

The University of Manchester Research

Structural and Optical Changes in Keratoconus

Document Version Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

O'Donnell, C., Jinabhai, A., Radhakrishnan, H., Simo-Mannion, L., Tromans, C., & Brahma, A. (2014). *Structural and Optical Changes in Keratoconus*. Paper presented at The Manchester Royal Eye Hospital Bicentenary Conference 2014, Manchester, United Kingdom.

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Structural & Optical Changes in Keratoconus

Clare O'Donnell

Amit Jinabhai, Hema Radhakrishnan, Luisa Simo-Mannion, Cindy Tromans, Arun Brahma

The University of Manchester, Manchester Royal Eye Hospital

Corneal nerves

- Histological studies of KC corneas revealed abnormalities
 - In nerve architecture, especially at the cone apex
 - e.g. thickening, tortuosity, loss of radial orientation (AI-Aqaba 2011)
 - But tend to report only on advanced KC and subject to artefacts
- In vivo CM studies have also shown alterations to NFs in KC
 - Unclear at what stage these changes occur or how they relate to reported changes in corneal sensitivity

Aim

To investigate corneal nerve structure and sensitivity in

keratoconus

ELSEVIER	Available online at www.sciencedirect.com science dipirect* Contact Lens & Anterior Eye 28 (2005) 185–192	Contact Lens & Anterior Eye www.elsevier.com/locate/clae			
An evaluation of corneal nerve morphology and function in moderate keratoconus					
Luisa Simo Mannion ^a ,*, Cindy Tromans ^b , Clare O'Donnell ^a ^a Optometry and Neuroscience, Moffat Building, The University of Manchester, PO Box 88, Manchester, M60 1QD, UK ^b Manchester Royal Eye Hospital, Manchester, UK					

Methods

- 44 KC and 44 control subjects recruited

- 8 mild (k≤45D), 26 moderate (45<k≤52D), 10 severe (k>52D)
- Mean age 32 ± 9 years (both groups)
- Also matched for gender, iris colour, mode of correction
- Morphology of stromal and sub-basal nerves
 - ConfoScan 3 confocal microscope, image analysis software
 - Density (length fibres/total area) and thickness (mean of 10)
- Corneal sensitivity assessed using Cochet-Bonnet
 - Centrally and at 4 peripheral locations (1mm from limbus)

Stromal nerves

	KC	CTRL	p-value
Density (µm/mm²)	429.5 ± 108.0	390.4 ± 100.4	0.106
Thickness (µm)	8.62 ± 4.53	5.25 ± 1.92	0.009*

* Statistically significant difference

Two sample t-test

Sub-basal nerves

	KC	CTRL	p-value
Density (µm/mm²)	1094.9 ± 459.6	1846.2 ± 527.5	<0.001*
Thickness (µm)	1.77 ± 0.06	1.82 ± 0.05	0.29

* Statistically significant difference

 NF density decreased as cornea steepened (R²=0.2, p=0.006) Two sample t-test

Corneal sensitivity

	Central	Superior	Inferior	Nasal	Temp
KC (g/mm²)	1.11±0.05	1.50±0.16	1.06±0.02	1.02±0.07	1.02±0.11
CTRL (g/mm²)	1.01±0.33	1.31±0.07	1.11±0.05	1.04±0.16	1.04±0.02
p-value	0.005*	0.976	0.582	0.942	0.652

* Statistically significant difference

- Significant reduction in KC at central location only
- Sensitivity reduced as cornea steepened (R_s=0.44, p=0.003)

Discussion

- Confirm alterations to architecture and function
 - Thickening of stromal NFs seems to occur early
 - Reduced sub-basal nerve density and reduced sensitivity more apparent as disease progresses

KC

CTRL (Bron 1984; Kinoshita et al., 1999)

Discussion

- Possible causes of stromal nerve thickening
 - Over-expression of nerve growth factor/proliferation
 Schwaan cells
 - Accumulation of secreted substances due to altered metabolism
- Unclear if NF alterations *causative* or secondary
 - Refinement of *in vivo* techniques should improve understanding of nerve morphology

Especially with full-field image capture and analysis

Patel and McGhee (2006)

Corneal thinning

- Aetiology of KC not fully understood, caused by stretching or by loss of tissue?
 - Is protrusion secondary to stromal thinning?
 - Or does reduced strength result in thinning and protrusion
- Loss of tissue might be detected by analysing corneal volume in KC corneas
 - Advances in technology enable assessment of volume in-vivo

Visual performance with aberration controlling soft contact lenses in keratoconus

Introduction

- Irregular corneas in keratoconus lead large magnitudes of irregular astigmatism and ocular aberrations (particularly vertical coma).
- RGP contact lenses mask most of the induced anterior corneal surface aberrations.

Eye with higher order aberrations

Introduction

 Soft contact lenses offer certain advantages over RGPs and can mask irregular corneal astigmatism to a limited extent.

 Technology available to make *customised* aberrationcontrolling soft contact lenses (ACCLs) to reduce ocular aberrations in keratoconic patients.

Aim

- To investigate how toric soft CLs and customised ACCLs alter higher order aberrations and visual performance in keratoconus compared to patient's habitual correction.
- Customised ACCLs were designed either to fully (100%) or partially (50%) correct the third order coma aberrations.

 OPENTIALMIC & PHYSIOLOGICAL OPTICS

 With JOURNAL OF THE COLLEGE OF OPTOMETRISTS

 Dathaimic & Physiological Optics ESN 0278-5408

 Optical quality and visual performance with customised soft contact lenses for keratoconus

 Amit Jinabhai¹, Clare O'Donnell^{1,2,3}, Cindy Tromans^{1,4} and Hema Radhakrishnan¹

 Yacityof Life Sciences, The University of Manchester, Manchester, UK ⁴Opsagra Bye Sciences, Optical, Manchester, UK ⁴School of Life and Head Science Centre, Central Manchester University Hospitak

 Med Foundation Truzt, Manchester, UK

Citation information: Inabhai A, O'Donnell C, Tromans C, Radhakishnan H. Optical quality and visual performance with customized soft contact lenses for iseratecorus. Ophthalmic Physici Opt 2014. doi: 10.1111/cpo.12133

Methods

- 22 keratoconic participants took part in the study
 - 14 moderate, 7 severe, 1 mild KC
- Data collected from one eye for each patient.
- 16 participants were habitual RGP wearers and 6 were spectacle wearers.
- Mean age 34 years (range 19-55 yrs).
- High contrast (95%) and low contrast (15%) visual acuities were measured with Bailey-Lovie logMAR charts.
- Ocular aberrations were measured with a Shack-Hartmann aberrometer (IRX3, Imagine Eyes, Paris)

Methods

Spectacle-wearers (n = 6)

RGP-wearers	(n = 16)
-------------	----------

	Visual performance (HCA, LC	e assessment w <i>ith RGP lenses</i> A & SKILL card score)		
DAV1.	Higher-order aberration me	easurement with RGP lenses (IRX-3)	Visual performance assessment with spectacles (HCA, LCA & SKILL card score)	
Baseline	RGP lens fitting as	sessment and lens removal	↓	
data	Corneal slit-lamp	examination without lenses	Corneal silt-lamp examination	Initial
	Higher-order aberration m	easurement without lenses (IRX-3)	Higher-order aberrations measured without spectacles (IRX-3) trial lens
	Corneal topography eval	uation without lenses (Pentacam)	Corneal topography evaluation (Pentacam)	appointment
	(RGP lenses left out for 1	week to act as a washout period)	Plano soft trial long fitting approximant (8, OP)	
DAY 7:	Corneal slit-lamp exa	amination (without RGP lenses)		
Initial	Plano soft trial le	ens fitting assessment (& OR)	(Sphero-cylindrical soft lenses ordered)	
fitting	RGP lens w	ear resumed as normal		
appointment	(Sphero-cylind	rical soft lenses ordered)		
	(R	GPlens patients: lenses left out overnight be	fore fitting the sphero-cylindrical soft lenses)	
		Corneal slit-lamp	examination	
	a , 1, 1	Sohero-cylindrical soft lens	itting assessment (& OR)	
	Standard soft lens	↓		
	collection	Visual performan	ce assessment	
	appointment		ILL card score)	
		Higher-order aberratio	ons measured with	
		the sphero-cylindrical	soft lenses (IRX-3)	
		Residual aberration	s used to order	
		customised Coma c	prrection lenses	
	(R0	GPIens patients: lenses left out overnight be	fore fitting the 1st Coma correction lens)	
		Corneal slit-lam	p examination	
		1st Coma correction lens fi	tting assessment (& OR)	
		Visual performance with 1s	t Coma correction lens	
	Customised lenses	(HCA, LCA & SKIL	L card score)	
	collection	* Higher-order aberratio	ns measured with	
	appointment	the1st Coma correct	tion lens (IRX-3)	OR = over-refraction
		+		HCA = high-contrast visual acuity LCA = low-contrast visual acuity
		1st Coma correct	ion lens removed	KILL - Craith Kattlewall Institute

& procedures repeated for the 2nd Comacorrection lens

SKILL = Smith-Kettlewell Institute Low Luminance card

Patient ref.	Flat K (D)	Steep K (D)	Central corneal thickness (microns)	CLEK severity grade	Vogt's striae	Apical scarring	RGP lens fitting grade
1	49.8	56.0	455	Severe	Present	Absent	DAT
2	45.6	50.0	451	Moderate	Absent	Absent	AT
3	42.8	45.1	440	Moderate	Absent	Absent	AT
4	45.6	48.4	434	Moderate	Absent	Absent	AC
5	58.2	61.8	324	Severe	Present	Present	AT
6	45.6	47.3	505	Moderate	Absent	Absent	AT
7	47.8	52.0	419	Moderate	Present	Present	DAT
8	52.2	55.9	503	Severe	Present	Present	DAT
9	44.2	48.0	453	Moderate	Present	Absent	DAT
10	44.1	49.2	461	Moderate	Absent	Absent	DAT
11	43.9	49.4	386	Moderate	Present	Present	DAT
12	48.6	51.9	415	Moderate	Present	Present	DAT
13	43.4	47.3	484	Moderate	Present	Absent	AT
14	51.4	56.4	416	Severe	Present	Present	DAT
15	49.1	52.9	435	Severe	Present	Present	DAT
16	47.7	53.2	420	Severe	Present	Absent	DAT
17	43.9	46.9	422	Moderate	Present	Absent	-
18	50.7	53.0	494	Severe	Present	Present	-
19	44.9	48.0	477	Moderate	Absent	Absent	-
20	43.2	46.7	462	Moderate	Present	Absent	-
21	45.7	49.3	432	Moderate	Absent	Absent	-
22	42.7	43.4	514	Mild	Absent	Absent	-

- Compared to when uncorrected and compared to all three soft study lenses, RGP lenses significantly reduced 2nd-order cylinder RMS.
- Compared to when uncorrected, there was significantly lower coma RMS with RGP lenses (p=0.001), 100% lenses (p=0.001) and 50% lenses (p=0.0002).

RGP lens-wearers

[^] Indicates a significant difference (WSRT, p < 0.005)

 $^{p} = 0.002$

Spectacle-wearers

*Indicates a significant difference (RM-ANOVA, p <0.0083)

* Indicates a significant difference (RM-ANOVA (p < 0.0083)

Summary and discussion

 As expected, RGP lenses provided better visual performances than conventional toric SCLs for keratoconic patients.

 RGP lenses on eye also showed some residual aberrations, which are likely to be due to topographical alterations at the posterior corneal surface.

Summary and discussion

- The 100% lenses, on average, overcorrected vertical coma, resulting in positive residual aberration.
- The 50% lenses, on average, provided either negative residual vertical coma aberration (contact lens group) or values close to zero (spectacle group).
- Wavefront sensor errors occur through overlapping spot images, spot image crossover or missing spots and scatter.
- With customised ACCLs, superfluous wavefront aberrations can become induced through small lens translations and rotations upon blinking.

Discussion

- LCVA scores measured with toric SCLs or the 50% AC lenses were best for low levels of spherical aberration (of around zero).
- Visual neural system may compensate for long-term exposure to an asymmetrically blurred retinal image in keratoconic patients.
- Customised lenses should be made with bespoke optic zone diameters to match with the pupil size of the patient.

Conclusions

- The two customised ACCLs reduced uncorrected coma RMS and HORMS error in both groups.
- The patient's habitual RGP lenses gave better visual performances than with either ACCL in the contact lens group.
 - Limiting factors
 - Repeatability and accuracy of aberration measurements
 - Lens stability

OPO OPHTHALMIC & PHYSIOLOGICAL OPTICS THE JOURNAL OF THE COLLEGE OF OPTOMETRISTS

Ophthalmic & Physiological Optics ESN 0275-5408

Optical quality and visual performance with customised soft contact lenses for keratoconus

Amit Jinabhai¹, Clare O'Donnell^{1,2,3}, Cindy Tromans^{1,4} and Hema Radhakrishnan¹

*Paculty of Life Sciences, The University of Manchester, Manchester, UK *Optagra Eye Sciences, Optagra Eye Hospital, Manchester, UK *School of Life and Health Sciences, Aston University, Birmingham, UK and *Manchest er Academic Health Science Centre, Central Manchester University Hospitals NeS Foundation Trust, Manchester, UK

Citation information: Inabhai A, O'Donnell C, Tromans C, Radhakishnan H. Optical quality and visual performance with customized soft contact lenses for keratoconus. Ophthalmi: Physiol Opt 2014. doi: 10.1111/lopo.12133

Recent collaborations

Corneal collagen cross-linking – *In-vivo* and *in-vitro*

Cornea

Biomechanical Changes After Repeated Collagen Cross-Linking on Human Corneas Assessed In vitro Using Scanning Acoustic Microscopy

Ithar M. Beshtawi,¹ Riaz Akhtar,² M. Chantal Hillarby,³ Clare O'Donnell,⁴ Xuegen Zhao,⁵ Arun Brahma,⁶ Fiona Carley,⁶ Brian Derby,⁵ and Hema Radhakrishnan⁷

¹Optometry Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine ²Centre for Materials and Structures, School of Engineering, University of Liverpool, Liverpool, United Kingdom ³Stopford Building, Centre for Regenerative Medicine, Institute of Inflammation and Repair, The University of Manchester, Manchester, United Kingdom ⁴Optegra Eye Sciences, Optegra Manchester Eye Hospital, Didsbury, Manchester, United Kingdom ⁵Manchester Materials Science Centre, School of Materials, The University of Manchester, Manchester, United Kingdom ⁶Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester

⁷Carys Bannister Building, Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom

Manchester Corneal Collagen Cross-Linking Group

Dr Ithar Beshtawi: Today 16.00 Cornea II Session

Acknowledgements

<u>Collaborators</u>

- Dr Hema Radhakrishnan, Dr Luisa Simo-Mannion
- Dr Amit Jinabhai, Dr Cindy Tromans,
- Mr Arun Brahma, Prof WN Charman
- **Funding**
- Vision Centre
- College of Optometrists
- Central Manchester Hospitals Foundation Trust
- UMIP

Aim

To investigate the effect of RGP CL lens fit on ocular HOA and VA in keratcoconus

Method

- 25 year old KC patient
 - Bilateral, moderate
- RE systematically fitted with RGP CLs
 - BOZR of 7.40 mm to 8.10 mm, in 0.10 mm steps
 - Menicon-EX, same diameter
- VA with over refraction recorded – LogMAR
- IRX-3 HOA
 - 5mm pupil, up to 6th Zernike order

Wavefront aberration map	Slit-lamp appearance	RGP lens specification (in mm)	<i>Wavefront aberrations (µm)</i>
nm 90 1200 1200 1200 100 100 100 100	•	No contact lens in place VA 0.04	HORMS = +1.70 3 ^{rd-} order RMS = +1.65 Vertical coma = -1.49
100 100 30 120 150 60 150 0.85 0.75 0.85 0.75 0.05	. 0	BOZR = 7.40 VA 0.58 STEEP	HORMS = +0.35 3 rd -order RMS = +0.34 Vertical coma = +0.34
230 230 240 240 100 90° 90° 00° 105 055 100 100° 00° 00° 055 100 100° 00° 00° 055 100 100° 00° 00° 00° 100 100° 00° 00° 00° 100 100° 00° 00° 00° 100 00° 00° 00° 00° 100 00° 00° 00° 00° 100 00° 00° 00° 00° 100 00° 00° 00° 00° 100 00° 00° 00° 00° 100 00° 00° 00° 00° 100 00° 00° 00° 00° 100 00° 00° 00° 00° 100 00° 00° 00° 00° 100 00°		BOZR = 8.10 VA -0.30 FLAT	HORMS = +0.23 3 rd -order RMS = +0.23 Vertical coma = +0.21

HORMS vs. BOZR

Discussion

- As BOZR flattened from 7.4 to 8.1mm
 - HORMS reduced +0.34 μm to +0.23 μm
 - and VA improved +0.58 to -0.30 log units
- Flatter fits improved visual performance
 - Explain why patients may prefer older lenses
- Flattening and moulding effect improving profile
 - Disadvantages physiologically of this approach
 - Staining and scarring

SCL in KC

Citation information: Jinabhai A, Radhakrishnan H, Tromans C & O'Donnell C. Visual performance and optical quality with soft lenses in keratocorius patients. Ophthalmic Physiol Opt 2012, **32**, 100–116. doi: 10.1111/j.1475-1313.2011.00889.x

- If RGP lens intolerant may refit to SCL
 Expect compromise in VA
- But if we could correct HOA

 Visual performance may improve with SCL
- Technology to manufacture lenses exists
 Customised A-C soft lenses are available
- What happens when KC refitted from RGPs?
 - Is wash-out period necessary?

Aim

To assess the changes in VA, HOA and refraction after suspending RGP CLW for one week in KC patients

Methods

- 16 subjects moderate/severe KC
 - Suspended RGP CLW
- Pentacam
 - Ks and CCT
- IRX-3
- Subjective refraction
- LogMAR VA
- Performed at two visits, 7 days apart after RGP lens removal

Reductions in VA

- High (p=0.001) and low contrast (p=0.005)

- Increase in ocular aberrations
 HORMS (p=0.003)
- Corneal steepening (p=0.02)
- Reduction in CCT (p=0.01)

Conclusion

- Changes in the optical and structure
 - After suspend RGP lens wear
- Stabilisation^Dtime ^Rwitk depend on factors
 Lens fit, duration of wear, topography
- Important to consider
 - When prescribing AC-SCL