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SUMMARY

This paper addresses the robust consensus control design for input-delayed multi-agent systems subject to
parametric uncertainties. To deal with the input delay, the Artstein model reduction method is employed
by a state transformation. The input-dependent integral term that remains in the transformed system, due
to the model uncertainties, is judiciously analysed. By carefully exploring certain features of the Laplacian
matrix, sufficient conditions for the global consensus under directed communication topology are identified
using Lyapunov-Krasovskii functionals in the time domain. The proposed control only relies on relative state
information of the subsystems via network connections. The effectiveness and robustness of the proposed
control design is demonstrated through a numerical simulation example. Copyright c⃝ 2015 John Wiley &
Sons, Ltd.

Received . . .

KEY WORDS: Consensus Control; Input Delay; Multi-agent Systems; Parametric Uncertainty;
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1. INTRODUCTION

Control of network-connected systems, including formation control [1], flocking [2] and
synchronization [3], has attracted significant interests in control area and has been intensively
studied in the literature, [4]–[9], to mention a few. In some applications involving multi-agent
systems, groups of agents are required to reach an agreement upon certain quantities of interest,
which is called consensus or agreement problem. One significant advance in consensus control is to
use tools in graph theory, especially the use of Laplacian matrices [10], to characterize the network
connection.

Time delays are inevitable in industrial processes due to the time taken for transmission of
signals. The importance of addressing delay has been well recognized for a long time (see [11]
and the references therein). Time delay is even more significant in network-connected systems as
the control inputs depend on the signals transmitted through network communication. The presence
of communication delays, if not considered in a controller design, may seriously deteriorate the
performance of the multi-agent networks. This problem has attracted the considerate attention in
control community, as evidenced by recent publications [12]–[16]. In [17], it is pointed out that the
delay in the network communication can also be viewed as input delay in consensus control .
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2 Z. ZUO ET AL.

The practical physical systems often suffer from uncertainties which may be caused by mutations
in system parameters, modelling errors or some ignored factors [18]. The robust consensus problem
of multi-agent systems has formed into a challenge topic in recent years. Han et al. investigate
the robust consensus problem for multi-agent systems with continuous-time and discrete-time
dynamics in [19] and [20], where the weighted adjacency matrix is a polynomial function of
uncertain parameters. In particular, the H∞ robust control problem is investigated in [21] for a
group of autonomous agents governed by uncertain general linear node dynamics. However, most
of the existing results on consensus control of uncertain multi-agent systems were often restricted
to certain conditions, like single or double integrators [22], undirected network connections [23]
or systems without delays [24]. The difficulty of solving the consensus problem with general
uncertain model dynamics with time delay is mainly due to the fact that the systems can not be
completely transformed to a delay-free one due to the existence of uncertainties. The nature of
infinite-dimensionality of delay issues prevents the direct application of many well-know existing
conventional control design tools. Further analysis is needed to tackle the influence of the extra
integral terms under the transformations, including the ones for parametric uncertainty and input
delay.

This paper systematically investigate the consensus control for general linear multi-agent systems
with parametric uncertainties and communication delay. This kind of network communication delay
can be formulated as the input delay when the inputs only depend on the relative state information
transmitted via the network. A model reduction method, which was originally introduced by Artstein
in [26], is used to deal with the input delay. The control design is only based on the neighbours’
information obtained via the network connections, without local feedback of the subsystems. Further
endeavors are made to ensure that the extra integral term, which remains in the system dynamics
after transformation due to the parametric uncertainty and depends on the relative state due to the
input, is properly considered. By transforming the Laplacian matrix into the real Jordan form, the
consensus analysis is put in the framework of Lyapunov-Krasovskii functionals in real domain. A
simulation example is included in the end of the paper.

The remainder of this paper is organised as follows. Some notations and the problem formulation
are given in Section 2. Section 3 presents a couple of preliminary results for the stability analysis.
Section 4 presents the main results on the consensus control design and stability analysis. Simulation
results are included in Section 5. Section 6 concludes this paper.

2. PROBLEM STATEMENT

In this paper, we consider the control design for a set of N uncertain subsystems with input delay,
of which the subsystems are described by

ẋi(t) = [A+∆A(t)]xi(t) + [B +∆B(t)]ui(t− h), (1)

where, for subsystem i, i = 1, 2, . . . , N , xi ∈ Rn is the state vector, ui ∈ Rm is the control input
vector, A ∈ Rn×n and B ∈ Rn×m are constant matrices with (A,B) controllable, h > 0 is the input
delay, xi(θ), θ ∈ [−h, 0], are given and bounded, ∆A(t) and ∆B(t) are time-varying uncertain
matrices which can be formulated in the form [27] as

∆A(t) = EΣ(t)F1 and ∆B(t) = EΣ(t)F2, (2)

where E, F1 and F2 are real constant matrices with appropriate dimensions, and Σ(t) is an unknown
real time-varying matrix that satisfies ΣT(t)Σ(t) ≤ I .

Remark 1
It is worth noticing that the subsystems in the network are nominally identical and the model
uncertainty matrices satisfy the same form as (2). Different from the existing works that focus on the
identical agents in the network, the terms ∆A and ∆B in (1) allow the subsystems to have different
dynamics and the uncertainty is characterised by the time-varying matrix Σ(t), which implies that

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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ROBUST CONSENSUS CONTROL OF UNCERTAIN MULTI-AGENT SYSTEMS WITH INPUT DELAY 3

each subsystem in the group can be non-identical. For the consensus design, only the bound of Σ(t)
(i.e., the worst case) is needed.

Assumption 1
All subsystems in the network have known and identical input delays.

Remark 2
Assumption 1 is adopted for the convenience of illustration of the control design. The proposed
method in this paper may be extended to the network-connected systems with non-identical constant
delays and even unknown time-varying delays if the worst case is taken into account in the design.

The information flow among the subsystems is specified by a directed graph G, which consists
of a set of vertices denoted by V and a set of edges denoted by E . A vertex represents a subsystem,
and each edge represents a connection. Associated with the graph is its adjacency matrix Q, where
element qij denotes the connection among the subsystems. More specifically, qij = 1 if there is a
connection from subsystem j to subsystem i, and qij = 0 otherwise. The Laplacian matrix L = {lij}
is commonly defined by

lij = −qij , if j ̸= i,

lii =

N∑
j=1,j ̸=i

qij .

From the definition of the Laplacian matrix, it is clear that

L1 = 0,

where 1 = [1, · · · , 1]T ∈ RN , which implies that the Laplacian matrix has 0 as an eigenvalue
associated with the right eigenvector 1.

Assumption 2
0 is a simple eigenvalue of the Laplacian matrix.

In terms of the network collections, this condition implies that the network has a spanning tree to
connect any two subsystems in the system. For consensus design, we only need that the eigenvalue
at 0 is a single eigenvalue [28].

The consensus control problem considered in this paper is to design a control strategy, using
the relative state information, to ensure that all input-delayed uncertain subsystems converge to an
identical trajectory.

3. PRELIMINARY RESULTS

In this section, we present a couple of preliminary results which are useful for the stability analysis.
We first present an overview of the Artstein model reduction method [25, 26]. Consider an input-
delayed system

ẋ(t) = Ax(t) +Bu(t− h). (3)

with x(θ), θ ∈ [−h, 0], being given and bounded.
Introducing a new variable

z(t) = x(t) +

∫ t+h

t

eA(t−τ)Bu(τ − h)dτ (4)

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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4 Z. ZUO ET AL.

reduces (3) to a delay-free system

ż(t) = ẋ(t) +A

∫ t+h

t

eA(t−τ)Bu(τ − h)dτ + e−AhBu(t)−Bu(t− h)

= Ax(t) +A

∫ t+h

t

eA(t−τ)Bu(τ − h)dτ + e−AhBu(t)

= Az(t) +Du(t), (5)

where D , e−AhB. We consider a controller

u(t) = Kz(t). (6)

If the controller (6) stabilises the transformed system (5), then the original system (3) is also stable
with the same controller.

Remark 3
The transformation from x to z exists initially, which is guaranteed by the specified boundedness of
the initial state x(θ), θ ∈ [−h, 0]. The existence of the transformation at subsequent time instances
depends on the integrability of u, which is then guaranteed by the boundedness of z, as established
in the stability analysis.

To reveal the block diagonal structure of the transformed Laplacian matrix for stability analysis,
we next recall a lemma from [28].

Lemma 1
For a Laplacian matrix that satisfies Assumption 2, there exits a similarity transformation T , with
its first column being T(1) = 1, such that

T−1LT = J, (7)

with J being a block diagonal matrix in the real Jordan form

J =



0
J2

. . .
Jp

Jp+1

. . .
Jq


N×N

, (8)

where Jk ∈ Rnk×nk , k = 2, 3, · · · , p, are the Jordan blocks for real eigenvalues λk > 0 with the
multiplicity nk in the form

Jk =


λk 1

λk 1
. . . . . .

λk 1
λk


nk×nk

,

and Jk ∈ R2nk×2nk , k = p+ 1, p+ 2, . . . , q, are the Jordan blocks for conjugate eigenvalues αk ±
jβk, αk > 0 and βk > 0, with the multiplicity nk in the form

Jk =


ν(αk, βk) I2

ν(αk, βk) I2
. . . . . .

ν(αk, βk) I2
ν(αk, βk)


2nk×2nk

,

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
Prepared using rncauth.cls DOI: 10.1002/rnc



ROBUST CONSENSUS CONTROL OF UNCERTAIN MULTI-AGENT SYSTEMS WITH INPUT DELAY 5

with I2 the identity matrix in R2×2 and

ν(αk, βk) =

[
αi βi
−βi αi

]
2×2

.

We also need the following lemma from [29].

Lemma 2
For a positive definite matrix P , and a function x : [a, b] → Rn, with a, b ∈ R and b > a, the
following inequality holds(∫ b

a

xT(τ)dτ

)
P

(∫ b

a

x(τ)dτ

)
≤ (b− a)

∫ b

a

xT(τ)Px(τ)dτ. (9)

4. CONSENSUS CONTROL

For the multi-agent systems (1), we consider the linear transformation (4) by the reduction method.
The original subsystems are transformed to

żi(t) = (A+∆A)zi(t) +Dui(t) + ∆Bui(t− h)−∆A

∫ t+h

t

eA(t−τ)Bui(τ − h)dτ, (10)

where D = e−AhB. As seen in (10), system (1) is not completely reduced to a free-of-delay system
due to the model uncertainties.

We propose a control design using the relative state information. The control input takes the
structure

ui(t) = −K
N∑
j=1

qij [zi(t)− zj(t)] = −K
N∑
j=1

lijzj(t), (11)

where K ∈ Rm×n is a constant control gain matrix to be designed later.

Remark 4
It is worth noting from (4) that the proposed control in (11) only uses the relative state information
of the subsystems via network connections.

Remark 5
Note that the information on each control input ui(t) on the time interval [t− h, t] can be stored and
used for control. In practical implementations, the discretization of an integral or some numerical
quadrature method [31] can be used to approximate the integral term in the control input ui(t).

Remark 6
For unknown non-identical time-varying delays hi(t) in (1) satisfying 0 < hi(t) < h̄, i =
1, 2, . . . , N , the upper bound of the delays that exist in all agents can be used in the predictor variable
(4) as

zi(t) = xi(t) +

∫ t+h̄

t

eA(t−τ)Bui(τ − h̄)dτ. (12)

Then, the original subsystems (1) can be transformed to

żi(t) = (A+△A)zi(t) + e−Ah̄Bui(t)−△A
∫ t+h̄

t

eA(t−τ)Bui(τ − h̄)dτ +△Bui(t− hi(t))

+B
(
ui(t− hi(t))− ui(t− h̄)

)
=(A+△A)zi(t) +Dui(t)−△A

∫ t+h̄

t

eA(t−τ)Bui(τ − h̄)dτ +△Bui(t− h̄)

−BK

N∑
j=1

lij

∫ t−hi(t)

t−h̄

żj(τ)dτ −△BK
N∑
j=1

lij

∫ t−hi(t)

t−h̄

żj(τ)dτ, (13)

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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6 Z. ZUO ET AL.

where D = e−Ah̄B. Compared with (10), the use of the upper-bound of delays leads to additional
integral terms in (13), which further complicates the design. Fortunately, with the same control
structure (11), our proposed design method is still applicable if K is carefully identified by
introducing additional Krasovskii functionals in consensus analysis. Similar technique can be found
in [32] for a single system with unknown time-varying delay but without parametric uncertainties.

Let z(t) = [z1, z2, . . . , zN ]T, and the closed-loop system is then written as

ż(t) =[IN ⊗ (A+∆A)− L⊗DK]z(t)− (L⊗∆BK)z(t− h)− (IN ⊗∆A)σ(t), (14)

where σ , [σ1, . . . , σN ]T with the elements defined by

σi = −
∫ t+h

t

eA(t−τ)BK

N∑
j=1

lijzj(τ − h)dτ, (15)

and ⊗ denotes the Kronecker product of matrices.
Let us define r ∈ RN as the left eigenvector of L corresponding to the eigenvalue at 0, that is,

rTL = 0. Furthermore, let r be scaled such that rT1 = 1. It can be shown from Assumption 2 and
Lemma 1 that there exists a non-singular matrix T with its first column being T(1) = 1 and the first
row of T−1 being T−1

(1) = rT, such that

T−1LT = J. (16)

Based on the vector r, we introduce a state transformation

ξi(t) = zi(t)−
N∑
j=1

rjzj(t) (17)

for i = 1, · · · , N . With
ξ(t) = [ξT1 (t), ξ

T
2 (t), . . . , ξ

T
N (t)]T,

we have

ξ(t) = z(t)− [(1rT)⊗ In]z(t) = (M ⊗ In)z(t),

where M , IN − 1rT. Since rT1 = 1, it can be shown that M1 = 0. Therefore, the consensus of
system (14) is achieved when ξ = 0, as ξ = 0 implies z1 = z2 = · · · = zN , due to the fact the null
space of M is span{1}. Then, the consensus problem is now converted to the stabilization problem.

The dynamics of ξ(t) can then be obtained as

ξ̇(t) = (M ⊗ In)ż(t)

= [IN ⊗ (A+∆A)− L⊗DK] ξ(t)− (L⊗∆BK)ξ(t− h)− (M ⊗ In)(IN ⊗∆A)σ. (18)

To explore the structure of L for stability analysis, let us introduce another state transformation

η(t) = (T−1 ⊗ In)ξ(t). (19)

Then, we have

η̇(t) = [IN ⊗ (A+∆A)− J ⊗DK]η(t)− (J ⊗∆BK)η(t− h)−Ψ(z), (20)

where Ψ(z) = (T−1 ⊗ In)(M ⊗ In)(IN ⊗∆A)σ, η(t) = [η1(t), η2(t), . . . , ηN (t)]T and Ψ(z) =
[ψ1(z), ψ2(z), . . . , ψN (z)]T with ηi ∈ Rn and ψi : RnN → Rn, for i = 1, 2, . . . , N .

With the state transformations (17) and (19), we have

η1(t) = (rT ⊗ In)ξ(t) = [(rTM)⊗ In]z(t) ≡ 0. (21)

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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ROBUST CONSENSUS CONTROL OF UNCERTAIN MULTI-AGENT SYSTEMS WITH INPUT DELAY 7

The consensus control can be guaranteed by showing that η converges to zero, which is sufficed by
showing that ηi converge to zero for k = 2, 3, . . . , N , since we have shown that η1(t) ≡ 0.

With the control law shown in (11), we design the control gain matrix K as

K = DTP, (22)

where P is a positive definite matrix to satisfy certain condition. In the remaining part of the
paper, we will use Lyapunov-function-based analysis to identify conditions for P to ensure that
the consensus control objective is achieved by using the control input (11) with the control gain
(22).

The stability analysis will be carried out for η. Based on the structure of the Laplacian matrix
shown in (8), we can see that

Nk = n1 +

k∑
j=2

nj , (23)

with n1 = 1 and Nq = N , where k = 2, 3, . . . , q.
Due to the eigenstructure (8), the dynamics of the transformed state η in (20) will be discussed

corresponding to the real and the complex eigenvalues, respectively.
For the state variables associated with the Jordan blocks Jk of real eigenvalues, i.e., for 2 ≤ k ≤ p,

we have the dynamics

η̇i(t) = (A+∆A− λiDD
TP )ηi(t)−DDTPηi+1(t)− λi∆BD

TPηi(t− h)

−∆BDTPηi+1(t− h)− ψi(z), i = Nk−1 + 1, Nk−1 + 2, . . . , Nk − 1, (24)

η̇i(t) = (A+∆A− λiDD
TP )ηi(t)− λi∆BD

TPηi(t− h)− ψi(z), i = Nk. (25)

For the state variables associated with the Jordan blocks Jk of conjugate complex eigenvalues,
i.e., for k > p, we consider the dynamics of the state variables in pairs. For notational convenience,
let

i1(j) = Nk−1 + 2j − 1 and i2(j) = Nk−1 + 2j, (26)

where j = 1, 2, . . . , nk/2. The dynamics of ηi1(j) and ηi2(j), for j = 1, 2, . . . , nk/2− 1, are
expressed by

η̇i1(j)(t) =
(
A+∆A− αkDD

TP
)
ηi1(j)(t)− βkDD

TPηi2(j)(t)−DDTPηi1(j)+2(t)

− αk∆BD
TPηi1(j)(t− h)− βk∆BD

TPηi2(j)(t− h)−∆BDTPηi1(j)+2(t− h)

− ψi1(j)(z),

η̇i2(j)(t) =
(
A+∆A− αkDD

TP
)
ηi2(j)(t) + βkDD

TPηi1(j)(t)−DDTPηi2(j)+2(t)

− αk∆BD
TPηi2(j)(t− h) + βk∆BD

TPηi1(j)(t− h)−∆BDTPηi2(j)+2(t− h)

− ψi2(j)(z),

and, for j = nk/2,

η̇i1(j) =
(
A+∆A− αkDD

TP
)
ηi1(j)(t)− βkDD

TPηi2(j)(t)

− αk∆BD
TPηi1(j)(t− h)− βk∆BD

TPηi2(j)(t− h)− ψi1(j)(z),

η̇i2(j) =
(
A+∆A− αkDD

TP
)
ηi2(j)(t) + βkDD

TPηi1(j)(t)

− αk∆BD
TPηi2(j)(t− h) + βk∆BD

TPηi1(j)(t− h)− ψi2(j)(z).

Let

Wi = ηTi (t)Pηi(t). (27)

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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For i = Nk−1 + 1, Nk−1 + 2, . . . , Nk − 1, the time derivative of Wi along the trajectory (24) is

Ẇi = ηTi (t)P η̇i(t)

= ηTi (t)
(
ATP + PA− 2λkPDD

TP
)
ηi(t) + 2ηTi (t)P∆Aηi(t)− 2ηTi (t)PDD

TPηi+1(t)

− 2λkη
T
i (t)P∆BD

TPηi(t− h)− 2ηTi (t)P∆BD
TPηi+1(t− h)− 2ηTi (t)Pψi

≤ ηTi (t)
(
ATP + PA− 2λkPDD

TP
)
ηi(t) +

1

µ
ηTi (t)PEE

TPηi(t) + µηTi (t)F
T
1 F1ηi(t)

+ ηTi (t)PDD
TPηi(t) + ηTi+1(t)PDD

TPηi+1(t) +
1

ϵ
λkη

T
i (t)PEE

TPηi(t)

+ ϵλkη
T
i (t− h)PDFT

2 F2D
TPηi(t− h) +

1

ϵ
ηTi (t)PEE

TPηi(t)

+ ϵηTi+1(t− h)PDFT
2 F2D

TPηi+1(t− h)− 2ηTi (t)Pψi

= ηTi (t)

[
ATP + PA− (2λk − 1)PDDTP +

(
λk + 1

ϵ
+

1

µ

)
PEETP + µFT

1 F1

]
ηi(t)

+ ηTi+1(t)PDD
TPηi(t) + ϵ(1 + λk)η

T
i+1(t− h)PDFT

2 F2D
TPηi+1(t− h)

− 2ηTi (t)Pψi, (28)

and, for i = Nk, the time derivative of Wi along the trajectory (25) is

Ẇi = ηTi (t)P η̇i(t)

= ηTi (t)
(
ATP + PA− 2λkPDD

TP
)
ηi(t) + 2ηTi (t)P∆Aηi(t)− 2λkη

T
i (t)P∆BD

TPηi(t− h)

− 2ηTi (t)Pψi

≤ ηTi (t)
(
ATP + PA− 2λkPDD

TP
)
ηi(t) +

1

µ
ηTi (t)PEE

TPηi(t) + µηTi (t)F
T
1 F1ηi(t)

+
1

ϵ
λkη

T
i (t)PEE

TPηi(t) + ϵλkη
T
i (t− h)PDFT

2 F2D
TPηi(t− h)− 2ηTi (t)Pψi

= ηTi (t)

[
ATP + PA− 2λkPDD

TP +

(
λk
ϵ

+
1

µ

)
PEETP + µFT

1 F1

]
ηi(t)

+ ϵλkη
T
i (t− h)PDFT

2 F2D
TPηi(t− h)− 2ηTi (t)Pψi, (29)

where the inequality ±aTb ≤ aTa+ bTb, for any vectors a and b, has been used.
Similarly, for j = nk/2 in (26)†, we have in pairs

Ẇi1 + Ẇi2

≤ ηTi1(t)

[
ATP + PA− 2αkPDD

TP +

(
αk + βk

ϵ
+

1

µ

)
PEETP + µFT

1 F1

]
ηi1(t)

+ ηTi2(t)

[
ATP + PA− 2αkPDD

TP +

(
αk + βk

ϵ
+

1

µ

)
PEETP + µFT

1 F1

]
ηi2(t)

+ ϵ(αk + βk)η
T
i1(t− h)PDFT

2 F2D
TPηi1(t− h)− 2ηi1(t)

TPψi1

+ ϵ(αk + βk)η
T
i2(t− h)PDFT

2 F2D
TPηi2(t− h)− 2ηi2(t)

TPψi2 , (30)

†We omit without ambiguity the parameter j in i1(j) and i2(j) for simplicity.
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and, for j = 1, 2, . . . , nk/2− 1,

Ẇi1 + Ẇi2

≤ ηTi1(t)

[
ATP + PA− 2(αk − 1)PDDTP +

(
αk + βk + 1

ϵ
+

1

µ

)
PEETP + µFT

1 F1

]
ηi1(t)

+ ηTi2(t)

[
ATP + PA− 2(αk − 1)PDDTP +

(
αk + βk + 1

ϵ
+

1

µ

)
PEETP + µFT

1 F1

]
ηi2(t)

+ ϵ(αk + βk)η
T
i1(t− h)PDFT

2 F2D
TPηi1(t− h) + ηTi1+2(t)PDD

TPηi1+2(t)− 2ηi1(t)
TPψi1

+ ϵ(αk + βk)η
T
i2(t− h)PDFT

2 F2D
TPηi2(t− h) + ηTi2+2(t)PDD

TPηi2+2(t)− 2ηi2(t)
TPψi2

+ ϵηTi1+2(t− h)PDFT
2 F2D

TPηi1+2(t− h) + ϵηTi2+2(t− h)PDFT
2 F2D

TPηi2+2(t− h). (31)

where the inequality ±aTb ≤ aTa+ bTb, for any vectors a and b, has been used again.
The above inequalities will be used in the consensus analysis. However, we note that the extra

integral term ψi(z) in the transformed system dynamic model (20) is expressed as a function of the
state z. For the consensus analysis within the framework of Lyapunov-Krasovskii functionals, we
need to establish a bound of the integral function −2ηTi Pψi in terms of the transformed state η. The
following lemma establishes a bound for the cross term −2ηTi Pψi with respect to the transformed
state η.

Lemma 3
For the integral term Ψ(z) = [ψ1(z), ψ2(z), . . . , ψN (z)]T in (20), the summation of −2ηTi Pψi is
bounded by

−
N∑
i=1

2ηTi Pψi ≤
2

ρ

N∑
i=2

ηTi (t)PEE
TPηi(t)

+ ργ20

N∑
i=2

h

∫ h

0

ηTl (t− τ)PDDTeA
TτFT

1 F1e
AτDDTPηl(t− τ)dτ, (32)

where γ20 = 2∥T−1∥2F(1 +N∥r∥22)∥Q∥2F∥T∥2F.

Proof
See Appendix A.

With the bound derived in Lemma 3, sufficient conditions can be identified respectively for the
cases of the Laplacian matrix with distinct eigenvalues and multiple eigenvalues to guarantee the
consensus. The following theorem summarises the results.

Theorem 1
Consider multi-agent systems (1) with Assumptions 1 and 2. The consensus control problem of
system (1) can be solved by the control design (11) with the control gain K = DTP , if there exist
matrices X = P−1 > 0, Y > 0 and scalars µ > 0, ϵ > 0, ρ > 0, such that[

Y DFT
2

F2D
T 1

ϵ
I

]
> 0, (33)

U XFT
1 DDT

F1X − 1

µ
I 0

DDT 0 − 1

ργ20
W

 < 0, (34)

where U is specified in one of the following two cases:
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10 Z. ZUO ET AL.

(i) If the eigenvalues of the Laplacian matrix L are distinct,

U = XAT +AX − 2αDDT +

(
1

µ
+
ᾱ+ β̄

ϵ
+

2

ρ

)
EET + (ᾱ+ β̄)Y, (35)

(ii) If the Laplacian matrix L has multiple eigenvalues,

U =XAT +AX − 2(α− 1)DDT +

(
1

µ
+
ᾱ+ β̄ + 1

ϵ
+

2

ρ

)
EET + (ᾱ+ β̄ + 1)Y, (36)

and

γ20 = 2∥T−1∥2F(1 +N∥r∥22)∥Q∥2F∥T∥2F, (37)

W−1 ≥ h

∫ h

0

eA
TsFT

1 F1e
Asds, (38)

ᾱ = max{λ2, . . . , λnλ
, α1, . . . , αnν}, (39)

β̄ = max{β1, . . . , βnv}, (40)
α = min{λ2, . . . , λnλ

, α1, . . . , αnν}. (41)

Proof
See Appendix B.

Remark 7
The conditions shown in (33) to (34) can be checked by standard LMI routines for a set of fixed
values R and W−1. The iterative methods developed in [30] for single linear system may also be
applied here.

Remark 8
Note from (35) and (36) that a more stringent condition is required for the case of the Laplacian
matrix with multiple eigenvalues than the case with only distinct eigenvalues.

Remark 9
It can be seen from (38) that the matrix W−1 explicitly depends on the delay h, which implies that
large input delays will lead to a difficulty in finding a feasible solution satisfying the conditions (33)
and (34) simultaneously. Even if such a feasible solution P exists, a larger input delay results in a
smaller P and therefore a smaller control gain K, which further implies a more sluggish consensus
response.

5. AN EXAMPLE

In this section, the scenario under consideration is a connection of six subsystems (i.e., N = 6) in
the network as shown in Fig.1. The dynamics of each subsystem are described by (1) with

A =

[
−1 1
0 0

]
, B =

[
0
1

]
, Σ(t) =

[
sin(t) 0
0 sin(2t)

]
,

E =

[
2 0
0 2

]
, F1 =

[
0.1 0
0 0.1

]
, F2 =

[
0.1
0.1

]
.

The Laplacian matrix associated with the graph in Fig.1 is

L =


3 0 0 −1 −1 −1
−1 1 0 0 0 0
−1 −1 2 0 0 0
−1 0 0 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

 .
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Figure 1. Network Connection Topology
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Figure 2. The state 1 of subsystems with h = 0.03.
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Figure 3. The state 2 of subsystems with h = 0.03.

where the eigenvalues of L are [0, 1, 2, 3.3247, 1.3376± j0.5623], which implies the case (i) in
Theorem 1 is satisfied. Then, it can be straightforward to calculate the Jordan canonical form of
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12 Z. ZUO ET AL.

L as

J =


0 0 0 0 0 0
0 2 0 0 0 0
0 0 1 0 0 0
0 0 0 3.3247 0 0
0 0 0 0 1.3376 0.5623
0 0 0 0 −0.5623 1.3376


with the matrices

T =


1 0 0 −12.5635 0.2818− j0.0145 0.2818− j0.0145
1 0 1 5.4043 −0.2022 + j0.3797 −0.2022− j0.3797
1 1 1 5.4043 −0.2022 + j0.3797 −0.2022− j0.3797
1 0 0 5.4043 −0.2022 + j0.3797 −0.2022− j0.3797
1 0 0 −2.3247 −0.3376− j0.5623 −0.3376 + j0.5623
1 0 0 1 1 1

 ,

T−1 =


0.1429 0 0 0.4286 0.2857 0.1429

0 −1 1 0 0 0
0 1.0000 0 −1.0000 0 0

−0.0705 0 0 0.0229 0.0173 0.0303
−0.0362− j0.2945 0 0 −0.2257− j0.4693 −0.1515 + j0.5799 0.4134 + j0.1839
−0.0362 + j0.2945 0 0 −0.2257 + j0.4693 −0.1515− j0.5799 0.4134− j0.1839

 .

Thus, we have r = [0.1429, 0, 0, 0.4286, 0.2857, 0.1429]T, α = 1, ᾱ = 3.3247 and β̄ = 0.5623.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (seconds)

S
ta

te
 1

 o
f s

ub
sy

st
em

s

 

 
x

1
(1)

x
2
(1)

x
3
(1)

x
4
(1)

x
5
(1)

x
6
(1)

Figure 4. The state 1 of subsystems with h = 0.3sec.

The input delay of the system is h = 0.03sec. The positive definite matrix P can be computed
with µ = 1, ϵ = 1 and ρ = 0.1, as

X−1 = P =

[
0.0002 0.0002
0.0002 0.5174

]
,

to satisfy the conditions of Theorem 1. Consequently, the control gain is obtained as

K = DTP =
[
0.0002 0.5173

]
.

Simulation study has been carried out with the results shown in Figures 2 and 3 for the states of
each subsystem. Clearly the conditions specified in Theorem 1 are sufficient for the control gain
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Figure 5. The state 2 of subsystems with h = 0.3sec.

to achieve consensus control. Without any re-tuning the control gain, the consensus control is still
achieved for the multi-agent system with much a much larger delay h = 0.3sec, as shown in Figures
4 and 5, which imply the conditions could be conservative in the control gain design for a given
input delay.

6. CONCLUSION

In this paper, we have solved the consensus problem of multi-agent systems in the presence of
parametric uncertainty and input delay by exploiting the reduction method for delay together with
consensus control design based on real Jordan form of the Laplacian matrix. Further analysis has
been developed to tackle the influence of the extra integral term under transformations due to the
model uncertainty. Sufficient conditions are derived for the closed-loop system to achieve global
consensus using Lyapunov-Krasovskii method in the time domain. The significance of this research
is to provide a feasible method to deal with the robust consensus control for input-delayed uncertain
multi-agent systems.
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APPENDIX

A. Proof of Lemma 3

From the state transformations (17) and (19), we have

Ψ(z) =
(
T−1 ⊗ In

)
(M ⊗ In)(IN ⊗∆A)σ.

Let

Φ = [ϕ1, . . . , ϕN ]T = (M ⊗ In)σ̄,

σ̄ = [σ̄1, . . . , σ̄N ]T = (IN ⊗∆A)σ.
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14 Z. ZUO ET AL.

Recalling M = IN − 1rT, we have

ϕk = σ̄k −
N∑
j=1

rj σ̄j = ∆A

σk −
N∑
j=1

rjσj

 ,

ψi = (τi ⊗ In)Φ =

N∑
k=1

τikϕk =

N∑
k=1

τik∆A

σk −
N∑
j=1

rjσj


= ∆A

N∑
k=1

τikσk −∆A

N∑
k=1

τik

N∑
j=1

rjσj ,

where τi is the ith row of T−1. It then follows that

−2ηTi Pψi =2ηTi P∆A

N∑
k=1

τik

N∑
j=1

rjσj − 2ηTi P∆A

N∑
k=1

τikσk

≤ 2

ρ
ηTi PEE

TPηi + ρ

(
N∑

k=1

τikσk

)T

FT
1 F1

(
N∑

k=1

τikσk

)

+ ρ

 N∑
k=1

τik

N∑
j=1

rjσj

T

FT
1 F1

 N∑
k=1

τik

N∑
j=1

rjσj


≤ 2

ρ
ηTi PEE

TPηi + ρ
(
∥τi∥22 + ∥τi∥21∥r∥22

) N∑
k=1

∥F1σk∥22. (42)

From (11) and (15), we have

σk =−
∫ t+h

t

eA(t−τ)BK

N∑
j=1

lkjzj(τ − h)dτ

=

∫ t+h

t

eA(t−τ)BK

N∑
j=1

qkj
[
zj(τ − h)− zk(τ − h)

]
dτ

=

∫ t+h

t

eA(t−τ)BK

N∑
j=1

qkj
[
(tj − tk)⊗ In

]
η(τ − h)dτ

=

∫ t+h

t

eA(t−τ)BK

N∑
j=1

qkj

N∑
l=1

(tjl − tkl)ηl(τ − h)dτ

=

N∑
j=1

qkj

N∑
l=1

(tjl − tkl)δl, (43)

where ti is the ith row of T and

δl =

∫ t+h

t

eA(t−τ)BKηl(τ − h)dτ. (44)

Copyright c⃝ 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
Prepared using rncauth.cls DOI: 10.1002/rnc



ROBUST CONSENSUS CONTROL OF UNCERTAIN MULTI-AGENT SYSTEMS WITH INPUT DELAY 15

It then follows that

N∑
k=1

∥F1σk∥22 =

N∑
k=1

∥
N∑
j=1

qkj

N∑
l=1

(tjl − tkl)F1δl∥22

≤
N∑

k=1

∥
N∑
j=1

qkj

N∑
l=1

tjlF1δl∥22 +

N∑
k=1

∥
N∑
j=1

qkj

N∑
l=1

tklF1δl∥22

≤ 2∥Q∥2F∥T∥
2
F

N∑
l=1

∥F1δl∥22. (45)

We next deal with ∥F1δl∥22 in (45). Then, using Lemma 2 we have

∥F1δl∥22 = δTl F
T
1 F1δl

=

(∫ t+h

t

F1e
A(t−τ)BKηl(τ − h)dτ

)T(∫ t+h

t

F1e
A(t−τ)BKηl(τ − h)dτ

)

≤h

∫ t+h

t

ηTl (τ − h)KTDTeA
T(t−τ+h)FT

1 F1e
A(t−τ+h)DKηl(τ − h)dτ

=h

∫ h

0

ηTl (t− τ)PDDTeA
TτFT

1 F1e
AτDDTPηl(t− τ)dτ. (46)

With (45)–(46) and η1 ≡ 0, the summation of −2ηTi Pψi can be obtained as

−
N∑
i=2

2ηTi Pψi ≤
2

ρ

N∑
i=2

ηTi (t)PEETPηi(t) + 2ρ

N∑
i=2

(
∥τi∥22 + ∥τi∥21∥r∥22

)
∥Q∥2F∥T∥

2
F

N∑
l=2

∥F1δl∥22

≤ 2

ρ

N∑
i=2

ηTi (t)PEETPηi(t)

+ ργ20

N∑
i=2

h

∫ h

0

ηTl (t− τ)PDDTeA
TτFT

1 F1e
AτDDTPηl(t− τ)dτ,

where 2
∑N

i=2(∥τi∥
2
2 + ∥τi∥21∥r∥22)∥Q∥2F∥T∥

2
F ≤ 2∥T−1∥2F(1 +N∥r∥22)∥Q∥2F∥T∥

2
F has been inserted in

the last inequality with
∑N

i=1 ∥τi∥
2
2 = ∥T−1∥2F being used.

B. Proof of Theorem 1

For all the state variables associate with the Jordan blocks of real eigenvalues, we consider the following
summation of (27):

Vk =

nk∑
j=1

Wj+Nk−1
, (47)

and from (28)–(29) we then obtain

V̇k ≤
nk∑
j=1

ηTj+Nk−1
(t)

[
ATP + PA− 2(λk − 1)PDDTP +

(
λk + 1

ϵ
+

1

µ

)
PEETP + µFT

1 F1

]
× ηj+Nk−1

(t)− ηT1+Nk−1
(t)PDDTPη1+Nk−1

(t)− ηTNk
(t)PDDTPηNk

(t)

− 1

ϵ
ηTNk

(t)PEETPηNk
(t) +

nk∑
j=1

ϵ(1 + λk)η
T
j+Nk−1

(t− h)PDFT
2 F2D

TPηj+Nk−1
(t− h)

− ϵηT1+Nk−1
(t− h)PDFT

2 F2D
TPη1+Nk−1

(t− h)− 2

nk∑
j=1

ηTj+Nk−1
(t)Pψi. (48)
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For all the state variables corresponding to the conjugate eigenvalues in the Jordan blocks, we consider
the following summation of (27) in pairs:

Vk =

nk/2∑
j=1

[
Wi1(j) +Wi2(j)

]
. (49)

By (30)–(31) and after simple mechanical calculation, we have

V̇k =

nk/2∑
j=1

[
Ẇi1(j) + Ẇi2(j)

]
≤

nk/2∑
j=1

ηT2j−1+Nk−1
(t)

[
ATP + PA− 2(λk − 1)PDDTP +

(
αk + βk + 1

ϵ
+

1

µ

)
PEETP + µFT

1 F1

]

× η2j−1+Nk−1
(t)−

nk/2∑
j=1

2ηT2j−1+Nk−1
(t)Pψ2j−1+Nk−1

+

nk/2∑
j=1

ηT2j+Nk−1
(t)

[
ATP + PA− 2(λk − 1)PDDTP +

(
αk + βk + 1

ϵ
+

1

µ

)
PEETP + µFT

1 F1

]

× η2j+Nk−1
(t)−

nk/2∑
j=1

2ηT2j+Nk−1
(t)Pψ2j+Nk−1

− ηT1+Nk−1
(t)PDDTPη1+Nk−1

(t)− ηT2+Nk−1
(t)PDDTPη2+Nk−1

(t)− ηTNk−1(t)PDD
TPηNk−1(t)

− ηTNk
(t)PDDTPηNk

(t)− 1

ϵ
ηTNk−1(t)PEE

TPηNk−1(t)−
1

ϵ
ηTNk

(t)PEETPηNk
(t)

+

nk/2∑
j=1

ϵ(αk + βk + 1)ηT2j−1+Nk−1
(t− h)PDFT

2 F2D
TPη2j−1+Nk−1

(t− h)

+

nk/2∑
j=1

ϵ(αk + βk + 1)ηT2j+Nk−1
(t− h)PDFT

2 F2D
TPη2j+Nk−1

(t− h)

− ϵηTNk−1(t− h)PDFT
2 F2D

TPηNk−1(t− h)− ϵηTNk
(t− h)PDFT

2 F2D
TPηNk

(t− h). (50)

With (47) and (49), we consider the following Lyapunov function

V1 =

q∑
k=2

Vk =

p∑
k=2

Vk +

q∑
k=p+1

Vk

=

p∑
k=2

nk∑
j=1

Wj+Nk−1
+

q∑
k=p+1

nk/2∑
j=1

[
Wi1(j) +Wi2(j)

]
, (51)
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where Nk is defined in (23) with N1 = n1 = 1 and 2 ≤ k ≤ q, i1(j) and i2(j) are defined in (26) and (??),
respectively. By (48) and (50), we can compute the time derivative of (51) as

V̇1 ≤
p∑

k=2

nk∑
j=1

ηTj+Nk−1
(t)

[
ATP + PA− 2(λk − 1)PDDTP +

(
λk + 1

ϵ
+

1

µ

)
PEETP + µFT

1 F1

]
× ηj+Nk−1

(t)

+

q∑
k=p+1

nk/2∑
j=1

ηT2j−1+Nk−1
(t)

[
ATP + PA− 2(λk − 1)PDDTP +

(
αk + βk + 1

ϵ

+
1

µ

)
PEETP + µFT

1 F1

]
η2j−1+Nk−1

(t)

+

q∑
k=p+1

nk/2∑
j=1

ηT2j+Nk−1
(t)

[
ATP + PA− 2(λk − 1)PDDTP +

(
αk + βk + 1

ϵ

+
1

µ

)
PEETP + µFT

1 F1

]
η2j+Nk−1

(t)

−
p∑

k=2

[
ηT1+Nk−1

(t)PDDTPη1+Nk−1
(t) + ηTNk

(t)PDDTPηNk
(t)
]

︸ ︷︷ ︸
≥0

−
q∑

k=p+1

[
ηT1+Nk−1

(t)PDDTPη1+Nk−1
(t) + ηT2+Nk−1

(t)PDDTPη2+Nk−1
(t)
]

︸ ︷︷ ︸
≥0

−
q∑

k=p+1

[
ηTNk−1(t)PDD

TPηNk−1(t) + ηTNk
(t)PDDTPηNk

(t)
]

︸ ︷︷ ︸
≥0

−
p∑

k=2

1

ϵ
ηTNk

(t)PEETPηNk
(t)︸ ︷︷ ︸

≥0

−
q∑

k=p+1

1

ϵ

[
ηTNk−1(t)PEE

TPηNk−1(t) + ηTNk
(t)PEETPηNk

(t)
]

︸ ︷︷ ︸
≥0

+

p∑
k=2

nk∑
j=1

ϵ(1 + λk)η
T
j+Nk−1

(t− h)PDFT
2 F2D

TPηj+Nk−1
(t− h)

+

q∑
k=p+1

nk/2∑
j=1

ϵ(αk + βk + 1)ηT2j−1+Nk−1
(t− h)PDFT

2 F2D
TPη2j−1+Nk−1

(t− h)

+

q∑
k=p+1

nk/2∑
j=1

ϵ(αk + βk + 1)ηT2j+Nk−1
(t− h)PDFT

2 F2D
TPη2j+Nk−1

(t− h)

−
p∑

k=2

ϵ ηT1+Nk−1
(t− h)PDFT

2 F2D
TPη1+Nk−1

(t− h)︸ ︷︷ ︸
≥0

−
q∑

k=p+1

ϵ
[
ηTNk−1(t− h)PDFT

2 F2D
TPηNk−1(t− h) + ηTNk

(t− h)PDFT
2 F2D

TPηNk
(t− h)

]
︸ ︷︷ ︸

≥0

− 2

N∑
i=2

ηTi (t)Pψi(z). (52)

Substituting (32) into (52) and using the definitions (39)–(41), we have the following two cases:
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(i) when the Laplacian matrix L has distinct eigenvalues, i.e., nk = 1 for all k ∈ {2, 3, . . . , q},

V̇1 ≤
N∑
i=2

ηTi (t)

[
ATP + PA− 2αPDDTP +

(
1

µ
+
ᾱ+ β̄

ϵ
+

2

ρ

)
PEETP + µFT

1 F1

]
ηi(t)

+

N∑
i=2

ϵ(ᾱ+ β̄)ηTi (t− h)PDFT
2 F2D

TPηi(t− h)

+ ργ20

N∑
i=2

h

∫ h

0

ηTi (t− τ)PDDTeA
TτFT

1 F1e
AτDDTPηi(t− τ)dτ ; (53)

(ii) when the Laplacian matrix L has multiple eigenvalues, i.e., nk > 1 for any k ∈ {2, 3, . . . , q},

V̇1 ≤
N∑
i=2

ηTi (t)

[
ATP + PA− 2αPDDTP +

(
1

µ
+
ᾱ+ β̄ + 1

ϵ
+

2

ρ

)
PEETP + µFT

1 F1

]
ηi(t)

+

N∑
i=2

ϵ(ᾱ+ β̄ + 1)ηTi (t− h)PDFT
2 F2D

TPηi(t− h)

+ ργ20

N∑
i=2

h

∫ h

0

ηTi (t− τ)PDDTeA
TτFT

1 F1e
AτDDTPηi(t− τ)dτ. (54)

For the delayed term shown in (53) and (54), we consider the following Krasovskii functionals for both
cases, respectively,

(i) V2 =

N∑
i=2

(ᾱ+ β̄)

∫ t

t−h

ηTi (τ)Rηi(τ)dτ,

(ii) V2 =

N∑
i=2

(ᾱ+ β̄ + 1)

∫ t

t−h

ηTi (τ)Rηi(τ)dτ.

where

R− ϵPDFT
2 F2D

TP > 0. (55)

A direct calculation gives, respectively, that

(i) V̇2 =

N∑
i=2

(ᾱ+ β̄)[ηTi (t)Rηi(t)− ηTi (t− h)Rηi(t− h)], (56)

(ii) V̇2 =

N∑
i=2

(ᾱ+ β̄ + 1)[ηTi (t)Rηi(t)− ηTi (t− h)Rηi(t− h)]. (57)

For the integral term shown in (53) or (54), we consider the following Krasovskii functional

V3 = ρhγ20

N∑
i=2

∫ h

0

∫ t

t−s

ηTi (τ)PDDTeA
TsFT

1 F1e
AsDDTPηi(τ)dτds.
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A direct calculation gives that

V̇3 = ρhγ20

N∑
i=2

∫ h

0

ηTi (t)PDDTeA
TsFT

1 F1e
AsDDTPηi(t)ds

− ρhγ20

N∑
i=2

∫ h

0

ηTi (t− s)PDDTeA
TsFT

1 F1e
AsDDTPηi(t− s)ds

≤ ργ20

N∑
i=2

ηTi (t)PDDTW−1DDTPηi(t)

− ρhγ20

N∑
i=2

∫ h

0

ηTi (t− s)PDDTeA
TsFT

1 F1e
AsDDTPηi(t− s)ds, (58)

where

W−1 ≥ h

∫ h

0

eA
TsFT

1 F1e
Asds. (59)

Let

V0 = V1 + V2 + V3.

From (53), (57) and (58), we obtain

V̇0 = V̇1 + V̇2 + V̇3 ≤
N∑
i=2

ηTi (t)Hηi(t), (60)

where

(i) H ,ATP + PA− 2αPDDTP + µFT
1 F1 + (ᾱ+ β̄)R

+

(
1

µ
+
ᾱ+ β̄

ϵ
+

2

ρ

)
PEETP + ργ20PDD

TW−1DDTP, (61)

or (ii) H ,ATP + PA− 2(α− 1)PDDTP + µFT
1 F1 + (ᾱ+ β̄ + 1)R

+

(
1

µ
+
ᾱ+ β̄ + 1

ϵ
+

2

ρ

)
PEETP + ργ20PDD

TW−1DDTP. (62)

From the analysis above, the control (11) stabilises η(t) if the conditions (55), (59) and H < 0 in (60)
are satisfied. Indeed, it is easy to see that the conditions (55) and (59) are equivalent, respectively, to the
conditions specified in (33) and (38) with Y = P−1RP−1. From (60), it can be shown that H < 0 is
equivalent to

(i) P−1AT +AP−1 − 2αDDT +

(
1

µ
+
ᾱ+ β̄

ϵ
+

2

ρ

)
EET

+ µP−1FT
1 F1P

−1 + (ᾱ+ β̄)P−1RP−1 + ργ20DD
TW−1DDT < 0 (63)

or (ii) P−1AT +AP−1 − 2(α− 1)DDT +

(
1

µ
+
ᾱ+ β̄ + 1

ϵ
+

2

ρ

)
EET

+ µP−1FT
1 F1P

−1 + (ᾱ+ β̄ + 1)P−1RP−1 + ργ20DD
TW−1DDT < 0 (64)

which is further equivalent to (34) with X = P−1. Hence, we conclude that η(t) converges to zero
asymptotically. This completes the proof.
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