is mediated by connexin channels forming gap 
junctions [62]. Fluctuations in astrocytic [Na+] i control multiple membrane transporters and 
pumps responsible for astroglial homeostatic functions, including plasamallemal 
neurotransmitter (glutamate, GABA and adenosine) and glutamine transporters, NCX, 
sodium-potassium ATPase, etc. (see [55, 56] for details and references).      

3. Astroglia in neurological diseases  
 
Pathological potential of astroglia in various neurological diseases has been widely 
recognised by Rudolf Virchow, Ramón y Cajal, Pío del Río Hortega and Alois Alzheimer 
[63-65]; the interest in neuroglia in neuropathology has been greatly reinvigorated in the most 
recent decade [66-71]. Astrocytes contribute to every type of neuropathology, and this 
contribution is complex and context specific. Conceptually, depending on neuropathology, 
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astroglia may undergo structural or functional atrophy with a loss of function, pathological 
remodelling or reactivity; these changes can develop on their own or in combination [70, 72]. 
Reactive astrogliosis is an evolutionary conserved defensive reaction, which results in a 
complex structural, biochemical and functional remodelling of astrocytes leading to an 
appearance of multiple reactive phenotypes, which again seem to be context/disease specific. 
Astroglial reactivity is a bona fide defensive response; inhibition of astroglial reactivity, as a 
rule, exacerbates neuropathology. 
 
The sequence of pathological metamorphosis of astroglia often follows the evolution of the 
disease. Astroglial pathological remodelling, for example, is a characteristic of Alexander’s 
disease or epilepsy [73, 74], when astrocytes acquire a new pathological phenotype that drives 
these diseases. In neuropsychiatric disorders the astroglial atrophy is manifested by a decrease 
in the number of astrocytes, which contributes to disbalance in excitatory/inhibitory 
neurotransmission [75-77]. In brain trauma or stroke, astroglial reactivity dominates, often 
leading to formation of a glial scar; reactive astrocytes, however, are obligatory feature of 
post-lesion regeneration [68]. In neurodegenerative diseases all forms of astrocytopathy (i.e., 
atrophy, reactivity and pathological remodelling) are observed [1, 78]. In amyotrophic lateral 
sclerosis (ALS) the early loss of astroglial ability to contain glutamate loads results from 
astrodegeneration and astroglial atrophy that occur before clinical symptoms and neuronal 
death. This deficient astroglial phenotype may be associated with changes in the traffic of 
intracellular vesicles. In astrocytes exposed to antibodies isolated from ALS patients, a 
massive alteration in vesicle dynamics and Ca2+ homeostasis has been reported [79, 80]. In 
the animal model of ALS expressing human mutant superoxide dismutase 1 
(Tg(SOD1*G93A)1Gur mice), the emergence of atrophic astrocytes is the earliest 
pathological signature [81-83]; these atrophic astrocytes down-regulate glutamate uptake and 
become vulnerable to glutamate by themselves. Deficient astrocytes, therefore, provide a 
background for developing glutamate excitotoxicity that leads to neuronal death [72]. 
Incidentally, a cell-specific silencing of the mutant SOD1 gene in astrocytes significantly 
delayed development of clinical symptoms [84]. Reactive astrocytes appear at the later stages 
of ALS; their reactivity is most likely triggered by dying neurones, although atrophic forms of 
thses cells also remain. Pathological suppression of astroglial glutamate uptake also plays the 
leading role in the development of Wernicke encephalopathy, a thalamo-cortical 
neurodegeneration, which represents the substrate for Korsakoff syndrome. Expression of 
astroglial glutamate transporters decreases by ~ 70% resulting in massive glutamate 
excitotoxicity [85, 86]. In Huntington disease (HD) the hampered  astroglial glutamate uptake 
is concomitant with an aberrant release of glutamate from astrocytes, both processes 
instigating excitotoxic damage to neurones [87]. Astroglial reactivity is also observed in HD, 
while suppression of astrogliotic response by inhibition of JAK/STAT3 signalling cascade 
increases the number of huntingtin aggregates [88]. Similarly astroglial reactivity seems to be 
decreased in Parkinson's disease as judged by a decreased expression of glial fibrillary acidic 
protein (GFAP) in human tissue samples [89]. 

4. Astroglia in AD 
 
The extent and detailed characterisation of astrogliopathology in AD remains virtually 
unknown. Astroglial reactivity mainly documented by hypertrophy and an increase in 
expression of GFAP and S100Β proteins, has been generally mentioned in morphological 
analysis of post-mortem tissues from AD patients [90-93]. Sporadic reports claimed a degree 
of correlation between an increase in GFAP expression and the Braak stage of AD, although 
no correlation between astrogliotic changes and β-amyloid load were found [94]. Reactive 
astrocytes were found to be associated with some senile plaques, but they were also identified 
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in plaque free regions of the grey matter [94].To the contrary, no differences in GFAP 
expression was found between demented and non-demented brains [95]. Of note, reactive 
astrogliosis in AD is quite mild; astrocytes in the grey matter preserve their domain 
organisation and there are no indications of anisomorphic gliosis and formation of glial scars 
[78, 96].  
 
In animal models of AD, both astroglial atrophy and reactive astrogliotic remodelling were 
described. Treatment of rodent astrocytes in vitro, in dissociated cell cultures  and in situ in 
organotypic slices with β-amyloid in concentrations ranging between 100 nM and > 5 µM 
trigger astrogliotic response [97, 98]. In the brains of transgenic AD mouse models, reactive 
astrocytes are generally associated with β-amyloid depositions and β-amyloid plaques in the 
hippocampus [96]. Astroglial reactivity was not uniform throughout the brain; formation of 
extracellular β-amyloid deposits and emergence of senile plaques failed to induce reactive 
astrogliosis in entorhinal and prefrontal cortices [99, 100]. In the triple transgenic (3xTG) AD 
mice over-expressing mutant genes for amyloid precursor protein (APPSwe), presenilin 1 
(PS1M146V) and microtubule-associated protein Tau (TauP301L), [101]and in PDAPP-J20 mice 
carrying the Swedish and Indiana human mutations of APP [102] astroglial atrophy was 
identified throughout the brain [99, 100, 103-106]. Astrodegenerative changes were found at 
the early pre-symptomatic stages (i.e. before considerable accumulation of extracellular β-
amyloid and formation of senile plaques) and they were characterised by decreased 
complexity of astrocytes (which had less primary and secondary processes) and by reduction 
on the size of profiles of astrocytes labelled with antibodies against GFAP or glutamine 
synthetase. [99, 100, 103, 104]. The atrophic changes in astrocytes developed in a particular 
spatio-temporal pattern with the earliest signs of atrophy observed in the entorhinal cortex (at 
1 months of age);  at 3 months of age morphological atrophy of astrocytes was identified in 
the prefrontal cortex, whereas in the hippocampus the atrophic changes were evident from 9 
to 12 months of age [99, 100, 103]. Expression of glutamine synthetase was generally 
decreased in hippocampal reactive astrocytes, indicating possible deficits in glutamate-
glutamine shuttle [107]; in the entorhinal cortex, however, expression of glutamine synthetase 
seems to be preserved [108].  
 
Astroglial atrophy that emerges at the early stages of neurodegeneration may have an 
important contribution to the launching of the AD pathology, as, indeed, a loss of astroglial 
coverage and a loss of astroglial function can each have dire consequences. Atrophy of 
astroglial perisynaptic processes, which foster and maintain synaptic transmission (as 
embellished by the concept of the astroglial cradle - [109]) can be an important (if not the 
leading) mechanism of synaptic weakening and synaptic loss that signals the beginning of AD 
pathology [110]. General decrease in the astroglial homeostatic reserve reduces 
neuroprotection and may be detrimental for the neuro-vascular unit and may affect the glial 
ability to metabolically support neuronal networks. Furthermore, the astroglial loss of 
function manifests in suppressed reactivity in certain brain regions such as entorhinal and 
prefrontal cortices; deficits in the astrogliotic response could be an important factor 
determining higher sensitivity of these regions to AD pathology. In summary, astroglial 
asthenia and functional paralysis may define the landscape permissive for AD evolution and, 
hence, determine the depth of cognitive deficit and clinical progression of the disease [78].    

5. Astroglial Ca2+ homoeostasis and Ca2+ signalling in AD 
 
Conceptually, pathological remodelling of astroglial Ca2+ homeostatic/signalling toolkits may 
either be cell-autonomous (i.e. reflecting intrinsic cellular pathology, for example, associated 
with the expression of specific mutated genes) or it can develop in response to extrinsic stress 
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associated, for example, with the accumulation of aberrant molecules in the extracellular 
space. In the context of AD, the latter mechanism was intensely scrutinised because of the 
general belief that this pathology is associated with the accumulation of β-amyloid in the 
brain parenchyma.    
 
5.1. Effects of β-amyloid on astroglial Ca2+ signalling 
 
Numerous studies on cultured astrocytes have demonstrated that exogenous β-amyloid alters 
[Ca2+] i. For example, incubation of astrocytes with 5 µM β-amyloid1-42 for 2 hours led to a 
two-times increase in resting [Ca2+] i [111]. In another study the effect of β-amyloid on resting 
Ca2+ was even more profound; incubation of cultured rat hippocampal astrocytes with 100 nM 
oligomeric β-amyloid1-42 for 4 - 6 hours elevated increased resting [Ca2+] i from ~50 nM to 
100-150 nM [112]. However, longer exposures (48 hours) of cultured astrocytes to β-amyloid 
in concentrations ranging between 200 nM and 20 mM did not affect basal [Ca2+] i levels [113, 
114]. The data on acute effects of β-amyloid on astroglial cells in vitro and in slices are 
controversial. While several laboratories reported that β-amyloid (at 100 nM - 5 µM) 
concentrations triggered transient [Ca2+] i increases or [Ca2+] i oscillations [98, 115-119], others 
have not found acute [Ca2+] i responses to β-amyloid  [112-114]. This seemingly incongruent 
findings could possibly be attributed to variability of β-amyloid species used. The properties 
of astrocytes in a given experimental preparation may also contribute. Ffor example, β-
amyloid in exceedingly low concentrations (200 - 300 pM) was reported to activate α7 
nicotinic cholinoreceptors and trigger [Ca2+] i responses in hippocampal astrocytes in situ 
[120]; yet, not every astrocyte expresses this receptor type [121].        
 
Indeed, more careful analysis showed that β-amyloid affects only a sub-population of 
astrocytes. Challenging cultured astrocytes with 1 µM β-amyloid1-40 induced transient [Ca2+] i 
responses only in 17% of astrocytes, although a challenge with 1 µM of β-amyloid25-35 evoked 
[Ca2+] i response in 36% astrocytes [118]. In another study, the exposure of primary astrocytes 
to 1 µM of β-amyloid25-35 triggered [Ca2+] i a response in 27% astrocytes, whereas at 2-5 µM 
β-amyloid25-35 produced [Ca2+] i transients in ~ 60% of cells [122].  
 
Chronic treatment of astrocytes with β-amyloid resulted in pathological remodelling of the 
Ca2+ signalling toolkit [123], with changes in the expression of neurotransmitter receptors 
linked to Ca2+ signalling being probably best documented. Already after 1 hour of incubation 
of cultured astrocytes with 100 nM of β-amyloid, it induced clustering and diffusional 
trapping of metabotropic glutamate receptor 5 (mGluR5); this in turn activated the receptor 
and induced release of ATP [124]. At longer exposure times (24-72 h), β-amyloid up-
regulated the expression of astroglial mGluR5 [125]. Incidentally, the up-regulation of 
mGluR5 has been also found in plaque-surrounding cortical astrocytes associated with senile 
plaques in the APPswe/PS1dE9 mouse model, as well as in post-mortem human tissues [112, 
113]. As alluded to earlier, α7 nicotinic cholinoreceptor (α7nAChR) binds β -amyloid with 
high affinity and can be modulated by ιτ is [126]. Chronic treatment with low β-amyloid 
concentrations (0.1 - 100 nM), however, up-regulates several cholinoreceptors including those 
containing α7, α4 and β2 subunits [127]. Increase in astroglial expression of α 7AChR was 
also detected in human post-mortem samples obtained from both sporadic and familial forms 
of AD [128]. Another receptor which seems to be positively modulated by β-amyloid is G-
protein coupled metabotropic Ca2+-sensing receptor (CaSR). Exposure to β-amyloid was 
shown to acutely activate CaSR in primary astrocytes and this activation triggered CaSR-
dependent signalling pathway that stimulates the expression of nitric oxide synthase-2 (NOS-
2) followed by an excessive release of nitric oxide increased expression of Vascular 
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Endothelial Growth Factor (VEGF)-A, and instigated production of β-amyloid; all these 
effects were suppressed by specific CaSR antagonists [129-132].  
 
Chronic treatment with β-amyloid also effects ER Ca2+ handling and signalling in astroglia. 
After 48 hours of incubation with 100 nM of β-amyloid1-42, a significant increase in the 
expression of mRNA for InsP3 receptors type 1 and 2 (InsP3R1 and InsP3R2) was detected in 
rat hippocampal primary astrocytes [112]. In contrast, the same treatment did not affect the 
expression of InsP3R1 protein in the entorhinal cortex astrocytes, indicating a regional 
heterogeneity of astrocytes [125]. In human post-mortem tissues, however, an overall 
decrease in the expression of InsP3 receptors is observed [133-135], which may, however, 
indicate the overall cell loss and, hence, a decrease in the total expression of receptors. 
Finally, a chronic treatment with β-amyloid was also reported to increase the store-operated 
Ca2+ entry in astrocytes [136, 137]. 
 
5.2. Ca2+ signalling in AD astrocytes   
 
Gene profiling of human astrocytes, laser dissected from the post-mortem temporal cortex 
obtained from three groups of patients with different Braak scores, found 32 genes associated 
with Ca2+  signalling and homeostasis to be abnormally expressed [138]. In astrocytes purified 
(by fluorescence activated cell sorting) from the 15-18 month old APPswe/PS1dE9 mice, a 
substantial increase in “calcium ion binding” gene ontology class genes was detected [139]. 
 
Modified calcium signalling was observed in astrocytes from various transgenic models of the 
AD (Fig. 1). Rather profound (~100%) increase in resting [Ca2+] i as well as aberrant [Ca2+] i 
activity linked to a generation of abnormal long-projecting Ca2+ waves were found in 
astrocytes associated with senile plaques in APP/PS1 mice [140]. Similar, high-frequency 
Ca2+ waves were also monitored in astrocytes from APPSwe mice even before the formation of 
β-amyloid deposits [141]. In hippocampal astrocytes isolated and cultured from neonatal 
3xTg-AD mice, the  amplitude of ATP-induced [Ca2+] i transients as well as the store-operated 
Ca2+ entry were significantly increased [125, 137].  In contrast, store-operated Ca2+ entry in 
astrocytes from APP-over-expressing Tg5469 AD mice was not affected, although the 
deletion of APP inhibited SOCE, possibly due to down-regulation of  Orai1 and TRPC1 
channels [142].  
 
Astroglial calcium signalling and in particular Ca2+ release form ER stores via InsP3 receptors 
controls astroglial reactivity, which is fundamental for tissue protection against various 
pathological insults including  AD pathology. As dicussed earlier,  in 3xTG-AD mice 
astrogliotic response is present in the  hippocampus but not in the entorhinal and prefrontal 
cortices. The role for astroglial Ca2+  signalling in triggering astrogliosis in response to β-
amyloid was demonstrated in cultured astrocytes and in organotypic slices [98]. Exposure of 
these cells to β-amyloid triggered [Ca2+] i oscillations originating from InsP3-mediated Ca2+ 
release from the ER; pharmacological inhibition of these oscillations suppressed both [Ca2+] i  
dynamics and astroglial reactivity [98]. When hippocampal astrocytes were compared to the 
astrocytes from the entorhinal cortex, it turned out that β-amyloid significantly up-regulated 
the expression of mGluR/InsP3 Ca2+ signalling pathway in the former but did not affect this 
cascade in the latter. This difference in the sensitivity of Ca2+ signalling toolkit to pathological 
stress may account for heterogeneity of astrogliotic response and hence distinct vulnerability 
of different brain regions to AD pathology.      

6. Conclusions 
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Astrocytes, the homeostatic and defensive cells of the CNS exhibit a form of excitability 
associated with spatio-temporally controlled fluctuations of cytosolic concentrations of 
ionised Ca2+ and Na+. Glial Ca2+ handling can be affected either by b-amyloid, or through 
intrinsic mechanisms associated with AD pathology, which in turn affects various cell 
functions manifesting in altered morphology and astroglial-neuronal communications. 
Distinct brain regions exhibit different pathological manifestations, likely due to specific 
deficits in astroglial reactivity, which  can accelerate, exacerbate or slow-down AD pathology. 
Moreover, differential sensitivity of Ca2+ signalling toolkit to the pathological environment 
may define the vulnerability of brain regions to the pathological process.  
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Figure Legend 
 
Figure 1: ATP-evoked oscillatory calcium responses in wild type and 3xTg-AD astrocytes.  
 
(A) Confocal images of astrocytes containing the fluorescent Ca2+ indicator Fluo-2. The 
images display astrocytes before (0 s, left) and after stimulation with 100 µM ATP (30 and 
180 s; middle and right, respectively). ATP evoked strong increases in intracellular calcium 
activity as indicated by the pseudocoloured intensity scale (right, 0 – 255 intensity levels). 
Scale bars, 50 µm. ATP (white rectangle) evoked two types of calcium responses in wt (B) 
and 3xTg-AD (C) astrocytes: (i) biphasic transients and (ii) oscillatory calcium responses. 
The peak (p, mean ± SEM) and the time-integrated [Ca2+] i (S) evoked by 100 µM ATP. The 
horizontal dotted line indicates the baseline fluorescence level (F0).The downward (black) and 
upward (white) arrowheads indicate successive minima and maxima (posc), respectively, in 
[Ca2+] i during oscillatory responses. (D, E) Plots displaying the relationship between the ratio 
of the sum of follow-up peak calcium amplitudes – oscillations (Sum posc) and the first 
calcium peak amplitude (p), and the number of oscillations within 4 min (No. posc/4 min) in 
calcium responses evoked by 100 µM ATP in wt (D) and 3xTg-AD (E) astrocytes. The non-
oscillatory (i) calcium responses are confined to the grey shaded areas delineated with dashed 
lines, while the white zone of the plots show the oscillatory (ii) responses (the details are 
described in the Results section). The relative proportion (%) of non-oscillatory (i, left) and 
oscillatory (ii, right) responses in wt (n = 115) and 3xTg-AD (n = 150) astrocytes are 
displayed at the top of the plots. Note that ATP evoked three times more oscillatory responses 
in wt than in 3xTg-AD astrocytes. With permission reprinted from  [143]. 
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Highlights 
 
 
Astrocytes undergo complex pathological remodelling ranging from atrophy to 
reactivity in the Alzheimer disease.  
 
Exposure of astrocytes to β-amyloid disturbs Ca2+  homeostasis and Ca2+  signalling. 
 
Astrocytes carrying AD-associated pathological genes display aberrant Ca2+  
signalling 


