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Abstract— We demonstrate an algorithm, relevant to 
tomography sensor systems, to obtain images from the parallel 
reconstruction of essentially localized elements at different scales. 
This is achieved by combining methodology to reconstruct images 
from limited and/or truncated data, with the time-frequency 
capabilities of the Wavelet Transform. Multi-scale, as well as 
time-frequency, localization properties of the separable two-
dimensional wavelet transform are exploited as an approach for 
faster reconstruction.  The speed up is realized not only by 
reducing the computation load on a single processor, but also by 
achieving the parallel reconstruction of several tiled blocks. With 
tiled-block image reconstruction by wavelet-based, parallel 
filtered back-projection we measure more than 36 times gain in 
speed, compared to standard filtered back-projection.   
 

Index Terms— image reconstruction, computed tomography, 
data processing algorithms, parallel processing, wavelet 
transform. 

I. INTRODUCTION 
CROSS many applications, it is common to identify the 
need of information about an object, without altering its 

physical structure. Fortunately, there are numerous methods 
allowing radiation, either emitted or transmitted, to be 
employed to obtain cross-sectional images characterizing the 
inner structure of an object. The mathematical foundation 
behind such an approach was developed by Johann Radon in 
1917 [1] and several decades later, in 1972, experimentally 
implemented by Hounsfield [2] resulting in the demonstration 
of the first Computed Tomography (CT) scanner.  

The main motivation for this work was the existing body of 
knowledge and achievements on the reconstruction of 
reduced-area full-resolution images, originally encouraged by 
the radiation dose exposure reduction in medical imaging and 
where the Wavelet Transform (WT), along its different 
representations, proved to be an effective tool given its time-
frequency localization capabilities [4], [5]. Such research has 
been commonly named as Wavelet-based local reconstruction, 
and has been reported to be useful in other application areas 
such as Nano and Micro Tomography [6], [7]; Terahertz 
Tomography [8], and Dental Radiology [9]. 

Of special interest is the 2D fast wavelet transform (2D 
FWT), employed in [5] and [10]. In addition to achieving local 
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reconstruction, it allows projection data to be processed in a 
multi-resolution scheme. Such a feature proves to be of great 
benefit, when realizing its similarities with the parallel 
algorithm proposed in [11]. In that algorithm, a frequential 
decomposition of projection data is performed with the aim to 
back-project every component separately. The subsequent 
merger into a final image notably speeds up the image 
reconstruction process. 

In this work we propose an algorithm combining the 
wavelet-based reconstruction of reduced image areas [5], [10]; 
and the parallel reconstruction from frequential sub-band 
decomposition of projection data [11]. The outline of the 
paper is as follows: Section II covers the background theory 
involved in the algorithm development; tomography image 
reconstruction, the wavelet transform and the multi-resolution 
representation. Section III details the implementation of the 
algorithm. The results are shown in section IV and the 
functionality of the approach is discussed in section V.  

II. BACKGROUND 

A.  Image Reconstruction from Projection Data.  
In Tomography, as well as in other imaging techniques, the 

Radon Transform (RT) is the mathematical tool employed to 
map an unknown density distribution (object) (𝑥,) onto 
attenuation line integrals passing across it. In 2D, the 
analytical expression yielding the set of parallel line integrals 
is given by: 

𝑔 𝜃, 𝑟 =  𝑓 𝑥, 𝑦 𝛿 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃 − 𝑟 𝑑𝑥𝑑𝑦,!
!!

!
!!     (1) 

where 𝜃 is the angle between the line normal and the x-axis, 
and 𝑟 the distance from the rotation origin. Line integrals 
collected (e.g. by a detector array) at the same angle 𝜃 are 
grouped in a projection and the set of projections taken at all 
angles constitutes the sampled RT of the object. The 2D 
graphical representation of RT (the “sinogram”) is given by a 
stack of all projections ordered by angle, each projection 
contributing with a row of pixel intensities determined by the 
values of the constituent line integrals.  

An important property, utilized to solve the inverse problem 
of recovering 𝑓(𝑥,𝑦) from projection data, is given by the 
Fourier Slice theorem, stating that the values calculated by the  
Fourier transform 𝐺(𝜃,𝜔) of a projection at an angle 𝜃:  

                 ℱ1𝐷 𝑔 𝜃, 𝑟 = 𝐺 𝜃,𝜔 ,                                (2) 

populate a “diagonal slice” at the same angle 𝜃 within the 2D 
Fourier image 𝐹(𝑢,𝑣) of the object. Therefore, by taking the 
Fourier transform of the measured projection data at a 
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sufficient amount of angles to assemble a well sampled 
representation of the object’s Fourier space, the solution to the 
inverse Radon problem is reduced to taking the 2D inverse 
Fourier transform  

𝑓 𝑥, 𝑦 =  ℱ!!!! 𝐹 𝑢, 𝑣 .       (3) 

In a practical implementation, it is not realistic to obtain 
projection data that fully covers the Fourier space. Therefore, 
the Filtered Back-projection (FBP) method is used to account 
for adjustment of the integration limits in the Fourier 
inversion, along with a change from Cartesian to polar 
coordinates. The FBP is mathematically defined by  

𝑓 𝑥, 𝑦 = 𝐺 𝜃,𝜔 𝜔 𝑒!!!"!
!!

!
! 𝑑𝜃𝑑𝜔,   (4) 

where |𝜔| is the Jacobian of the coordinate system 
transformation and acts as a ramp filter suppressing the low 
frequencies close to the origin. The above formula can be split 
into two steps: the filtering of projection data 

𝑄 𝜃, 𝑟 = 𝐺 𝜃,𝜔 𝜔 𝑒!!!"!
!! 𝑑𝜔,          (5) 

 
and the back-projection 

𝑓 𝑥, 𝑦 = 𝑄! 𝑥 𝑐𝑜𝑠𝜃 + 𝑦 𝑠𝑖𝑛𝜃 𝑑𝜃,!
!             (6) 

where 𝑥cos𝜃+𝑦 𝑠𝑖𝑛𝜃=𝑟. 
A more detailed explanation and the strict derivation of the 

FBP expression are available in [12]. 

B. Global character (non-locality) of the standard FBP 
While the FBP attracts interest, due to its high 

computational efficiency [13], its functionality is limited by 
the availability of sufficient projection data, equi-spaced in 𝜃 
and 𝑟 [14]. In cases when access restrictions prevent the 
collection of complete data or measurements need to be 
limited only to a region of interest, (4) is not the most 
indicated reconstruction strategy. This is due to the non-
locality of the standard FBP caused mainly by the ramp filter 
|𝜔|, and particularly its discontinuity at the origin. The latter 
results in the spread of projection data support in the space 
domain.  

This problem has been addressed under different names: i) 
Reconstruction from truncated projections [14], ii) Incomplete 
data problem [15], iii) Local Tomography [16], iv) The 
interior Radon Transform [17] and v) Tomography from 
scarce measurements [18]. All approaches serve the same 
purpose, to avoid the global dependency of the FBP and 
reconstruct an accurate image from compactly supported data. 

Different approaches to local or limited data reconstruction 
have been reviewed in [19]–[21]. Work related to local 
Tomography has been generalized to different geometries 
[23], [24], as well as to emission [25], [26] and/or soft-field 
modalities [27]. 

Among different applications relevant to this work, the use 
of wavelet transforms emerges as one with the most promising 
methodology. This is due to the expectation that by employing 
a function having a sufficient amount of zero moments, the 

support will remain essentially unchanged. Wavelet filters are 
functions with compact support and can be constructed with a 
certain amount of zero moments [3], [28], [29]. 

C. The Wavelet Transform 
The main idea behind the wavelet transform is to obtain 

information not only about the constituent frequencies of a 
signal, but also about the interval of time relevant to these 
frequencies.   

As a cursory explanation, the continuous wavelet transform 
(CTW) is typically based on the complete temporal correlation 
between the input signal and dilated/expanded versions of a 
predefined finite length signal, derived from a mother wavelet. 
A match between a certain frequency in a temporal segment 
from the input signal and the wavelet being shifted along that 
segment is characterized by a high correlation coefficient and 
the contribution of that frequency, along with the temporal 
parameters of the segment, is flagged [30]. However, the 
CWT involves redundant processing of large data sets, not 
suitable for practical implementation. 

A different representation scheme is the fast wavelet 
transform (FWT) proposed in [31], whereby a discrete signal 
is processed with a range of high/low pass digital filters and 
down-samplers; the result is a decomposition of the input 
signal into scale components differing in size by a factor of 
two, to its nearest higher scale. 

Low and high pass filters, scaling functions (𝑛) and wavelet 
function 𝜓(𝑛), respectively, are convolved with the input 
signal 𝑥(𝑛) to produce a pair of wavelet coefficients: 
approximations (lower frequencies) and details (higher 
frequencies). After filtering, the output wavelet coefficients’ 
bandwidth is reduced by half, therefore by means of the 
Shannon theorem, these coefficients can be represented with 
as half as many of the samples contained in the original signal, 
without any loss:  

𝑊! 𝑘 =  𝑠 𝑛 ∗ 𝑥(𝑛) ↓!!!!,!!! 

𝑊! 𝑘 =  𝜓 𝑛 ∗ 𝑥 𝑛 ↓!!!!,!!!,                      (7) 

where * is the convolution symbol. To recover the original 
signal, the wavelet coefficients are up-sampled and reverse-
filtered, resulting in two signals. The merger of these signals 
must be equivalent to the original signal, if the employed 
wavelet functions allow exact reconstruction. This is 
illustrated in Fig. 1. 

In a multi-scale representation, the approximation 
coefficients (𝑘) become the input to a new frequency 
decomposition and the output coefficients will again contain 
only half as many samples as before.  

For a 2D input signal, three wavelet functions are obtained 
from separable products between both scaling and wavelet 

 
 

Fig. 1.  FWT filter bank. 
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functions. They quantify high frequency variations along 
different directions: horizontal, vertical and diagonal.  

Ψ! 𝑚, 𝑛 = 𝑠 𝑚 𝜓 𝑛   Horizontal 
ψ! 𝑚, 𝑛 = 𝜓 𝑚 𝑠 𝑛   Vertical 
ψ! 𝑚, 𝑛 = 𝜓 𝑚 𝜓 𝑛   Diagonal              (8)                    

And the scaling function is as follows: 

𝑠 𝑚, 𝑛 = 𝑠 𝑚 𝑠 𝑛                            (9) 

Performing the 2D FWT amounts then to the calculation of the 
1D version along the rows and columns (𝑚,n) of the 2D input 
signal.  

𝑊!
! 𝑚, 𝑛  = 𝜓 𝑚 ∗ [𝑥 𝑚, 𝑛 ∗ 𝑠 𝑛 ↓!!!!] ↓!!!! 

𝑊!
! 𝑚, 𝑛  = 𝑠 𝑚 ∗ [𝑥 𝑚, 𝑛 ∗ 𝜓 𝑛 ↓!!!!] ↓!!!! 

𝑊!
! 𝑚, 𝑛  = 𝜓 𝑚 ∗ [𝑥 𝑚, 𝑛 ∗ 𝜓 𝑛 ) ↓!!!!] ↓!!!! 

𝑊! 𝑚, 𝑛  = 𝑠 𝑚 ∗ [𝑥 𝑚, 𝑛 ∗ 𝑠 𝑛 ) ↓!!!!] ↓!!!!    (10) 
  
where 𝑊𝜓𝐻(𝑚,𝑛), 𝑊𝜓𝑉(𝑚,𝑛), and 𝑊𝜓𝐷(𝑚,𝑛) are detail 
coefficients along horizontal, vertical and diagonal directions. 
𝑊S(𝑚,𝑛) is the approximations coefficient, 𝑥(𝑚,𝑛) is the input 
signal. Analogous to the 1D case, a multi-scale representation 
is achieved by the approximations wavelet coefficient 
becoming the input for a new wavelet transform iteration, as 
shown in Fig. 2. Thus, 4 coefficients are obtained at each 
scale: three separate detail coefficients and one 
approximations coefficient, corresponding to the lower scale 
component.  

D. Wavelet-based Localized Tomography Reconstruction 
1) Wavelet-modified ramp filtering 

The main motivation in involving the wavelet transform in 
the FBP process is to avoid the support spread of projection 
data that occurs after the ramp filtering, since the latter 
emphasizes the global dependency of the measurements’ 
overall support. As suggested in [3], for the accurate 
reconstruction of a ROI, the filtering stage of the standard FBP 
can be extended with the addition of essentially compactly 
supported functions, presenting a certain amount of zero 
moments. The low/high pass filters that act as wavelet/scaling 
functions in the 2D FWT, are functions of that type, and can 
be incorporated in (5) as follows. 

𝑊!"#$$ 𝑥, 𝑦 =
 𝐺! 𝜔 𝜔 𝑊 𝜔 𝑐𝑜𝑠𝜃,𝜔 𝑠𝑖𝑛𝜃 𝑒!!!"#𝑑𝜔𝑑𝜃!

!!
!
!          (11) 

The above equation is the wavelet-based FBP, where 
|𝜔|(𝜔𝑐𝑜𝑠𝜃,𝜔𝑠𝑖𝑛𝜃) corresponds to the wavelet-modified ramp 
filter. 𝑊 relates to the product between 1D high/low pass 
filters in Fourier domain and polar coordinates, being the last 

mentioned characteristic, necessary to match with the format 
of projection data. Separable products that correspond to each 
of the 2D FWT image coefficients are shown below:  

 
𝑊 𝜔 𝑐𝑜𝑠𝜃,𝜔 𝑠𝑖𝑛𝜃 = 

  𝑆 𝜔 𝑐𝑜𝑠𝜃,𝜔 𝑠𝑖𝑛𝜃 =  𝑆 𝜔 𝑐𝑜𝑠𝜃  𝑆(𝜔 𝑠𝑖𝑛𝜃) 
 Ψ! 𝜔 𝑐𝑜𝑠𝜃,𝜔 𝑠𝑖𝑛𝜃 =  𝑆 𝜔 𝑐𝑜𝑠𝜃  Ψ(𝜔 𝑠𝑖𝑛𝜃) 
Ψ! 𝜔 𝑐𝑜𝑠𝜃,𝜔 𝑠𝑖𝑛𝜃 =  Ψ 𝜔 𝑐𝑜𝑠𝜃  𝑆(𝜔 𝑠𝑖𝑛𝜃) 
Ψ! 𝜔 𝑐𝑜𝑠𝜃,𝜔 𝑠𝑖𝑛𝜃 =  Ψ 𝜔 𝑐𝑜𝑠𝜃  Ψ 𝜔 𝑠𝑖𝑛𝜃       (12) 

 
It can be noticed from (12) that because of the Cartesian to 

polar re-gridding of low/high filter coefficients, the wavelet- 
modified ramp filters become angle dependent. Such 
dependency suffers the drawback that filter coefficients must 
be calculated for every projection angle separately. However, 
it also presents with the great advantage that the detail 
frequency components at a number of angles can be discarded 
because of their null effect in the projection data filtering. 
Unfortunately, this is not the case for the approximations 
frequency component, which incorporates all lower 
frequencies in all projection angles. 
2) The back-projection operator and subsampling 

It can be seen from (12) that unlike the standard FBP the 
filtering in the wavelet-based FBP generalization shifts the 
approach, from the frequency weighting of projection data 
within the Fourier space, to the decomposition into frequency 
components, as previously explained in section II C. This 
implies that back-projection has to be performed to create four 
different wavelet coefficient images, each of them half the size 
of the image yielded by the standard FBP. A remarkable 
consequence of such a characteristic is that the complexity 
involved in this operation is considerably reduced when 
implementing it parallel computation. 

III. PROPOSED PARALLEL MULTISCALE WAVELET 
RECONSTRUCTION 

A. Methodology 
We adopt the approach proposed in [11], projection data is 
mapped onto a Fourier space divided into B by B adjacent 
squares with the objective to parallelize the reconstruction 
process. These squares define certain references to process 

Fig. 3.  Wavelet decomposition of the Fourier space. (a) One-step scale 
decomposition. (b) Two-step scale decomposition. 

  

 
Fig. 2.  Two-step 2D FWT. 
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only projection data that concerns them. The result is a set of 
B by B frequency components which can be, independently 
and in parallel, back-projected onto less dense grids that are 
finally merged to form a single output image. By observing on 
Fig.3 how the 2D FWT tiles the Fourier space, it can be 
concluded that very similar properties are already implicit in 
the wavelet-based FBP. The main difference lies in the 
manner with which the combination of wavelet and scaling 
functions tiles the Fourier space into a fixed number of regions 
defining the frequencies that constitute each of the wavelet 
coefficients: three details and one approximations, as 
illustrated in Fig. 3(a). 

If the approximations coefficient is used as the input of a 
new 2D FWT iteration, as shown in Fig. 3(b), the Fourier 
space can be tiled into more lower-scale regions, substituting 
the approximations coefficient by a set of new lower-scale 
wavelet coefficients. Although it is expected that a multi-scale 
decomposition contribute to the speed-up of the reconstruction 
process, the 2D FWT in its standard form, suffers from the 
requirement for the iterative computation of approximations at 
each scale. 

This limitation can be bypassed through the use of the 
Noble identities [32], which allow the construction of an 
equivalent parallel multi-scale implementation of the 2D FWT 
in Fourier domain. The result is the substitution of the 
pyramidal configuration shown in Fig. 2, formed by low/high 
pass filters and downsamplers, into a scale-dependent set of 
filters and downsamplers. According to [10], for a non-
pyramidal implementation, the low pass filter coefficients in 
the Fourier domain are as follows: 

𝑠! 𝑛 ↔ 𝑆! 𝑧 =  𝐻 2!𝑧        𝑙 = 1,2,3⋯!!!
!!!

1               𝑙 = 0
   ,      (13) 

and for high pass filters: 

𝜓! 𝑛 ↔ Ψ! 𝑧 = Ψ 2!!!z 𝑆!!! 𝑧           𝑙 = 1,2,3⋯
1                            𝑙 = 0

  .   (14) 

Fig. 4 shows the parallel implementation alternative to the 
2D FWT. Apart from preserving the compact support and 
reducing the complexity of the back-projection operation, 2D 
FWT can be employed to obtain a multi-scale representation 
of the projection data, which if implemented in parallel, can 
speed up the reconstruction process dramatically. 

B. Fast parallel algorithm  
Under the concepts exposed in the previous sections, by 

exploiting the attributes provided by the 2D FWT when being 
employed in the image reconstruction process, we formulate a 
fast parallel algorithm. The main motivation in using the 2D 
FWT is to take advantage of its time-frequency localization 
properties and be able to reconstruct accurately, independently 
and in parallel, reduced area block components tiling together 
a full-size image. The main objective behind the 
reconstruction of block components is to reduce the overall 
reconstruction time, by considering only projection data 
corresponding to one block at a time. 

A secondary feature, derived from the wavelet filtering of 

projection data and the sampling theorem, allows back-
projection of wavelet coefficient images to be performed 
without loss of information onto subsampled grids, half the 
size of the complete resolution image obtained through 
standard FBP reconstruction. This feature has an important 
implication in the speed-up of the reconstruction process; 
given the fact that back-projection is the most computationally 
expensive operation within the FBP [10]. 

Following the same line, by analyzing in Fig. 3 the 
breakdown of projection data within the Fourier space after 
wavelet filtering, it is obvious that certain projection angles 
have a null contribution (see Fig. 5) in the generation of detail 
coefficient images [12] and can be discarded without 
compromising the quality of the wavelet coefficient images. 
Conversely, when it comes to the generation of the 
approximations coefficient image, all projection angles must 
be considered (see top left example in Fig. 5(a)), therefore this 
advantage is only partially usable.  

With the purpose to alleviate the consequences from such a 
restriction, the parallel multi-scale decomposition scheme was 
adopted in the development of this algorithm. As explained 
before, this scheme allows a frequential decomposition of 
projection data, in which approximations coefficient is only 
computed for the lower resolution component. This means 
that, in relationship with the sampling theorem, 
approximations coefficient can be backprojected onto the less 
dense grid, whose size is determined by the lower resolution 
component. 

The algorithm presented in this work is a generalization of 
the FBP that has been designed by using MATLAB as 
software testing framework, having in mind a parallel 
implementation, either in hardware or in a software platform, 
capable of independently executing every component; e.g. in 
Simulink. 

 
Fig. 5.  Tomography projection data wavelet filtering. (a) 2D wavelet filters 
in Fourier domain and polar coordinates (0 to 180o), constructed by using the 

discrete Meyer FIR filter. (b) Wavelet-filtered projection data. 
  

 

 
 

Fig. 4.  Parallel 2D FWT. 
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C. Computer Implementation of the standard FBP algorithm 
In order to be able to adapt the standard FBP to the 

purposes of this work, it was implemented in MATLAB as a 
customized version of the ‘iradon’ function, used as a 
reference benchmark. The ramp filter design uses a method 
reported in [33] and [34], aiming to suppress the dc shift and 
inter-period interference artifacts. This is achieved by 
calculating an impulse response approximation of the ramp 
filter and matching the sampling interval to the bandwidths of 
the filter and the projection data, which are also zero-padded 
before the FFT is applied. Filtering is performed in the Fourier 
domain, and with the objective of reducing the algorithm 
complexity, only “positive” frequencies are processed. The 
already filtered projection data is complemented with its 
complex conjugate, and inverse FFT is calculated. The back-
projection operator, along with linear interpolation, is 
performed as designed in the ‘iradon’ function. 

D. Implementation of the multi-scale parallel block 
reconstruction algorithm 

As previously mentioned, the algorithm was formulated for 
a parallel implementation. The latter depends on the isolation 
between certain elements, chosen among those that do not rely 
on values obtained during the execution of the algorithm and 
can be calculated a priori, and those that are totally dependent. 
1) Off-execution algorithm elements 

The computation of the off-execution elements starts from 
the decision of the scale depth into which the projection data 
will be decomposed. This information is relevant for the 
calculation of wavelet and scaling functions, as well as to 
determine the size of the wavelet coefficient images at each 
scale. In the algorithm, this information also determines the 
area of the blocks in which the full-size image will be 
decomposed, which is the area of the lower scale coefficient 
image, e.g. for a 256×256 pixel image, if decomposed into l = 
3 scales, the lower scale image area is given by 256×2−3, 
which corresponds to a 32×32 pixel image. This means that 
the full-scale 256×256 pixel image will be divided into four 
32×32 pixel coefficient images (one approximations and three 
details) at scale l = 3, three 64×64 pixel detail images at scale l 
= 2, divided into four 32×32 blocks, and three 128×128 pixel 
detail images at scale l = 1 composed by sixteen 32×32 blocks. 
This is illustrated in Fig. 6. 

By having information about the resolution depth and area 
size of each of the wavelet coefficients images, as well as of 
the constituent blocks, it is possible to calculate the filter 
coefficients (scaling/wavelet functions) by which the 
projection data will be decomposed. For this operation, (13) 

and (14) are employed in order to obtain the filter coefficients 
corresponding to each scale. These filter coefficients along 
with the designed ramp filter, are used to create the wavelet 
modified filters, directly employed in the analytical expression 
given by (11). 

In order to decompose the projection data into several 
constituent blocks, a simple procedure was developed. It 
consists of generating synthetic phantoms representing the 
block area, within the field of view, that will be reconstructed 
individually. The RT from the block phantoms is then 
calculated and its support is obtained and converted to binary 
pixel values. The result is an array that is used as a template, 
to extract the projection data relevant for the reconstruction of 
the image block. This process is illustrated in Fig.7. 

This approach has been developed with the purpose of 
avoiding the difficulties involved in the collection of off- 
centered data without degrading considerably the 
reconstructed image. In contrast to what is proposed in [3], 
this approach does not need extra padding of the projection 
data array, and therefore avoids the extra computational time 
involved when applying the filter. 
2) On-execution algorithm elements 

The on-execution elements are sequential portions of the 
algorithm that result as consequence of decomposing the 
reconstruction task into smaller ones. Each component task 
incorporates the computation that concerns only to the 
reconstruction of a wavelet coefficient block-tile image, at its 
corresponding scale, and is limited by its minimum data 
calculation dependency. Off-execution calculated variables are 
required in the execution of every block. 

Each component task has the same base operators of the 
standard FBP: filtering of the projection data in the Fourier 
domain and its back-projection onto the real space grid. The 
difference lies in that every component task is dedicated to the 
reconstruction of a reduced area, at every scale, which is 
possible because of the 2D FWT incorporation. For the effect 
of dividing the full- size image reconstruction into a set of 
constituent block images, be reflected in speed gain, every 
component must deliver accurate images when provided only 
with data corresponding to the block area of interest. 

Fig. 8 illustrates the processing carried out by each 
component task, when 3-level scale decomposition is desired. 
The first stage is the block decomposition of projection data, 
performed with the aid of support templates, for every scale 
except for the lower one, which determines the size and 
number of blocks in which the projection data is decomposed. 
FFT is then individually applied to the decomposed projection 
data and wavelet-based ramp-filtering is performed in the 

 

 
 

Fig. 6.  Multiscale constituent block-breakdown  
  

 
 

Fig. 7.  Procedure of the projection data block-decomposition.  
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(a)        (b)         (c) 

Fig. 10.  Comparison between reconstructed images from different algorithms. 
(a) Standard FBP. (b) Wavelet-based multiscale five-step FBP. (c) Wavelet-

based multi-scale five-step parallel block FBP. 
Full-size images of Fig 10 (a) (b) and (c) are provided as separate media. 

 

 
 

Fig. 8.  Multi-scale parallel block reconstruction of wavelet coefficient images 
 

Fourier domain, resulting in the frequential decomposition of 
every projection data component. Further, inverse FFT of the 
filtered projection data components is taken, followed by the 
back-projection onto subsampled grids to create wavelet 
coefficient block-images at each scale. Finally, wavelet 
coefficient images are obtained from the tiling of block-
images. The full-size image at maximum resolution is 
obtained by the merger of all wavelet coefficient images 
through inverse 2D FWT in the space domain. 

IV. RESULTS 
Results shown in this section were obtained with synthetic 

forward RT data generated by the MATLAB ‘radon’ function, 
from 180 view angles equi-spaced within [0,180o] by using the 
standard 512-pixel grid Shepp-Logan phantom. FBP image 
reconstruction was performed on a 512 by 512 pixel grid; no 
window function was employed in the filtering stage and 
linear interpolation was involved in back-projection operator. 
For frequential decomposition of projection data, a five-step 
multi-scale representation was obtained through the parallel 
2D FWT. Wavelet coefficient images at each scale, except for 
scale l = 5, are divided into a set of 16×16 pixel constituent 
blocks; 4 for l = 4, 16 for l = 3, 64 for l = 2, and 256 for l = 1. 
The mother wavelet used for final results, was the symmetric 
and compactly supported “biorthogonal 2.4”, which has a 
support length equal to five. The wavelet coefficient images, 

as well as the synthesized full-scale image, are shown in Fig.9. 
 Fig. 10 shows the output of the three variants of the FBP 

algorithm: standard FBP, the 5-step multi-scale FBP and 
parallel-block multi-scale FBP. Table 1 shows quantitative 
error metrics to compare the images in Fig 10 (a) and (b), with 
the input phantom as the reference image. The adopted metrics 
are: average error (AVERR), normalized absolute error 
(NABS), and mean square error (MSE) [35]. For a metric 
more consistent with the human eye perception, the peak 
signal to noise ratio (PSNR) and the structural similarity index 
(SSIM) were also calculated [36]. The parallel block 
implementation, as such, does not result in additional errors. 

With the objective to study the speed gain achieved in the 
parallel implementation compared to the standard FBP image 
reconstruction, time analysis of the algorithm execution was 
carried out. Measurements were taken by using the ‘tic/toc’ 
function in MATLAB 2012b, with a 3.1GHz Intel Quad Core 
i3 processor and 4GB RAM computer system, running a 64bit 
Linux Fedora 17 operating system. To ensure consistency, 
redundant measurements were taken by employing a single 
computer processor core. 

In the first instance, time measurements were taken from 
the multi-scale wavelet-based FBP, with the objective of 

 
(a)            (b) 

Fig. 9.  Reconstructed image from the wavelet-based multi-scale parallel 
block reconstruction algorithm. (a) Wavelet coefficients’ images obtained at 

each scale; detail coefficient images for 𝑙=1,2,3,4,5 and approximations 
coefficient image for 𝑙=5. (b) Reconstructed output image at full scale 𝑙=0.  

  

 
TABLE 1 

QUANTITATIVE ERROR ANALYSIS 
 AVERR NABS MSE PSN SSIM 
Standard 0.0209 0.1691 0.0014 28.6426 0.6929 
Multi-scale 0.0391 0.3168 0.0015 28.1788 0.4052 
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showing the speed gain from the inclusion of the 2D FWT, 
without block decomposition. Fig. 11 shows the execution 
time, at each scale and for every wavelet coefficient image, 
calculated by the multi-scale wavelet-based FBP. The time 
performance shown includes upsampling and reverse-filtering. 
All execution times were considerably less than for the 
standard FBP, which under the same circumstances was 
measured to around be 1.7s.  

For the parallel block decomposition algorithm, time 
performance was measured for each constituent block, for 
every wavelet coefficient, and at each scale. A detailed visual 
representation is impossible for this set of time performance 
measurements, as it would constitute a 512×512 pixel grid 
divided into 1024 16×16 pixel blocks. Therefore Fig. 12 

presents the longest reconstruction time taken for a block 

within a specific scale and wavelet coefficient image. Again, 
upsampling and reverse-filtering are included. For the purpose 
of comparison, the longest time manifested in Fig. 12, 0.0451 
s, is taken as the total time spent on the execution of the 
parallel algorithm. Fig. 13 shows the final time performance 
comparison between the three algorithms. 

V. DISCUSSION 
In this paper, an alternative algorithm to the widely used 

FBP has been presented. Due to its parallel implementation 
and block reconstruction approach, the image reconstruction 
speed is around 36 times faster than its standard counterpart. 
This speed performance gain is obtained at the expense of 
acceptable  image degradation (see Fig. 10 and Table 1). It is 
interesting to note that while a two-fold error increase is 
calculated by AVERR and NABS, the metrics closer to human 
eye perception show a slight error reduction. 

The work on the algorithm design demonstrated that the 
achievement of gain in speed at minimal image quality 
degradation strongly depended on the type of wavelet 
transform to be employed and the choice of the mother 
wavelet function.  

The preferred choice of transform was the separable 2D 
FWT, mainly because it is amenable to a parallel 
implementation in addition to delivering a multi-scale 
representation. In the first instance, the importance of 
employing a wavelet filter that allowed an exact 
reconstruction scheme, while selecting the proper wavelet 
basis, was recognized. Attempts using different wavelet basis 
showed that, given the nature of the problem, a basis capable 
of preserving linear phase was required, which resulted in the 
choice of the symmetrical biorthogonal wavelets [37]. 

The choice in terms of wavelet filters was subject to a more 
complex process. This was driven mainly by a priori 
knowledge, derived from the understanding of the tomography 
problem, as well as from the test results during the algorithm 
design. An indicator of the localization in Fourier domain is 
regularity and is determined by the wavelet filter smoothness. 
Higher regularity allows more accurate frequential 
decomposition, but at the expense of higher amounts of filter 
coefficients, resulting again in speed loss.  

After managing to achieve exact inversion of the 2D FWT, 
the major concern was to evaluate biorthogonal wavelet filters 
constructed with a different number of zero moments, supports 
and number of coefficients. The number of zero moments had 
a direct implication in the block-reconstruction accuracy, 
because it represents an indicator of the localization in space 
and is proportional to the support, which means that the higher 
the space localization, the less compact the support and the 
higher demand on computational resources. In the suggested 
algorithm, this was accounted for when deciding the amount 
of data to be collected for the reconstruction of constituent 
blocks: higher zero moments wavelets delivered higher quality 
reconstructed block images, at the expense of more data 
processing needed, resulting in less speed gain. 

In conclusion, we have shown that tiled-block image 

  
Fig. 12.  Time performance of wavelet-based multi-scale five-step parallel 

block FBP.  
  

 

 
 

Fig. 11.  Time performance of wavelet-based multi-scale five-step FBP.  

 
Fig. 13. Time performance between the three different reconstruction 
the algorithms; Standard FBP, the wavelet-based multi-scale five-step 

FBP and wavelet-based multi-scale five-step parallel block FBP. 
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reconstruction by wavelet-based, parallel filtered back-
projection leads to more than an order of magnitude gain in 
speed, compared to standard FBP, with acceptable image 
quality. This motivates future work in embedding such 
algorithms in programmable hardware, such as FPGAs.  
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