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Abstract 
To overcome deficiencies with existing approaches a new cohesive zone model is introduced 

and trialled in this paper.  The focus is on rate-dependent cohesive zone models which have 

appeared in the recent literature but can be shown to suffer unrealistic behaviour.  Different 

combinations of material response are examined with rate effects appearing either in the bulk 

material or localised to the cohesive zone or in both.  A benefit of using a cohesive-zone 

approach is the ability to capture plasticity and rate effects locally.  Introduced is a 

categorisation of bulk-material responses and cohesive zone models with particular 

prominence to the role of rate and plasticity.  The shape of the traction separation curve is 

shown to have an effect and captured in this paper with application of a trapezoidal cohesive 

zone model. Rate dependency for the cohesive zone model is introduced in terms of a rate-

dependent dashpot models applied either in parallel and/or in series.  Traditionally, two 

possible methods are adopted to incorporate rate dependency, which are either via a temporal 

critical stress or a temporal critical separation. Applied singularly, tests reveal unrealistic 

crack behaviour at high loading rates.  The new rate-dependent cohesive model introduced 

here couples the temporal responses of critical stress and critical displacement and is shown 

to provide for a stable realistic solution to dynamic fracture. Dynamic trials are performed on 

a cracked specimen to demonstrate the capability of the new approach. 
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1. Introduction 
Monotonic and fatigue crack growth can be modelled by using a method called the Cohesive 

Zone Model (CZM), which has become the focus of the research in the area of fracture 

mechanics because of its ability to overcome limitations of other methods founded on linear 

elastic fracture mechanics (LEFM). The initial concept of the CZM was introduced by 

Dugdale [1] and Barenblatt [2].  They considered the fracture process zone as a small area 

ahead of the crack tip, where the normal stress perpendicular to the crack direction of travel is 

constant and equal to the yield stress according to Dugdale but decreases with deformation 

and vanishes at separation according to Barenblatt. 

The CZM is founded on a traction separation law (TSL) and according to this law, material 

damage starts when traction reaches a critical value called the critical cohesive stress .  The 

crack propagates when the displacement jump between the cracked-material surfaces reaches 

a critical value   at which point the cohesive stress becomes zero and all the cohesive 

energy  is dissipated. The CZM gained greater acceptance when Hillerborg et al. [3] 

analysed numerically, crack-growth in a brittle material using a bilinear cohesive zone model 

(BCZM) together with the finite element method (FEM).  This was followed by Needleman 

[4], who introduced the polynomial CZM and subsequently, the exponential CZM [5].  

Scheider [6] introduced the partly constant CZM, which is similar to Needleman’s 

polynomial model but with a flat region in the middle. The trapezoidal cohesive zone model 

(TCZM), which is of particular interest in this work, was introduced by Tvergaard & 

Hutchinson [7].  A bode of contention in the literature is the importance of the shape of the 

traction separation curve underpinning the cohesive zone approach. Some authors claim that 

the shape hardly influences fracture simulation results [7–10], whilst other investigations 

demonstrate that the shape does indeed matter [10–12].  This issue is revisited in this paper by 

contrasting the trapezoidal cohesive zone model (TCZM) with the bilinear cohesive zone 

model (BCZM). It is demonstrated that under the constraint of invariant toughness the shape 

of the traction-separation curve does indeed have an effect. 

It is well documented that the CZM in its standard (rate-independent) forms provide an 

effective approach for the numerical analysis of the failure for a range of materials.  This is 

essentially because of the insensitivity of the crack and certain bulk materials to strain rate 

and crack velocity.  This is not true for all materials however and rate sensitivity can manifest 

itself in a crack at rate facing greater resistance from the surrounding material along with 
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other effects such as crack branching. The standard CZM has been found to overestimate 

crack speeds in the case of dynamic fracture [13]. The predicted crack speed can reach the 

Rayleigh surface wave speed CR of the material yet experimentally the maximum crack 

growth speed is significantly lower than CR even for very brittle materials [14].  To achieve a 

better representation of the physics it is necessary to incorporate rate dependency either in the 

CZM or the bulk material or possibly both.  The literature contains examples of research with 

rate-dependent behaviour in the bulk material combined with a rate-independent traction 

separation law under monotonically applied loading. Ortiz & Pandolfi [15] for example used 

this approach and demonstrated good agreement with the experimental data and argued that 

through this approach the CZM captures the rate dependency of the failure process. Similarly, 

Song et al. [16] and Zhou et al. [17] successfully applied the approach to asphalt concrete and 

reinforced aluminium, respectively.  Zhou et al. [18] pointed out however that the success of 

the study of Ortiz & Pandolfi [15] was limited to ductile materials and was successful because 

of the intrinsic timescale associated with ductility. The approach failed to reproduce existing 

experimental crack propagation data of pre-strained brittle Polymethyl methacrylate 

(PMMA). Costanzo & Walton [19] asserted that the rate-independent CZM is unable to 

represent the experimental results from the literature, regardless of the type of the traction-

separation law and the fracture criterion used. A similar conclusion was reached by Langer & 

Lobkovsky [20] and again Costanzo & Walton [21]. The use of a rate-dependent CZM is 

therefore recommended [18–21], where the cohesive traction  is related not just to the crack 

separation , but also to separation rate , i.e. ; a relationship first pioneered by 

Glennie [22]. Glennie concluded that the reason behind the observed reduction in crack speed 

with increase in strain rate is an increase in stress levels in the vicinity of the crack tip.  

Further developments to Glennie’s work has been done by Freund et al. [23], Costanzo & 

Walton [19], [21] and Xu et al. [24].  A negative feature of these approaches however is 

unrealistically large values for the stress in the cohesive zone and associated crack arrest. A 

related but alternative approach is adopted by Valoroso et al. [13] and Zhou et al. [18] who  

employed a CZM with critical traction independent of rate but involving temporal changes in 

fracture energy along with critical separation.  It is demonstrated in this paper however that 

this approach can lead to unrealistic separation values and crack tearing ahead of the crack 

tip. 

The model proposed in this paper is designed to overcome these identified limitations since it 

is apparent from the literature that presently no optimum CZM exists that can simulate the 
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range of crack growth physics met in practice.  The CZM used as a vehicle to investigate 

these issues is introduced in Section 2 and is the trapezoidal model as this is relatively simple 

and localised plastic behaviour is readily identified.  In addition, standard rate-independent 

CZMs are considered along with different bulk-material models to highlight the limitations of 

this approach.  To achieve a proper understanding of how rate effects can be incorporated into 

the trapezoidal CZM, relatively benign dashpot models are incorporated into the CZMs in 

various configurations in Section 3.  These models provide a relatively simple vehicle for 

problem visualisation and assessment of the different types of behaviours.  Focus here is on 

Mode I fracture as this is the most prevalent failure mode in fracture mechanics.  An added 

bonus with dashpot models is that they can facilitate analytical solutions, which can then be 

explored to great depth.  In addition, combinations of bulk material responses with CZMs can 

readily be assessed.  The approach accommodates different localised responses, which is 

necessary as the behaviour in the cohesive zone can be expected to depart significantly from 

the original virgin bulk material.  Arising out of the analysis in Section 3 is a new rate-

dependent model, which is introduced in Section 4. Section 5 focuses on energy transfers 

invoked by the various dashpot models to provide greater insight into the behaviour of the 

cohesive zone approach.  Discussed in Section 6 is the implementation of the new rate-

dependent model arising out of the analysis in previous sections.  The new model is 

incorporated into the commercial software package ABAQUS (via a bespoke UMAT routine) 

and tested on a cracked specimen subject to different loading rates.  The difficulties 

experienced with existing approaches are shown to be overcome by the new approach. 

2. Standard Cohesive Zone models 
The cohesive concept is depicted in Figure 1 which depicts a cracked domain and a cohesive 

zone representing the damage ahead of the crack tip.  Also depicted is a tensile element in the 

cohesive zone whose behaviour is dictated by the trapezoidal traction separation law 

highlighted in the figure.  The trapezoidal cohesive zone model (TCZM) is adopted for this 

study because it provides reasonable flexibility arising from the extended parameter set 

{ }.  This can be used for example to arrive at the linear cohesive zone model 

(LCZM) on setting  or the bilinear cohesive zone model (BCZM) with 

 and thus facilitates investigations into the influences of different traction separation curves.   

For a pre-defined traction separation law (TSL), two cohesive parameters are usually 

sufficient to simulate the fracture process.  The most frequently used parameters in the 
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literature are the cohesive-energy or toughness  and critical cohesive traction . The 

critical separation  can be used in place of  but does suffer the disadvantage of not being 

directly measurable.  It is important to appreciate that the cohesive approach is an approach 

that represents damage as a single-tearing crack, so  is generally not physically observable.  

The area under the traction separation curve represents the total dissipated energy (per unit 

area) and typically accounts for energy dissipated due to local plasticity and the energy that is 

required to form new surface.  The ability of the cohesive zone element to represent the local 

dissipation mechanism of plasticity is a particular advantage of the approach.  It provides for 

example elastic-plastic fracture-mechanics analysis for an elastic-bulk material with the 

assumption that plasticity is localised at the crack tip.  The extent of the plasticity is 

accounted in the TCZM by the two parameters  and .  The toughness (fracture energy)  

is represented by the area under the traction separation curve and is represented 

mathematically as 

          (1) 

which for the trapezoidal traction-separation law shown in Figure 1 gives 

 

     (2) 

where toughness  is the total dissipated energy (i.e. energy dissipated per unit area),  is 

the plastic dissipated energy (accounting for local plasticity),  is the critical cohesive 

energy (accounting for surface formation),  is the cohesive traction, is the critical 

cohesive traction,  is the separation at which  first reaches ,  is the displacement at 

which damage is formally assumed to start, and finally  is the critical cohesive separation, 

at which separation occurs. 

The traction separation law depicted in Figure 1 is represented mathematically as 

       (3) 
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It is important to appreciate that although this relationship provides the cohesive-energy (per 

unit area)  

         (4) 

and the plastic-energy (per unit area)  

          (5) 

identified with particular areas under the traction separation curve (see Figure 1), this 

association is essentially a matter of choice.  The association of particular dissipation 

mechanisms with particular features of the traction separation curve is nothing more than a 

contrivance.  Note also that the region  is primarily included to avoid an abrupt change 

in behaviour which can be problematic for some numerical solvers, however, this region is 

not strictly necessary and does not affect the analysis results. If the model undergoes 

unloading before reaching the critical stress, then the unloading-path taken is identical to the 

loading path. Beyond the cohesive critical stress however damage is permanent and 

consequently the element stiffness decreases. The new stiffness value is , 

where  are the stress and separation at the onset of unloading, respectively.  

The stress at unloading and reloading is evaluated from  as depicted in Figure 1. 

The theory presented thus far takes no account of time or rate and possible mechanisms for 

introducing these aspects is discussed in the Section 3 but prior to that it is of interest to 

examine various bulk-material models incorporating a rate-independent CZM. 

2.1 Rate-Independent CZMs 

Shown in Figure 1 is a depiction of how the cohesive approach is organised and a particular 

feature worth highlighting is the material element depicted representing damaged material in 

the cohesive zone.  It is possible to represent the behaviour of this material element by a 

combination of one-dimensional springs, dashpots, sliders, and cohesive elements.  A number 

of such arrangements of interest in this study are depicted in Figure 2.  These can be 

considered in tandem with 1-D representations of bulk-material responses using similar 

elements as depicted in Figure 3.  Organising material behaviours in this manner provides 

insight and a certain degree of control and in addition allows for detailed analysis, which can 

highlight wanted and/or unwanted responses.  The cohesive elements depicted in Figure 2 are 

all derivable from the trapezoidal traction separation law (TSL) on various setting of  
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and .  It is of interest to explore and investigate the deficiencies in these simple models to 

motivate the selection of the final model.  In the discussion that follows the bulk-material 

behaviour is identified by uppercase letters {A, B, C, D} and cohesive models by the 

lowercase letters {a, b, c, …, p} (see Figure 2 and 3). For example (A-a) refers to a linear 

material with a linear cohesive element (on setting ) and (C-f) means an elastic, 

rigid-plastic bulk material and a rate-dependent trapezoidal cohesive element.  Analysis is 

restricted to subjecting a prismatic element to displacement  for a range of material models 

and cohesive element combinations. 

Although the main focus in this paper is on the inclusion of rate effects it is insightful also to 

explore quasi-static loading of rate-independent models to provide a base on which to 

construct more complex models.  The cohesive elements shown in Figure 2 (a, b, c, and d), 

are rate-independent linear, bilinear, trapezoidal (with ) and trapezoidal cohesive 

elements.  Recorded in the literature is the successful application of these elements to quasi-

static fracture processes for bulk-material Models (A and C) depicted in Figure 3. Limited 

research [15–17] has been performed on the use of rate-independent cohesive elements with 

rate-dependent bulk-material models of the type depicted in Figure 3 (B and D).  However, 

this approach has proven insufficient to represent the experimental dynamic crack results (see 

references [18–21]) and a rate-dependent cohesive model is a possible solution.   

2.1.1 Model (A-a) 
Combining elements from Figure 3(A) and 2(a) provides the simplest cohesive model 

consisting of a linear bulk-material and a linear cohesive element. The rate-independent curve 

in Figure 4(a) shows the stress displacement response. A particular feature of the model is 

that both the spring and the cohesive part experience the same stress, but strain is additive, i.e. 

 and , where  is the elastic strain (defined as ) 

and  is the strain in the cohesive part ( ), where  is the initial 

length of a piece of identified material local to and containing an element of the CZ. 

Consider an initial displacement  applied to the system and let  and , 

where E is Young’s Modulus of the bulk material.  If , then , , 

 and the material element behaves like an elastic spring.  However, if 

, then the cohesive element makes a contribution and since the total separation is additive 

(i.e. ), the stress can be represented as 
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        (6) 

which can be solved for  to give 

          (7) 

which is applicable provided , otherwise the element will fail and the material will 

separate.  

In order to better understand the crack driving force it is insightful to explore energy transfers 

that take place between the bulk material, cohesive element and the surroundings.  In this case 

 and  where  is the elastic strain energy,  is the 

elastic strain energy (per unit area) and  is elastic displacement. For  the situation is 

trivial and the total work done by the applied load (per unit area)  is equal to .  For 

 the value of  is calculated from Eq. (7) and  from Eq. (6) and the elastic strain 

energy per unit area is given by  and the energy diverted to material separation 

is 

         (8) 

where  is the cohesive energy per unit area,  is separation at the cohesive element and 

the total work done (per unit area) is .  Energy dissipation is an important 

aspect in cohesive models as is apparent in this simple case which features non-recoverable 

energy . 

2.1.2 Model (B-a) 
The addition of a dashpot to the bulk-material model above gives rise to rate-dependent 

fracture behaviour. In this model stress is identical in the spring, dashpot and cohesive part, 

but strain is additive and temporal behaviour is a feature, i.e.  and 

, where , , and  are the elastic strain (

), the strain in the dashpot at any time ( ), and the strain in the 

cohesive element ( ) that is irreversible (does not change for fixed ), 

respectively. 

If an initial instantaneous displacement  is applied to this system, then this will result in an 

initial strain  and initial stress . The precise subsequent response of the 
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system depends on the magnitude of the stress .  If , then the cohesive element is 

not involved and , where  is a material parameter akin to 

viscosity.  With a constant applied displacement  so , which can be 

solved to provide temporal stress  and in this case  is always less 

than  since . If on the other hand , then the cohesive element is involved 

with displacement divided initially between the spring and the cohesive element, i.e. 

, with the dashpot not initially involved.  The subsequent response of the model 

is one of relaxation of stress, since  and the dashpot 

displacement is obtained from , which gives

. 

The energy dissipated by the dashpot is evaluated from the rate at which work is done (per 

unit area) by the stress field, i.e. .  Substitution of  and integration 

gives 

      (9) 

The energy transfers to the system, cohesive element, dashpot and spring are readily 

determinable with knowledge of the stress and strain rates with total work done (per unit area) 

satisfying the equation .  An important aspect of the 

relaxation process for this model is that  is invariant. 

2.1.3 Model (C-a) 

Elastic-plastic fracture mechanics is of industrial importance as plasticity provides a 

mechanism for energy dissipation and consequently increased toughness.  One mechanism for 

incorporating plasticity is to assume an elastic-plastic bulk-material model like that depicted 

in Figure 3(C).  Viscous behaviour is absent in this case and localised softening is achieved 

with the cohesive element shown in Figure 2(a). The stress-displacement curve for the elastic-

plastic material, with a linear cohesive element is shown in Figure 5(a).  As with the previous 

serial models, stress is common to all elements, i.e. , and strain is 

additive, .  Note also that separation at fracture has contributions from 

bulk-material plasticity and the cohesive element, i.e. .  The behaviour of this 

system depends on the magnitude of the stress . If ,  then elastic behaviour is 

dominant and the stress will be evaluated from , in this case  with 
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 and . If however , with plastic response approximated by 

the linear expression , where for uniaxial tension effective stress  and 

effective plastic strain  (since at this instance it is assumed ), then the strain 

.  Consequently, the applied stress to the element can be evaluated as 

, which is valid when , where  is the plastic modulus. Energy 

is stored elastically but plastic dissipation takes place and is equal to 

          (10) 

where  is the extent of plastic deformation and evaluated from . 

Finally if , the total strain  with , 

 and .  From this the stress can be evaluated as  

        (11) 

where it is assumed throughout this section that  because to do otherwise would 

mean no plastic deformation is possible. Energy is stored elastically but dissipated in terms of 

plastic dissipation, as it evaluated from Eq. (10) with  replacing , and energy dissipated in 

propagating the crack as it evaluated from Eq. (8). The total work done (per unit area) is 

. The principal feature of this model is the protection offered to the 

crack through plastic-energy dissipation in the bulk material. 

3. Rate-Dependent CZMs 
An extraordinarily useful bulk-material model is that of a linear-elastic material depicted in 

Figure 3(A) and is particularly pertinent if other non-linear behaviours are localised to the 

crack tip.  It is thus of interest to explore the use of a linear-elastic bulk-material model 

combined with rate-dependent cohesive models suggested in the literature.  Combinations 

involving plastic behaviour in the bulk-material are also of some importance. 

3.1 Model (A-i) 
Model (A-i) provides rate dependency in the cohesive domain but linear-elastic behaviour in 

the bulk material.  A critical feature of this particular set-up is a critical stress that is a 

function of the separation rate.  An unwelcome aspect is the possible unboundedness of the 

critical stress.  In the parallel part of the model (see Figure 2(i)) the strain is the same and the 



Page 11 of 28 

 

stress is additive, but between this portion and the elastic bulk element the stress is identical 

and the strain is additive.  In mathematical terms , where  is the stress 

applied to the parallel system and ,  and , where 

, is the strain in the parallel system at stationary equilibrium. Observe 

that for this model the strain  of the cohesive element is now a function of time. 

As with previous models if an initial instantaneous displacement  is applied to the system, 

its response depends on the magnitude of , where  and . If , 

then  and . If on the other hand , then the elastic displacement 

 is evaluated from Eq. (7) and material separation at stationary equilibrium 

 and the stress . The material separation as a function of time is 

        (12) 

and the dissipated energy in the dashpot is obtained from 

       (13) 

where the total work done (per unit area) is .  

If the rate-dependent fracture energy is defined to be equal to the rate-independent cohesive 

energy plus the dissipated energy in the dashpot, then the previous equation becomes 

, where  is the rate-dependent fracture energy. 

Furthermore, critical traction can be viewed as a function of separation and separation rate, 

since .  A further common assumption is the linear relationship , 

where  is a parameter that is function of separation rate.  This returns an expression similar 

to that has used in reference [25], i.e. the rate-dependent stress relation can then be written as: 

         (14) 

where B is a material parameter reflecting the strength of rate dependency. 

By using a similar procedure to the one used in Model (A-a) but with  instead of  for 

the critical cohesive stress the energy transfers in the model can be evaluated. 

3.2 Model (A-e) 
An alternative possibility for including a dashpot is to use a series combination rather than a 

parallel one as in the model above.  In the case of Model (A-e) a linear rate-independent CE 
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(i.e. the TCZM with ) is selected in series with a dashpot (Figure 2(e)) to form a 

rate-dependent CE and this element is connected to a linear elastic bulk-material model 

(Figure 3(A)). The response of the rate-dependent cohesive element can be viewed as a 

function of the separation speed, since , where  is the rate-independent 

cohesive separation and  is the dashpot displacement. Setting  and on letting 

 provides 

         (15) 

which is identical to an expression applied in reference [18] and where  is a material 

parameter reflecting the strength of rate dependency. 

The stress-displacement curve of the rate-independent and the rate-dependent cohesive 

element is depicted in Figure 4(a). The energy calculation of this model is exactly the same as 

Model (A-a) apart from using  instead of  to identify the critical separation of the 

model.  An unwelcome feature of the model is the possible unboundedness of . 

3.3 Model (A-g) 
Combining the cohesive element shown in Figure 2(g) with the material element shown in 

Figure 3(A), provides a rate-dependent trapezoidal CE (with  in an elastic bulk 

material. This model is similar to Model (A-e) although an important feature of this model is 

the incorporation of plastic energy dissipation. In this CE the process zone is separated into a 

plastic part (represented by the area under the traction separation curve between  and ) 

and damage part (represented by the area under the traction separation curve between  and 

). For this model the values of  and  are selected to be zero and 0.5 , respectively. 

The critical rate-dependent separation is assumed to satisfy Eq. (15), which means that 

when the separation speed increases, the value of the dissipated energy in plastic deformation 

and in the process of generating new surfaces increases. Figure 4(b) shows the stress-

displacement curve of the rate-independent and the rate-dependent cohesive element. 

To better understand the behaviour of this model it is prudent to examine what energy 

transfers take place. Applying displacement  provides  and as with the previous 

models the system’s response depends on the magnitude of this stress. If , then 

 and .  If however , then two possibilities arise depending 

on the magnitude of .  If , with , then elastic energy 

 is constant and the plastic energy dissipated is determined by 
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.  Finally, if , then the crack propagates giving rise to an increase in 

surface energy and a decrease in the stored elastic energy and no further plastic dissipation.  

3.4 Model (C-e) 
The model arises from the combination of the cohesive element shown in Figure 2(e) with the 

material element shown in Figure 3(C) is similar to Model (C-a), but in this model the 

cohesive element is rate-dependent. In this CE the value of the critical separation  is 

assumed to be a function of the separation speed, which means that as the separation speed is 

increased, the value of the dissipated energy in the fracture process increases. Figure 5(a) 

shows the stress-displacement curve of the rate-independent and the rate-dependent cohesive 

elements. The energy calculation for this model is similar to Model (C-a) but with  from 

Eq. (15) in place of . 

3.5 Model (C-g) 
This model is similar to Model (C-e), but in this model a rate-dependent trapezoidal cohesive 

element is used as shown in Figure 2(g). In this CE the value of the critical separation  is 

calculated from Eq. (15).  As regards the traction separation law,  is assumed to be zero and 

 is set equal to .  A feature of this model is that with an increase in separation 

speed the dissipated energy increases due to plastic deformation and new surfaces formation. 

Shown in Figure 5(b) is the stress-displacement curve of the rate-independent and the rate-

dependent cohesive elements. 

4. New Rate-Dependent Cohesive Model 
To overcome limitations with existing rate-dependent cohesive model a new model is 

introduced in this study.  A systematic approach has been adopted to better understand the 

behaviour and limitations of said models and it is expected that any new model should not 

suffer unrealistic behaviour typically observed with existing approaches.  To keep things 

reasonably simple the bilinear and the trapezoidal cohesive model are incorporated into the 

new model to simulate the dynamic crack growth processes.  A feature of the new model is 

dashpots in both series and parallel to counter unrealistically high values of  and  

observed when dashpots are applied singularly. 

4.1 Model (A-m) 
The proposed new rate-dependent linear cohesive element is shown in Figure 6(m). The 

cohesive element consists of two parts one of which is a parallel combination of a rate-

independent CE in parallel with a dashpot to provide a rate-dependent critical stress. This part 
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is active when the rate-dependent cohesive stress is less than the identified stress limit  

thus providing a bounded critical stress.  The value of  is set so that the area under the 

traction curve defined by  is equal to an experimentally obtained upper limit on fracture 

energy.  Thus, for , Eq. (14) applies and the separation is held constant at the 

critical separation used for the rate-independent cohesive model. At the point when  

reaches its limit this part of the cohesive element becomes inactive and the second part 

consisting of a series dashpot and rate-independent CE is activated.  In this CE the critical 

stress is equal to  and the critical separation is again equal to that used in the rate-

independent model.  This part of the cohesive model provides a rate-dependent CE in which 

the critical stress is constant at  and a critical separation that increases with rate 

satisfying Eq. (15). The energetic behaviour of this model is similar to Model (A-a) but with 

using  instead of  for  and if , then  is used instead of 

.  To demonstrate this explicitly consider an initial displacement  applied to this system, 

and set  and .  As with previous cases the behaviour of the system 

depends greatly on the magnitude of . If  (where the inequality  

is enforced by design), then , ,  and . If on 

the other hand , then two possibilities arise, i.e.  or , 

where in the latter case critical cohesive stress is set equal to  and  is used in place 

of  for energy calculations.   

5. Energy Calculations 
In this section a numerical description of the energy transfers is presented to support the 

theoretical descriptions provided in Sections 2 to 4 and to visually highlight the important 

behaviours found with the different models considered.  Moreover, to discover the best 

formulation for a rate-dependent cohesive zone model a number of dashpot configurations 

have been considered in combination with a standard rate-independent cohesive element 

along with the energy transfers involved.  The material properties and process parameters 

selected for the study can be found in Table 1.  

Depicted in Figure 7 and 8 is an energy-displacement diagram for a linear rate-independent 

CE embedded in an elastic bulk material. From Figure 8 it is evident that the crack growth is 

driven by the stored elastic energy [26].  This is reflected by a decrease in stored elastic 

energy originating at the point where material separates along with an increase in cohesive 

energy.  The behaviour of this model when a dashpot is added to the bulk material (Model (B-
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a)) in order to represent the rate dependency is shown in Figure 9. It is clear from this figure 

that the response is one of material relaxation rather than a rate-dependent fracture model. 

This is reflected in the relaxation of stored elastic energy as opposed to driven crack 

propagation.  An alternative is a parallel combination of dashpots to produce a rate-dependent 

cohesive element as in Model (A-i).  In this case however, the dashpot is built into the 

cohesive element, which implicitly assumes rates local to the crack feature predominantly.  

The local stress is dependent on the viscosity associated with the dashpot and the rate of 

separation.  This is reflected in the value of the parameter B in Eq. (14), which represents the 

rate dependency of the local damaged material.  A particular feature of this model is a critical 

stress which is not temporally invariant and increases with the separation speed, which could 

lead to unrealistic crack arrest.  The behaviour of this model is shown in Figure 10, where it 

can be deduced from the rise in energy that the critical stress is increasing with rate.  Bearing 

in mind that critical stress is the damage initiation mechanism in the cohesive model an 

unrealistically high value can have negative connotations.  With this model the critical stress 

can reach levels significantly higher than the yield stress of the bulk material leading to both 

crack arrest and unrealistic levels of plastic deformation in any finite element model.   

To avoid the possibility of a high critical stress a localised linear dashpot arrangement is an 

obvious possibility. Model (A-e) is one possibility consisting of a dashpot connected in series 

with a standard cohesive element, which leads to critical separation being a function to the 

separation rate of the form of Eq. (15).   Although it is claimed in reference [18] that the 

model can provide more accurate results, it is demonstrated in Section 6 that the model has 

unrealistic behaviour at high strain rates. Figure 11 shows the energy curves for Model (A-e), 

where it is apparent that the value of the critical separation is increasing with separation rate 

leading to high values at very high rates.   

It is evident that a new model is necessary to overcome the limitations of both of the previous 

models. The proposed models considered here for localised rate-sensitive behaviour combines 

the elastic-bulk material element shown in Figure 3(A) with one of the rate-dependent 

cohesive elements shown in Figure 6.  

A concern however is the effect of plasticity both locally and in the bulk material and 

therefore it is of interest also to examine models involving the bulk-material model depicted 

in Figure 3(C).  There are numerous approaches for simulating the fracture process in an 

elastic-plastic material. An example is an elastic-bulk material and plasticity captured locally 
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in the cohesive element as in Model (A-g) by using the trapezoidal model. This trapezoidal 

model could be rate-independent or rate-dependent depending on the type of problem. The 

energy-displacement curve for this model is shown in Figure 12.  Alternatively, the problem 

can be simulated by using the bilinear rate-dependent or rate-independent cohesive model 

with an elastic-plastic behaviour in the bulk material as in Models (C-a) and (C-e), which 

provide the results shown in Figure 13 & 14, respectively. Contrasting the results of Model 

(A-g) (Figure 12) with the result of Model (C-e) (Figure 14) highlights certain distinctive 

similarities.  The advantage of analysis with plasticity captured locally in a CZM is a much 

reduced analysis cost. However, accuracy is an issue and the benefit of investigating the 

effect of the TSL and the choice of the TCZM is manifest.  In the case of large-plastic 

deformation taking place in the bulk material, then the advantages of localised plastic analysis 

are diminished.  However, with a view that plastic behaviour in the damaged zone is different 

from the virgin material then an appropriate cohesive model could be used to improve 

accuracy.  A model of this type is Model (C-g) and the associated energy-displacement curve 

is depicted in Figure 15. 

The energy-displacement plots for the new rate-dependent cohesive element can be found in 

Figure 16.  Contrasting the results in Figure 10, 11 and 16 demonstrates how the new model 

eliminates the unrealistic behaviour in existing rate-dependent cohesive models.  To better 

demonstrate further the benefits of the new approach the three competing approaches are 

tested in fracture simulations applied to a CT specimen depicted in Figure 17 in the following 

section. 

6. Monotonic Fracture Simulation in ABAQUS 
There are two methods for identifying cohesive behaviour in the commercial finite element 

solver ABAQUS; the first method is by specifying a cohesive traction between two adjacent 

surfaces; the main advantage of this method is that ABAQUS will duplicate the nodes at the 

adjacent surfaces and connect them through cohesive forces. Hence, the thickness of the 

cohesive zone is approximately zero. The second method is by inserting cohesive elements 

along the crack path between the bulk material elements, by default the separation width of 

the cohesive element defaults as unity in ABAQUS making the strain at the cohesive element 

equal to the separation. The cohesive behaviour in the second type is defined through a 

cohesive material. This facilitates a user-defined material subroutine, which can be used to 

specify new non-standard cohesive behaviour of the type considered here. 
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The types of simulation performed in this study are shown in Table 2. Nine quasi-static 

simulations are performed on a CT specimen to check the effect of the TSL and the effect of 

plasticity. Of the nine, two make use of the BCZM and seven utilise the TCZM with 

associated responses presented in Figure 19 to 20. This is followed by an investigation into 

the behaviour and the limitations of methods (existing and new) used to capture rate-

dependent behaviour. Numerous transient-dynamic simulations have been performed (see 

Table 2) and details are provided Section 6.2.  

6.1 Plasticity Effects 
Fracture simulations of a compact tension (CT) specimen which dimensions shown in Figure 

17 have been performed in ABAQUS by using the BCZM and repeated using the TCZM; first 

with an elastic-plastic bulk material and second with an elastic-bulk material. The reason for 

using these two models is to study the effect of the TSL and to show the benefit of using a 

CZM to capture plasticity locally.  The numerical model consists of 7823 plane-strain 

elements (type CPE4R) and 100 cohesive elements (type COH2D4) [27]. A mesh sensitivity 

analysis has been performed which confirms that converged results are attained.  Involving a 

full-integration plane-strain element (CPE4) or increasing the number of elements in the bulk 

material or the cohesive zone, has little impact on the simulation results presented. The 

material properties for the bulk material in the numerical simulations are 

 with cohesive parameters shown in Table 3. 

Shown in Figure 18 & 19 are the plots relating load to load-line displacement (i.e. the 

reaction force as a function of the applied displacement measured at the loading point 

represented by the two circular holes shown in Figure 17) for the first two cohesive parameter 

sets contained in Table 3.  It is clear from these plots that the shape of the traction separation 

curve has a noticeable effect on the load-line curves. This emphasises the importance and 

influence of the type of TSL and associated cohesive parameters on responses measured 

remotely from the cohesive zone. The results obtained are for the same specimen using either 

the BCZM or the TCZM with invariant fracture energy and either critical traction fixed or 

critical separation fixed.  This result is in agreement with the results obtained from many 

other authors [10]–[12]. Although the results confirm that the TSL can influence fracture 

behaviour the extent of this influence depends on the geometry and material of the test 

specimen.  If the specimen has high stiffness, then greater sensitivity to the shape of the TSL 

can be anticipated [10].  This point is made explicit in Figure 20, where load-line 

displacement curves can be found for fracture simulations by using the cohesive parameter set 
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number 3 and 4 (see Table 3.) contrasting TSLs in an elastic-plastic bulk material against a 

purely elastic bulk material.  From these curves, it is clear that the TCZM displays a clear 

elastic-plastic response making it more appropriate than the BCZM for simulating fracture for 

an elastic-plastic bulk material yet adopting only an elastic material for the analysis.  It is 

clear from Figure 20 that the TCZM gives a wide range of responses depending on the 

cohesive parameters used.  

6.2 Strain Rate Effect 
In this section the rate-dependent CZM is used to simulate the fracture behaviour of a CT 

specimen subjected to different applied loading speeds. For each loading speed a number of 

simulations are performed which are: (i) rate-independent BCZM and TCZM; (ii) stress rate-

dependent BCZM and TCZM (i.e. critical stress is function of separation rate), (iii) separation 

rate-dependent BCZM (i.e. critical separation is function of separation rate) and finally; (iv) 

the new rate-dependent BCZM and TCZM (i.e. the new approach proposed in this study). To 

enable crack length to be defined, the crack tip is identified at a position where separation 

equals the critical cohesive separation.  Shown in Figure 21 to 24 are plots revealing the 

temporal response of crack length for the existing rate-dependent approaches with the BCZM 

at four loading speeds i.e. 0.1, 1.0, 10 and 100 m/s, respectively. At the lowest rate it is 

apparent on examination of Figure 21 that there is little difference between the rate-

independent and rate-dependent models. Increasing the loading rate however reveals a 

decreasing rate of crack growth (see Figure 22 to 24). Examination of Figure 23 and 24 at 

respective loading speeds of 10 m/s and 100 m/s reveals unexpected and somewhat unrealistic 

behaviour with crack initiating not at the crack tip but at a point inside the specimen and 

subsequently propagating in two directions (see Figure 25 & 26).  This behaviour is as a 

consequence of the strain rate at elements in the location of the crack tip being much higher 

than elsewhere and consequently giving rise to a very high critical separation. A feature of the 

highest loading rate of 100 m/s, for the separation rate-dependent CZM is a delay in the 

initiation of the crack subsequently followed by rapid growth (see Figure 24). This behaviour 

can be observed in brittle materials such as Polymethyl methacrylate; see reference [18] for 

example. However both existing rate models lead to unrealistic crack arrest at high loading 

rates and the separation rate-dependent model suffers greatest in this regard.  

A feature of the new rate model described in Section 5 is a bounded critical stress which if 

correctly set should prevent unrealistic crack arrest (in this study this value was set to 4 times 

the yield stress).  Moreover, following the reaching of this upper bound any further increase 
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in fracture energy is as a consequence of increases in critical separation. The behaviour of the 

new rate model is outlined schematically in Figure 27.  Although there is insufficient 

experimental data in the literature to allow a direct comparison there is however evidence for 

an increase in the fracture energy with rate; see for example the experimentally-obtained 

curve for Gic from reference [28] and reproduced in Figure 28.  It is evident that fracture 

energy does not increase without bound which is an unrealistic feature of existing models. 

The upper limit for fracture energy can be determined experimentally but in the absence of 

this data a limit of  times the rate-independent fracture energy is applied. The results 

obtained from the simulation of the fracture process for the CT specimen depicted in Figure 

17 with the new model in comparison with existing models are shown in Figure 29 and 30.  It 

is evident from these figures that the new model provides results close to the results obtained 

with the stress rate-dependent model but without a high critical-stress value.  The critical 

stress at the first element in the stress rate-dependent model reaches 2600 MPa at a 10 m/s 

loading speed as shown in Figure 31 and 3000 MPa at 100 m/s as shown in Figure 32, These 

values are incredibly high and provides unrealistic responses. This unrealistic behaviour is 

eliminated by the new model as shown in Figure 33. The result of the simulation using the 

TCZM is different from the BCZM and provides further evidence that the type of TSL has an 

effect (see Figure 29 & 30). Note that the same fracture energy and critical stress were used in 

the simulation. 

For all the rate-dependent models the rate dependency is a function of the rate of separation 

and a constant parameter (B) (and the parameter B1 for the new model only) and affects the 

strength of rate dependency in the material. In practice, these two parameters would be 

determined by curve fitting experimentally-obtained results.  Figure 34 shows the effect of 

the parameter B on the crack growth speed for the stress rate-dependent and the new rate-

dependent model for both BCZM and TCZM, since with increasing its value the crack growth 

speed is decreasing. The value of the parameter B1 is observed to have a minor effect on the 

crack growth speed for reasonable values of .  Investigations for B1 equated to any one 

of the values {0.126, 0.166, 0.206, 0.246} reveals little effect at loading speeds of 10 m/s and 

100 m/s. This is not too unexpected since increasing the value of  for an invariant 

fracture energy has the effect of diminishing the influence of . A parametric study has 

been carried out to check the sensitivity of the model to small changes in material properties, 

and the upper bound on fracture energy, i.e. . A range of values between 190 to 

200GPa for elastic modulus and 0.29 to 0.33 for the Poisson’s ratio has negligible impact on 
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the simulation results.  Although a value for  can be obtained experimentally and used 

to set , it is of interest to explore the decoupling of this relationship. The response 

obtained for the situation where  is relatively high compared to the value obtained from 

 is shown in Figure 35. In this case the model reduces to the behaviour observed in a 

rate-independent cohesive model with  set by  and rate-independent δc applied to 

all the cohesive elements.  Shown in Figure 36 however is the behaviour, where  is 

much less than the value obtained from , which is similar to that observed with the 

displacement rate-dependent cohesive model.  It is evident that coupling  to  

provides for a stable cohesive zone model. 

7. Conclusion 
 The type of TSL can have a measurable effect on the results of any fracture 

simulation.  

 The TCZM is able to capture the effects of plasticity local to the CZ and can be used 

with an elastic or elastic-plastic bulk material. 

 Existing methods employed to account for rate-sensitivity in fracture processes have 

been shown to suffer from certain deficiencies including unrepresentative values of 

critical stress and separation. 

 To overcome these limitations a new rate-dependent CZM has been trialled, which 

connects the rate-dependent fracture energy to critical stress and separation in a 

manner that ensures critical cohesive stress remains bounded and critical separation 

attains lower values than with competing methods. 

 The new rate-dependent CZM model has been shown to provide acceptable results 

and provides for enhanced stability when contrasted against competing 

methodologies. 

 The rate-dependent behaviour of the new model is dependent on two parameters {B, 

B1}.  It was found that an increase in B decreases crack-growth speed with B1 having 

only a minor influence on crack growth behaviour for typical values of bounds on 

critical cohesive stress. 
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Appendix 1: Energy Transfers in Model (B-a) 
This section focuses on a particular 1-D model to provide an illustration of how energy flows 

can be determined analytically under the assumption of small deformation theory.  Consider 

then Model (B-a) being subjected to an instantaneous strain  to give 

 and , with  independent of time and .  The 

strains , , and  are the elastic strain at any time ( ), the strain in the 

dashpot at any time ( ), and the strain in the cohesive zone ( ), which 

is irreversible (does not change for fixed ). The behaviour of this system depends on the 

relative magnitudes of  and . 
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If , then  and  with  

and .  With  stress is obtained on integration of  

to give  from which dashpot displacement can be derived using the 

relationship , which integrates to give .   

It is now a relatively simple matter to determine the energy stored elastically (area A1 in 

figure A-1) which is  and the energy dissipated by the dashpot which is 

obtained from the change in the work done at the dashpot , integration of 

 and divided by the area the dissipated energy at the dashpot per unit area is 

evaluated. 

              (A1) 

                     (A2) 

Things are slightly more involved if  as the cohesive element must be accounted for 

and it is assumed to respond instantaneously with , where  is the bulk 

material response and  arises from the cohesive element. Since stress is common to both the 

elastic bulk material and the cohesive element the equality  

applies, which solves to give 

                    (A3) 

which is applicable for  as otherwise the element will fail and the material will 

separate. With  known the subsequent behaviour follows with  

and  along with energies associated with each element, i.e. 

                    (A4) 

                  (A5) 

which provides 
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                   (A6) 

with  obtained from Eq (A1). 
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List of symbols  

Γo  Critical cohesive energy 

                 Rate-dependent cohesive energy 

σc  Critical cohesive stress 

δc  Critical separation 

δo  Instantaneous applied displacement  

δ1  Shape parameter for the linear and trapezoidal model respectively 

δ2  Second shape parameter of the trapezoidal model 

  Plastic separation 

  Elastic separation 

  Final separation at fracture  

  Separation in the cohesive element  

  Separation rate 

  Separation rate at the dashpot 

σ  Cohesive stress 

  Yield stress 

ϑ  Poisson’s ratio 

  Stress at the dashpot 

E  Elastic modulus 

  Plastic modulus  

CR   Rayleigh surface wave speed  

   Total dissipated energy per unit area 

  Dissipated plastic energy in the cohesive zone per unit area 
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  Rate-dependent plastic dissipated energy in the cohesive zone per unit area 

   Strain at the cohesive zone    

  Elastic strain 

  Elastic strain energy per unit area 

  Dissipated energy per unit area due to the fracture process  

  Dissipated energy per unit area due to plastic deformation in the bulk material 

  Total work done per unit area by the external load  

  Dissipated energy per unit area in the dashpot  

  Material viscosity 

  Parameter representing the rate dependency of the cohesive material 

B1  Parameter representing the rate dependency of the cohesive material 

  Rate-dependent critical stress 

  Rate-dependent critical separation 

  The separation at the onset of unloading 

  The stress at the onset of unloading 

  Upper limit on the rate-dependent critical stress 

   Upper limit on the rate-dependent fracture energy  

Abbreviation  

CZ        Cohesive zone 

CE        Cohesive element 

CZM        Cohesive zone model 

BCZM        Bilinear cohesive zone model 

TCZM        Trapezoidal cohesive zone model 

LEFM        Linear cohesive zone model 
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TSL        Traction separation law 

QS-B        Quasi-static simulation using the rate-independent bilinear model 

QS-T         Quasi-static simulation using the rate-independent trapezoidal model 

DYN- -B    Dynamic simulation using the stress rate-dependent bilinear model 

DYN- -T    Dynamic simulation using the stress rate-dependent trapezoidal model 

DYN- -B    Dynamic simulation using the separation rate-dependent bilinear model 

DYN- -B    Dynamic simulation using the new rate-dependent bilinear model 

DYN- -T    Dynamic simulation using the new rate-dependent trapezoidal model 

 

 

 
 
 
 
 
 

 



Table 1. material properties and process parameters 

 Length  
mm 

  
MPa 

 
mm 

  
MPa 

 
N/mm 

E 
MPa 

 
MPa 

 
mm 

10 340 0.17647 300 30 72000 1390 0 
 

mm 
Viscosity ( ) 

Pa.s 
  

s/m 
 

s/m 
separation rate (  

m/s 
0.5  10 30 60 0.1 0.02 5 10 20 

Table(s)



Table 2. Type of simulations applied to a standard CT specimen 

 

Model Analysis type Bulk material 
response 

Cohesive Zone 
response 

TSL Number of 
simulations 

QS-B Quasi-static Rate-independent Standard BCZM 2 
QS-T Quasi-static Rate-independent Standard TCZM 7 
DYN -B Transient dynamic Rate-independent Standard BCZM 4 
DYN -T Transient dynamic Rate-independent Standard TCZM 4 
DYN- -B Transient dynamic Rate-independent Rate-dependent BCZM 7 
DYN- -T Transient dynamic Rate-independent Rate-dependent TCZM 5 
DYN- -B Transient dynamic Rate-independent Rate-dependent BCZM 4 
DYN- -B Transient dynamic Rate-independent Rate-dependent BCZM 5 
DYN- -T Transient dynamic Rate-independent Rate-dependent TCZM 5 

Table(s)



Table 3. Cohesive model parameters 

Cohesive 
parameter set 

Cohesive 
law  

Ecoh
 

(GPa) 
 

(Pa) 
 

(m)  
 

(m) 

1 
BCZM 189000 15000 6.0e8 0.00063 0.00004 0.00004 
TCZM 189000 15000 6.0e8 0.00038286 0.00004 0.000287145 

2 
BCZM 189000 15000 6.0e8 0.00063 0.00004 0.00004 
TCZM 189000 15000 3.5e8 0.00063 0.000023 0.0004725 

3 
BCZM 189000 15000 6.0e8 0.00063 0.00004 0.00004 
TCZM 246500 15000 4.6e8 0.00063 0.0000307 0.0004725 

4 TCZM 222000 15000 3.1e8 0.00083 0.0000207 0.0006225 
 

Table(s)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Mode I Cohesive Zone model Figure 1. Mode I Cohesive Zone model

Figure(s)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 2. Elementary Material Elements in the Cohesive-Zone 

Figure(s)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Elementary Bulk-Material Models 

Figure(s)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 4. Stress-displacement curve for the cohesive element in an elastic bulk material 

Figure(s)



 

Figure 5. Stress-displacement curve for the cohesive element in an elastic-plastic bulk material 

Figure(s)



 

Figure 6. New Elementary Rate-dependent Material Element in the Cohesive Zone 

Figure(s)



 

Figure 7. Model (A-a) energy-displacement curve of a 
rate-independent CE in an elastic bulk material 

Figure(s)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Model (A-a) normalized elastic and fracture 
energy diagram 

Figure(s)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Model (B-a) material relaxation response. 

Figure(s)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.The increase in the value of energy at critical stress due to 
unrealistic increasing critical cohesive stress in Model (A-i) 

Figure(s)



 

Figure 11. The unrealistic increasing critical cohesive 
separation in Model (A-e) 

Figure(s)



 

Figure 12. Model (A-g) plasticity capture locally by using the 
trapezoidal rate-dependent CE  

Figure(s)



 

Figure 13. Model (C-a) energy-displacement curve of a rate-
independent CE in an elastic-plastic bulk material 

Figure(s)



 

Figure 14. Model (C-e) linear rate-dependent CE in an elastic-
plastic material 
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Figure 15. Model (C-g) trapezoidal rate-dependent CE in an 
elastic-plastic material 
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Figure 16. Model (C-m) effect of stress limit in the new linear rate-
dependent CE in an elastic bulk material 

Figure(s)



 

 

 

 

Figure 17. CT specimen dimensions 
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Figure 18. Load versus load line displacement for the BCZM & TCZM with equal fracture energy 
(189 N/mm) and critical stress 

Figure(s)



 

Figure 19. Load versus load line displacement for the BCZM & TCZM with equal critical 
fracture energy (189 N/mm) and critical separation 
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Figure 20. Load versus load-line displacement for the BCZM & TCZM 
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Figure 21. Crack length-time curve for the 0.1 m/s loading speed under displacement 
control 
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Figure 22. Crack length-time curve for the 1 m/s loading speed under 
displacement control 
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Figure 23. Crack length-time curve for the 10 m/s loading speed under 
displacement control 

Figure(s)



 

Figure 24. Crack length-time curve for the 100 m/s loading speed under 
displacement control 
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Figure 25. The crack initiation point of the separation rate-dependent model at 
10 m/s loading speed 
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Figure 26. The crack initiation point of the separation rate-dependent model at 100 
m/s loading speed 
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Figure 27. Stress-displacement curve of the new rate-dependent model 
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Figure 28. Experimental energy-strain rate curve[28] 
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Figure 29. Crack length as a function of the time at (B=0.7 & B1=0.126) at 10m/s loading 
speed 
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Figure 30. crack length as a function of the time at (B=0.7 & B1=0.126) at 100m/s loading 
speed 
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Figure 31. The maximum stress reached by using the stress rate-dependent model 
under displacement control at 10 m/s loading speed 
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Figure 32. The maximum stress reached by using the stress rate-dependent model 
under displacement control at 100 m/s loading speed 
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Figure 33. The maximum stress and the point of crack initiation by using the new rate-
dependent model under displacement control at 100 m/s loading speed 
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Figure 34. Crack speed as a function of the parameter B at 10m/s loading speed 
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Figure 35. The effect of applying a high value for  compared with the value evaluated from   

Figure(s)



 

Figure 36. The effect of applying a value for  close to the value evaluated from  

Figure(s)



 

Figure A-1 Elastic and fracture energy for an elastic material  

Figure(s)


