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Abstract

Choice under risk is modelled using a piecewise linear version of rank-

dependent utility. This model can be considered a continuous version of

NEO-expected utility (Chateauneuf, Eichberger and Grant, 2007). In a frame-

work of objective probabilities a preference foundation is given, without re-

quiring a rich structure on the outcome set. The key axiom is called comple-

mentary additivity.
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1 Introduction

When considering choice under risk, evidence suggests that most decision mak-

ers are simultaneously pessimistic and optimistic — they are ambivalent. It has

been argued before that these departures from expected utility can be explained

by taking into account the particular salience of the best and worst outcomes of

decisions (Lopes, 1987; Cohen, 1992). An additional focus on the worst outcome

is akin to pessimism, and on the best outcome is akin to optimism. In this way, the

NEO-expected utility model (Chateauneuf et al. 2007) elegantly extends expected

utility to incorporate ambivalence.

NEO-expected utility successfully organises several robust empirical findings of

choice under risk. It allows for optimism and pessimism, in the sense of Wakker

(1994), but also retains expected utility “inside the probability triangle”, where vi-

olations are less frequently observed (Abdellaoui and Munier, 1998). Due in most

part to its tractable form, NEO-expected utility has been applied extensively. 1 De-

partures from expected utility are captured using discontinuities in the evaluation

formula. Because of these discontinuities, however, the axiomatic foundations of

NEO-expected utility are much more complicated than expected utility (see Webb

and Zank, 2011).

Piecewise linear rank-dependent utility (RDUPL), the model considered in this pa-

per, is a continuous version of NEO-expected utility. RDUPL is the special case
1NEO-expected utility has been used by Abdellaoui et al (2010), Dominiak et al. (2012), Do-

miniak and Lefort (2013), Ford et al. (2013), Eichberger et al. (2012), Eichberger and Kelsey,

(2011), Eichberger and Kelsey, (2014), Ludwig and Zimper (2014), Romm (2014), Teitelbaum

(2007), and Zimper (2012).
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of rank-dependent utility with a piecewise linear probability weighting function.

The well known “inverse-S shaped” probability weighting scheme associated with

ambivalence is approximated under RDUPL with “stretched-N” shaped probability

weighting. RDUPL could be called an empirical generalisation of NEO-expected

utility. In terms of observable choices, NEO-expected utility cannot be distin-

guished from RDUPL. In this sense, the foundational di�culties of NEO-expected

utility are resolved with very little cost. Furthermore, RDUPL allows for some ad-

ditional realism. For example, optimism and pessimism have been observed for

non-extreme outcomes (see, for example, Wu and Gonzalez, 1996), which is cap-

tured to some extent by RDUPL in a way that is ruled out by NEO-expected utility.

Webb (2015) gave an axiomatisation of the analogue of the RDUPL model under

purely subjective uncertainty — the Savage framework. In this paper, RDUPL is ax-

iomatised using objective probabilities — the von Neumann-Morgenstern frame-

work. Only the richness of the probability interval is used, the outcome set can

be arbitrary. Hence, the theory may be applied to monetary outcomes, health

outcomes, indivisible goods, and so on. The key axiom under risk, called com-

plementary additivity, is more intuitive, easier to test empirically, and the proof

is shorter and more direct. The formal definitions are outlined in Section 2. The

piecewise linear rank-dependent utility model is presented in Section 3. A sim-

ple tradeo� axiom, necessary for rank-dependent utility, is presented in Section 4.

The axiomatic foundation of piecewise linear rank-dependent utility presented in

Section 5. All proofs are contained in the Appendix.
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2 Choice Under Risk

There is a set of outcomes X = {x0,… , x

n

}, with n Œ 2, and a strict order over

outcomes, such that x0 « 5 « x

n

.2 The results of this paper are more elegantly

presented describing lotteries in their decumulative form, as in Abdellaoui (2002)

and others (Diecidue, Schmidt and Zank, 2009; Webb and Zank, 2011). We write a

lottery p = (p1,… , p

n

) where 1 Œ p1 Œ 5 Œ p

n

Œ 0. A coordinate p
i

of a lottery p

denotes the decumulative probability of outcome x
i

, that is, the probability (in the

standard sense) of receiving an outcome x
i

or better. The decumulative probability

of x0 equals one in all lotteries, hence we exclude it from the notation. The set of

lotteries is L
X

= {p = (p1,… , p

n

) À Rn : 1 Œ p1 Œ 5 Œ p

n

Œ 0}. We

consider lotteries on a finiteX for ease of exposition. The results of this paper can

be extended to lotteries with finite support on an infinite outcome set, as done in,

e.g., Abdellaoui (2002).

Preferences Ã are defined over L
X

. Preferences over degenerate lotteries agree

with the strict order on outcomes. The set L
X

is a mixture space, with mixtures of

lotteries defined point-wise. For p, q À L
X

and ↵ À (0, 1), r = ↵p+(1*↵)q À L
X

is such that r
i

= ↵p

i

+ (1 * ↵)q
i

for all i = 1,… , n. Given p À L
X

and ⇢ À [0, 1],

the notation p+⇢
i

denotes the lottery (p1,… , p

i*1, pi+⇢, pi+1,… , p

n

). It is implicit

in this notation that p
i*1 Œ p

i

+ ⇢ Œ p

i+1.

Preferences Ã are represented by a real-valued utility function U : L
X

ô R if the

following equivalence holds: p Ã q € U (p) Œ U (q). If a utility representation

exists, preferences Ã are a weak order, that is, they are complete and transitive.
2A weak order over outcomes can be assumed instead of a strict order. In that case it is required

that X has at least three indi�erence classes when passing to the quotient.
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Monotonicity holds if p
i

Œ q

i

for all i = 1,… , n and p ë q implies p » q. That

is, monotonicity requires that preferences respect first-order stochastic dominance.

Jensen continuity holds if, for all p, q, r À L
X

with p » q there exists ↵, � À (0, 1)

such that ↵p + (1 * ↵)r » q and p » �q + (1 * �)r. Continuity holds if, for all

p À L
X

, the sets {q À L
X

: q » p} and {q À L
X

: q « p} are open in L
X

. For

monotonic, weak ordered preferences, Jensen continuity holds only if continuity

holds (see Lemma 18 of Abdellaoui, 2002).

3 Piecewise Linear Rank-Dependent Utility

Expected utility holds if there is a utility for outcomes u : X ô R such that the

map,

p≠ EU(p) = u(x0) +
n…
j=1

p

j

[u(x
j

) * u(x
j*1)]

represents preferences Ã over L
X

. Probabilities enter into the expected utility for-

mula linearly. Such preferences, therefore, necessarily satisfy the following axiom:

Axiom (Additivity): For all p, q, p + r
i

, q + r
i

À L
X

: p Ã q € p + r
i

Ã q + r
i

.

In the presence of other basic axioms, additivity is su�cient for expected utility

(see Theorem 5 of Webb and Zank, 2011). Rank-dependent utility (Quiggin, 1982)

holds if there is a utility for outcomes u : X ô R and a strictly increasing prob-

ability weighting function w : [0, 1] ô [0, 1], with w(0) = 0 and w(1) = 1, such

that the map,

p≠ RDU(p) = u(x0) +
n…
j=1

w(p
j

)[u(x
j

) * u(x
j*1)]

represents preferences Ã over L
X

. Expected utility is the special case of rank-
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dependent utility, with w the identity function. For a lottery p, let m
p

denote the

worst possible outcome and M
p

denote the best possible outcome. Security / po-

tential level preferences (Cohen, 1992) are represented by the following map:

p≠ SP(p) = f (m
p

,M

p

)EU(p) + g(m
p

,M

p

)

where f : X ùX ô R and g : X ùX ô R are real-valued functions.

A popular model of choice under risk is NEO-expected utility (Chateaneuf, Eich-

berger and Grant, 2007). NEO-expected utility holds if there is a utility for out-

comes u : X ô R and parameters � , � Œ 0, with � + � < 1, such that the map,

p≠ NEO(p) = �u(m
p

) + (1 * � * �)EU(p) + �u(M
p

)

represents preferences Ã over L
X

. NEO-expected utility unites several popular

models of choice under risk. It is the special case of rank-dependent utility, with

the following probability weighting function:

wNEO(p) =

h
n
n
l
n
nj

0 if p = 0,

(1 * � * �)p + � if 0 < p < 1,

1 if p = 1,

with � , � Œ 0 and � + � < 1. NEO-expected utility also coincides with Cohen’s

security / potential level model when, for all x, y À X, f (x, y) = 1 * � * � and

g(x, y) = �u(x) + �u(y) with � , � Œ 0 and � + � < 1.

NEO-expected utility incorporates optimism and pessimism into expected utility in

a tractable way. Departures from expected utility are captured using discontinuities

in the evaluation formula. Because of these discontinuities, however, the axiomatic

foundations of NEO-expected utility are much more complicated than expected
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utility (see Webb and Zank, 2011). However, notice that one cannot empirically

distinguish between wNEO and any probability weighting w that is continuous on

[0, 1] and linear on an interval [, 1 * ], so long as  is close enough to zero.

To see this, suppose that, for probability values p1 < 5 < p

n

, a finite data set

of probability weighting function values have been obtained: {w(p1),… ,w(p
n

)}.

Suppose, also, that NEO-expected utility cannot be rejected, so that there is � , � Œ

0 with � + � < 1 such that {w(p1),… ,w(p
n

)} = {(1 * � * �)p1 + �,… , (1 *

� * �)p
n

+ �}. Let  = min{p1, 1 * p

n

}. Then, one cannot reject the following

functional form:

w(p) =

h
n
n
l
n
nj

�(p) if p < (1 * ),

(1 * � * �)p + � if (1 * ) Õ p Õ ,

 (p) if  < p Õ 1,

where � and  are functions chosen so that w is increasing and continuous on

[0, 1]. Webb (2015), motivated by tractability considerations, suggested assum-

ing linearity also on [0, ] and [1 * , 1]. The resulting continuous probability

weighting function with such properties is wPL given by:

wPL(p) =

h
n
n
l
n
nj

(1_)((1 * �) + (1 * )�)p if 0 Õ p < ,

(1 * � * �)p + � if  Õ p Õ (1 * ),

(1_)((1 * (� + (1 * )(1 * �))p * (1 * )(� + �) + �)) if (1 * ) < p Õ 1.

with 0 Õ  Õ 1
2
,  >

*�
1*�*�

and  >

*�
1*�*�

and � + � < 1.

Ambivalence, exhibiting both optimism and pessimism, is captured by wPL if

� > 0, � > 0 and  <

1
2
. In general, it is not required that � and � are non-

negative. In principle, wPL can be very steep in the middle region, but remains
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everywhere strictly increasing and normalised at the extremes. Piecewise linear

rank-dependent utility, denoted RDUPL, is the special case of rank-dependent util-

ity with probability weighting function wPL. Expected utility holds as the special

case of RDUPL with � = � = 0.

4 Elementary Tradeo� Consistency

For lotteries involving only two outcomes, there are no observable di�erences be-

tween expected utility and rank-dependent utility.3 The simplest objects for the

study of probabilistic risk attitudes are, therefore, three-outcome lotteries. Let

Y ” X be a set of three outcomes. Relabel the outcomes of Y as x(0) « x(1) « x(2)
and let L

Y

denote the set of lotteries over Y . In decumulative notation, lotteries in

L
Y

can be written (p(1), p(2)), (q(1), q(2)), and so on.

Suppose that a decision maker expresses the indi�erence (a, p) Ì (b, q). One may

interpret this indi�erence to mean that the impact of replacing a with b, in the

p(1)-coordinate, is exactly equal to the impact of replacing p with q in the p(2)-

coordinate. Now suppose that a and b are replaced by c and d, respectively, and

the decision maker remains indi�erent, (c, p) Ì (d, q). Then, it seems, the impact

of replacing c with d, in the p(1)-coordinate, is also equal to the impact of replacing

p with q in the p(2)-coordinate. As Abdellaoui (2002) puts it, using p and q in the

p(2)-coordinate as our “measuring rod”, the replacements of a with b and c with d

are equivalent probability tradeo�s.
3The order induced by the first-order stochastic dominance relation is complete in the two-

outcome case.
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Probability tradeo�s are a useful tool for analysing probabilistic risk attitudes. For

example, the common consequence e�ect (Allais, 1952) suggests that the proba-

bility tradeo� 11% to 10% seems to have less impact than the probability tradeo�

from certainty to 99%. For such claims to be clear and meaningful, however, the

notion of probability tradeo�s having greater, less, or the same impact must be

independent of the particular “measuring rod” and coordinate used. Suppose that

one observed (r, a) Ì (s, b) but (r, c) Ú (s, d). Now, r and s in the p(1)-coordinate

are the “measuring rod”, and the probability tradeo�s occur in the p(2)-coordinate.

The initial indi�erences above were interpreted to mean a : b probability trade-

o� is equivalent to that of a c : d probability tradeo�, but a di�erent conclusion

would be reached in this case. The following axiom rules out such inconsistency:

Axiom (Elementary Tradeo� Consistency): For all Y ” X, with Y  = 3, and

lotteries (a, p), (b, q), (c, p), (d, q), (r, a), (s, b), (r, c), (s, d) À L
Y

, if (a, p) Ì (b, q)

and (c, p) Ì (d, q) and (r, a) Ì (s, b), then (r, c) Ì (s, d).

The adjective “elementary” refers to the fact that the axiom applies only to lot-

teries involving three outcomes, and also that the axiom uses only indi�erences.

If X = 3, then elementary tradeo� consistency is equivalent to the probability

tradeo� consistency axiom of Abdellaoui (2002), except that it is formulated only

for indi�erences (Köbberling and Wakker, 2003).

Under rank-dependent utility, the impact of probability tradeo�s are characterised

entirely by the probability weighting function. Assuming rank-dependent utility

with probability weighting functionw, the indi�erences (a, p) Ì (b, q) and (c, p) Ì

(d, q) hold simultaneously if and only if:

w(a) *w(b) = w(c) *w(d).
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Neither the “measuring rods”, p and q, nor any suggestion of the tradeo� coordi-

nate used, appear in the above equation. Therefore, under rank-dependent utility,

these can be replaced, and (r, a) Ì (s, b) holds if and only if (r, c) Ì (s, d) holds.

Observation 1. Rank-dependent utility (hence, also piecewise linear rank-dependent

utility) holds only if preferences Ã on L
X

satisfy elementary tradeo� consistency.

In Appendix A, elementary tradeo� consistency is used to provide a new prefer-

ence foundation for rank-dependent utility.

5 Complementary Additivity

The security / potential level preferences model, of which NEO-expected utility is

a special case, captures the behaviour of a decision maker who, when considering

a lottery, classifies its outcomes into three classes: certain, impossible, and risky.

That is, respectively, outcomes with decumulative probability one (receiving at

least that amount is certain), outcomes with decumulative probability zero (im-

possible to receive better outcomes), and outcomes with decumulative probability

between zero and one (receiving a better or a worse outcome is possible). This

corresponds to identifying the very worst outcome, the very best outcome, and the

non-extreme outcomes of a lottery. In those models, expected utility holds within,

but not necessarily across the classes.

It has been noted by Abdellaoui, l’Haridon and Zank (2010: 51) that assuming the

e�ects of optimism and pessimism are captured entirely by additional focus on the

very best and worst outcomes is somewhat restrictive. Optimism and pessimism

have been observed, to a lesser degree, for non-extreme outcomes (Wu and Gonza-

10



lez, 1996). The theory developed here proposes a similar three-criteria distinction,

but extends the notions of best and worst to include some non-extreme outcomes.

Consider a decision maker who, when considering a lottery, does the following:

1. Groups outcomes into three classes: likely, unlikely, and moderate. That

is, respectively, outcomes with decumulative probability su�ciently (sub-

jectively) high, outcomes with decumulative probability su�ciently low,

and outcomes with decumulative probability between the first two classes.

This stratification corresponds, essentially to the (subjectively defined) worst

ranked outcomes, the best ranked outcomes, and the outcomes ranked not

so extreme in any particular lottery.

2. Considers likely and unlikely to be duals. That is, an outcome with decu-

mulative probability less than than ↵ is considered “unlikely” if and only if

outcomes with decumulative probability greater than (1* ↵) are considered

“likely”.

The first assumption above relates to the mental processes used by decision mak-

ers when considering lotteries, which falls under the realm of cognitive psychol-

ogy rather than utility theory. In this vein, Lopes (1987; 1996) has gathered a

range of evidence supporting the view that the worst outcomes, best outcomes,

and moderate outcomes (in particular, in that order) seem to be especially salient

when decision makers think about lotteries. The second assumption is defended

more on intuitive grounds. For example, if a decision maker refers to probabil-

ities less than one third as “unlikely”, it would seem, linguistically at least, that

the remaining probability (larger than two thirds) is su�ciently large to be consid-

ered “likely”. That is, we suppose that saying “receiving this outcome or better is

11



unlikely” means the same thing as “receiving this outcome or worse is likely”.

In order to address the question of whether assumptions 1 and 2 are su�ciently

realistic, overly simple, or just plain false, we require choice-based, testable im-

plications. We now consider what behavioural implications may be reasonable for

decision makers using this three-criteria process. The idea pursued here is that,

when comparing lotteries, changes that a�ect these lotteries without a�ecting the

subjective, three part structure of the outcomes are handled “rationally”. That is,

as the additivity axiom of expected utility suggests.4 Given ↵ À [0, 1], consider

the following condition:

Definition (↵-Upper Additivity): For all p, q, p + ⇢
i

, q + ⇢
i

À L
X

with p
i

, q

i

, p

i

+

⇢, q

i

+ ⇢ Œ ↵: p Ã q € p + ⇢
i

Ã q + ⇢
i

.

If ↵ is large enough, so x
i

is considered likely in p and q, then the additions above

preserve the structure of p and q’s three outcome classes. The decision maker then

finds the comparison of p+ r
i

and q + r
i

similar to the comparison of p and q, and

does not reverse his preferences. If ↵ were su�ciently small, so that x
i

is consid-

ered unlikely in p and q, then the following condition seems more reasonable:

Definition (↵-Lower Additivity): For all p, q, p + ⇢
i

, q + ⇢
i

À L
X

with p
i

, q

i

, p

i

+

⇢, q

i

+ ⇢ Õ ↵: p Ã q € p + ⇢
i

Ã q + ⇢
i

.

These conditions can also be used to capture the decision maker considering likely

and unlikely as duals:

Definition (↵-Outer Additivity): ↵-lower additivity and (1 * ↵)-upper additivity

hold.
4A similar notion motivates, under uncertainty, the comonotonic independence axiom, where

act mixtures that preserve outcome ranking structure of the acts are handled “rationally”.
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The following condition captures the same intuition, considering changes a�ect-

ing outcomes that are considered moderate (neither likely nor unlikely). By the

assumed dual relationship if ↵ is in the moderate region, then so is (1 * ↵):

Definition (↵-Inner Additivity): For all p, q, p+⇢
i

, q+⇢
i

À L
X

with ↵ Õ p

i

, q

i

, p

i

+

⇢, q

i

+ ⇢ Õ 1 * ↵: p Ã q € p + ⇢
i

Ã q + ⇢
i

.

Note that, the definition of ↵-outer additivity captures our initial intuition only if

0 Õ ↵ Õ 1
2
, and the definition of ↵-inner additivity requires the same condition

to hold. An axiom is now formulated that holds for all 0 Õ ↵ Õ 1
2
. Because

the distinction between “likely”, “unlikely” and “moderate” is subjective, we may

not know a priori, for a specific 0 Õ ↵ Õ 1
2
, which of the above conditions is

relevant. There is, however, a complementarity between these conditions that can

be exploited. If assumptions 1 and 2 above are taken seriously, then, whenever ↵ is

small enough, we expect ↵-outer additivity to hold. Otherwise, we expect ↵-inner

additivity to hold. Hence, when asked, “for which ↵ does ↵-outer additivity hold?”

our answer is, “those ↵ for which ↵-inner additivity does not hold.” Conversely,

when asked, “for which ↵ does ↵-inner additivity hold?” our answer is, “those ↵ for

which ↵-outer additivity does not hold.” That is, the combination of assumptions

1 and 2 with the “additivity within classes” idea, leads to the following axiom:

Axiom (Complementary Additivity): For all 0 Õ ↵ Õ 1
2
, preferences Ã either

satisfy ↵-outer additivity, ↵-inner additivity, or both.

By substituting a RDUPL, it can be established that RDUPL necessarily satisfies

both -outer additivity and -inner additivity. It follows that RDUPL satisfies ↵-

outer additivity for all ↵ Õ , and satisfies ↵-inner additivity for all  Õ ↵ Õ 1
2
.

Hence, complementary additivity is a necessary condition for RDUPL. We can
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now state our main theorem:

Theorem 2. Let X = {x0,… , x

n

} with n Œ 2 and x0 « 5 « x

n

. The prefer-

ence relation Ã on L
X

is a Jensen continuous, monotonic, weak order that satis-

fies elementary tradeo� consistency and complementary additivity if and only if

piecewise linear rank-dependent utility holds. The utility function is unique up to

positive a�ne transformation and the probability weighting function is unique.

Theorem 2 is proved in Appendix B. It should also be noted that complementary

additivity, even if combined with weak ordering, Jensen continuity, and mono-

tonicity, does not imply elementary tradeo� consistency. Hence, the axioms used

in Theorem 2 are independent. To establish this fact, consider the following ex-

ample:

Example 3. Let X = {x0,… , x

n

} with n Œ 2 and x0 « 5 « x

n

, and let prefer-

ences Ã over L
X

be represented by the map:

(p1,… , p

n

) ≠ u(x0) +
n…
i=1
�

i

(p
i

)[u(x
i

) * u(x
i*1)]

with u(x0) < 5 < u(x
n

) and:

�

k

(p
k

) =
h
n
l
nj

1
2k
p

k

if 0 Õ p

k

<

1
2
,

1
2k
p

k

+ (1 * 1
2k
)(2p

k

* 1) if 1
2
Õ p

k

Õ 1.
for all k À {1,… , n}.

Such preferences are necessarily continuous, monotonic, and weak ordered. Com-

plementary additivity is necessarily satisfied. Elementary tradeo� consistency,

however, is violated. Let Y = {x0, xi, xj}, with i < j and (a, p), (b, q), (c, p),

(d, q), (r, a), (s, b), (r, c), (s, d) À L
Y

with a, b <

1
2
< c, d. Then, (a, p) Ì (b, q)

and (c, p) Ì (d, q) are jointly equivalent to a * b = (4i * 1)(c * d), whereas

14



(r, a) Ì (s, b) and (r, c) Ì (s, d) are jointly equivalent to a * b = (4j * 1)(c * d).

These cannot both hold, hence probability tradeo�s on the p
i

-coordinate do not

agree with those on the p
j

-coordinate. As such, these preferences cannot be repre-

sented by rank-dependent utility, hence cannot be represented by piecewise linear

rank-dependent utility.

One might conjecture that elementary tradeo� consistency can be dropped from

Theorem 2 when the outcome set contains more than three outcomes. Example

3 proves that this is not the case. If there are more than three outcomes, then it

is possible to derive an additive representation without appealing to elementary

tradeo� consistency.5 However, probability weighting cannot be separated from

utility unless one further assumes elementary tradeo� consistency.

6 Closing Comments

In this paper we have considered a piecewise linear version of rank-dependent

utility for choice under risk. The model can be considered a continuous version

of NEO-expected utility. Empirically, evidence that fails to falsify NEO-expected

necessarily fails to falsify piecewise linear rank-dependent utility. In terms of ob-

taining such evidence, the complementary additivity axiom presented here is the

critical test. The theorem presented here is perhaps the simplest generalisation

of the von-Neumann and Morgenstern theorem that accounts for ambivalent be-

haviour.
5In the appendix it is shown that complementary additivity implies a condition called coordi-

nate independence, which is su�cient, in the presence of the basic axioms, to derive an additive

representation.
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Appendices

Appendix A: A Characterisation of Rank-Dependent Utility

For a lottery p À L
X

and i À {1,… , n}, we use the notation r
i

p = (t1,… , t

n

)

to denote the lottery with t
j

= r

j

if j = i and t
j

= p

j

if j ë i. It is implicit in

this notation that p
i*1, qi*1 Œ r

i

Œ p

i+1, qi+1. Coordinate independence holds if,

for all p, q, r, s À L
X

, r
i

p Ã r

i

q if and only if s
i

p Ã s

i

q. The following theorem

characterises rank-dependent utility:

Theorem 4. Let X = {x0,… , x

n

} with n Œ 2 and x0 « 5 « x

n

. The prefer-

ence relation Ã on L
X

is a Jensen continuous, monotonic, weak order that sat-

isfies elementary tradeo� consistency and coordinate independence if and only if

rank-dependent utility holds. The utility function is unique up to positive a�ne

transformation and the probability weighting function is unique.

If there are precisely three outcomes (n = 2), then coordinate independence can

be dropped from the axiom set in Theorem 4 and rank-dependent utility still holds.

Proof: The necessity of the axioms for the representation is routinely demonstrated

by substituting the representation. We now establish the su�ciency of the axioms

for rank-dependent utility. Lemma 18 of Abdellaoui (2002) establishes that conti-
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nuity on L
X

follows from weak ordering, monotonicity and Jensen continuity on

L
X

. For Y ” X with Y  = 3, elementary tradeo� consistency on L
Y

is identical

to the probability tradeo� consistency axiom of Abdellaoui (2002), except that it

holds only for indi�erences (Köbberling and Wakker, 2003). This is su�cient for

rank-dependent utility to hold on each L
Y

with Y ” X and Y  = 3.

If X = 3, the proof is complete. Assume that X > 3. Theorem 3.2 of Wakker

(1993) implies there exist extended real-valued, continuous, strictly monotone

functions V1,… ,V

n

on L
X

such that Ã is represented by the map p≠
≥

n

j=1 Vj(pj).

The additive value functions V1,… ,V

n

are finite valued, except possibly V1 at zero

and V
n

at one. Additive value functions V1,… ,V

n

, for n Œ 2, are jointly cardinal,

that is, if ÉV1,… ,

É

V

n

are also additive value functions representing   over L
X

, then
É

V

j

= aV

j

+ b
j

with a > 0 and b
j

À R for all j = 1,… , n.

For all i, j À {1,… , n}, with i ë j, preferences on L{x0,xi,xj} are represented by

V

i

+V
j

and also by rank-dependent utility. Therefore, V
i

is proportional to V
j

. The

additive value functions V1,… ,V

n

are therefore proportional to each other, hence

proportional to their sum
≥

n

j=1 Vj . These functions are therefore finite-valued at

the extremes (see Proposition 3.5 of Wakker, 1993). Rescale the additive value

functions so that V1(0) = 5 = V

n

(0) = 0 and
≥

n

j=1 Vj(1) = 1. Define a probability

weighting function w í ≥
n

j=1 Vj . Then, preferences are represented by the map:

p≠ w(p1)s1 +5 +w(p
n

)s
n

≈p À L
X

.

where s1,… , s

n

> 0. Define a utility function such that u(x0) = 0 and u(x
j

) =

u(x
j*1) + sj for j = 1,… , n, and rank-dependent utility holds. ∑
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Appendix B: Proof of Theorem 2

Proof: The necessity of the axioms for the representation is routinely demonstrated

by substituting the representation. Assume that preferencesÃ overL
X

are a contin-

uous, monotonic weak order satisfying elementary tradeo� consistency and com-

plementary additivity. We will derive a piecewise linear rank dependent utility

representation. First, consider the implications of the complementary additivity

axiom. Under weak ordering, if ↵-outer additivity holds for some 0 Õ ↵ Õ 1
2
, then

É↵-outer additivity holds for all É↵ À [0, ↵]. Similarly, if ↵-inner additivity holds for

some 0 Õ ↵ Õ 1
2
, then É↵-inner additivity holds for all É↵ À [↵, 1

2
]. Let ↵< be the

largest value in [0, 1
2
] such that ↵<-outer additivity holds. Let ↵< be the smallest

value in [0, 1
2
] such that ↵<-inner additivity holds. Complementary additivity re-

quires that [0, ↵<]‰[↵<,
1
2
] = [0, 1

2
] hence ↵< Œ ↵< . If ↵< > ↵<, then additivity holds

everywhere and expected utility holds. Otherwise, there is a unique  := ↵

< = ↵<

such that -inner and -outer additivity both hold simultaneously.

Another implication of complementary additivity is that coordinate independence

holds. Let r
i

p Ã r

i

q. Suppose that s
i

Õ  Õ 1 *  Õ r

i

. All other cases are

similarly established. Given r
i

p Ã r

i

q, (1*)-upper additivity implies (1*)
i

p =

r

i

p + (1 *  * r

i

)
i

Ã r

i

q + (1 *  * r

i

)
i

= (1 * )
i

q. Furthermore, 
i

p Ã 

i

q

follows from -inner additivity, and s
i

p Ã s

i

q follows from -lower additivity.

Hence, coordinate independence holds and, by Theorem 4, preferences admit a

rank-dependent utility representation, with a cardinal utility u for outcomes and

unique probability weighting functionw that is continuous and strictly increasing.
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Furthermore, because preferences satisfy -inner additivity and -outer additivity,

the probability weighting function is a�ne on each of the intervals [0, ], [, 1*],

and [1 * , 1]. That is, piecewise linear rank-dependent utility holds. ∑
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