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On the Equivalence of Quantity Competition

and Supply Function Competition with Sunk Costs∗

MichałKról†

November 26, 2015

Abstract

This paper considers competition in supply functions in a homogeneous goods market in
the absence of cost or demand uncertainty. In order to commit to a supply schedule, firms are
required to build suffi cient capacity to produce any quantity that may be prescribed by that
schedule. When the cost of extra capacity (given the level of sales) is strictly positive, any Nash
Equilibrium outcome of supply function competition is also a Nash Equilibrium outcome of the
corresponding Cournot game, and vice-versa. Conversely, when the cost-savings from reducing
output (given the capacity level) are suffi ciently small, any outcome of iterated elimination of
weakly dominated strategies in the supply function game is also an outcome of the same process
in Cournot, and vice-versa.

KEYWORDS: Cournot game, sunk costs, supply functions

1 Introduction

A common argument against the Cournot model of oligopolistic competition is that it leads to plau-

sible comparative statics results, but does so, unrealistically, without allowing the firms to make any

pricing decisions. In the words of Shapiro [1989], ‘A common view is that pricing competition more

accurately reflects actual behavior, but the predictions of Cournot’s theory are closer to matching

the evidence’.

Existing literature attempts to resolve the diffi culty by demonstrating that ‘price setting models

may boil down to Cournot outcomes’(Vives [1989]). A seminal study by Kreps and Scheinkman

[1983] considered capacity pre-commitment at stage one, followed by competition in prices. It turned

out that the Cournot equilibrium outcome is also the unique subgame-perfect equilibrium outcome of

the two-stage game. More recently, Moreno and Ubeda [2006] extend this to situations where firms

set reservation rather than exact prices.

∗I would like to thank Igor Evstigneev, Rachel Griffi th, Roger Hartley, Leo Kaas and Paul Madden for helpful
comments and suggestions, as well as the participants of my talks at the University of East Anglia, University of
Nottingham, University of St Andrews and City University London, particularly Marco Mariotti and Klaus Zauner.
†Department of Economics, The University of Manchester, michal.krol@manchester.ac.uk

1



An alternative is to consider static models encompassing both Cournot and Bertrand strategies.

For instance, Klemperer and Meyer [1989] allow for ‘supply-function’competition (henceforth, SFC),

where each firm simultaneously specifies the quantity of output it would be ready to provide at every

possible price. While SFC typically results in a large range of potential equilibria, it turns out that

their number is reduced in the presence of demand uncertainty. When firms are few and production

costs steeply rising, the surviving equilibria exhibit supply functions that are steep, i.e. close to the

‘vertical’Cournot-like commitment to a given quantity regardless of the price.

Another way of reducing the number of equilibria under SFC has been to impose the equilibrium

refinement condition of coalition-proofness. When the number of firms is large (Delgado and Moreno

[2004]), and their capacities are not too asymmetric (Delgado [2006]), the Cournot outcome is the

only coalition-proof equilibrium of SFC.

This paper explores a new link between Cournot and SFC, by formalizing the suggestion by Klem-

perer and Meyer [1989] that ‘different supply functions may have different costs of implementation:

for example, choosing a vertical supply function (fixed quantity) may offer a cost advantage relative

to [...] a flexible production technology’. Thus, we introduce a cost function depending not only

on the output sold at market clearing, but also on the maximum quantity the firm declared itself

ready to supply (at some price) by virtue of its supply schedule. The rationale is that in order to

credibly commit to providing a given quantity of output at a specified price, the firm needs to first

build suffi cient capacity to produce this quantity. Even if some of this capacity proves surplus to

requirements at market clearing, its cost may be at least partly impossible to recover (‘sunk’).

Within this framework, two results are obtained. First, assuming excess capacity is costly is

suffi cient to ensure not only that any Nash Equilibrium outcome of Cournot is a Nash Equilibrium

outcome of SFC, but also that the converse is true as well. Intuitively, the advantage of Cournot

competition is that firms know in advance the quantity they will sell, so they can only build the

capacity they need. At the same time, they lose the flexibility to adjust output depending on market

prices. The nature of the (pure-strategy) Nash Equilibrium concept makes the last motive irrelevant,

as each firm expects rivals to choose specific actions, and so can also infer the market price.

The second result is that a one-to-one correspondence also holds, under certain conditions, be-

tween iterated elimination of weakly dominated strategies in the Cournot and SFC games. Specifi-

cally, any restricted game obtained via iterated elimination of weakly dominated strategies in the SFC

game is equivalent to some restricted game being an outcome of the same process in Cournot, and

vice-versa. Intuitively, weak dominance can capture strategic uncertainty, since different strategies of

the counterparts are jointly considered. Thus, the motive of reduced flexibility of Cournot strategies

comes into play, as firms face uncertainty about the price prior to market-clearing. However, when

the number of players is small and capacity constraints are ‘tight’(i.e. uncertainty about others’

output / market price is small) relative to the proportion of the cost that is ‘sunk’, the motive of

excess capacity reduction is once more stronger then that of maintaining flexibility.
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2 The Model

2.1 Industry

There are n ≥ 2 identical firms operating in a market for a homogeneous good with an inverse

demand schedule P : R+ → R+. We assume that P (·) satisfies P (Q) ≥ 0 for all Q ≥ 0, and that

for all Q ≥ 0 such that P (Q) > 0, P (·) is twice continuously differentiable, strictly decreasing, and
satisfies the Hahn [1962] condition, i.e.:

P ′ (Q) +QP ′′ (Q) < 0, for all Q > 0 (1)

The firms’production technology is represented by a cost function C (x, q), where q is the ‘installed

production capacity’and x is the output actually being produced. We assume that x, q ∈ [0, qc],

where qc > 0 is a parameter representing maximum production / capacity. We also use C (q) to

denote C (q, q) for short, and assume that this function is twice continuously differentiable and non-

decreasing convex, i.e. C ′ (q) > 0 and C ′′ (q) > 0 for all q ∈ [0, qc).

In addition to the above assumptions, imposed throughout the paper, two further assumptions will

be used interchangeably:

C (x, q) < C (x, q′) for all x, q, q′ such that x ≤ q < q′ ≤ qc (A1)

The second assumption is that the derivative ∂C/∂x = Cx (x, q) exists, and:

Cx (x, q) ≤ Cx (qc, qc) ∈ (0,∞) for all x, q such that x ≤ q ≤ qc (A2)

2.1.1 Discussion of Assumptions

Let GC denote the associated Cournot game, i.e. one in which firms simultaneously select quantities
qi ∈ [0, qc] , i ∈ N = {1, 2, ..., n}, and receive payoffs:

πci (qi, Q−i) = qiP (qi +Q−i)− C (qi) , Q−i = Σj∈N/{i}qj

Condition (1) is then equivalent to the firms’individual marginal revenues being decreasing in the

rivals’aggregate output Q−i. For the production technology specified above, this ensures that the

firms’reaction functions are continuous and downward sloping, so that a Cournot equilibrium exists

(see Novshek [1985]). A suffi cient condition for (1) to hold is P ′′ (Q) ≤ 0, i.e. that the demand is

concave.

Leaving the Cournot game aside, one may think of C (x, q) as a ‘short-run’cost function, in the

sense that q, the capacity level, is built in the long-run, using the lowest-cost combination of inputs

at the firm’s disposal. The firm may then adjust the actual level of output x, by revising the chosen
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amounts of some of the inputs, whilst others are fixed in the short-run and constitute a fixed cost.

The resulting (total) cost of producing x is given by C (x, q).

Assumption (A1) states that increasing excess capacity is always costly. Assumption (A2) states

that the marginal cost Cx (x, q) of an increase in ‘short-run’output reducing excess capacity (i.e. of

a ceteris paribus increase of x while x ≤ q) is at its highest when the capacity q is maximized but

excess capacity vanishes (x = q). This would happen when the (ceteris paribus) returns from variable

inputs are diminishing, even when the amounts of all inputs are increased in the long-run to allow

for a higher capacity. For instance, (A2) holds for a Cobb-Douglas production function exhibiting

non-increasing returns to scale.

We now proceed to describe the game of supply-function competition, denoted G, as opposed to GC
used to denote the Cournot game.

2.2 Firm Strategies and the Market Clearing Process

Each firm i ∈ N = {1, 2, ..., n} simultaneously sets a non-decreasing, right-continuous supply schedule
si : [0, p̄] → [0, qc], specifying the quantity of output it offers to provide at every possible market

price, where p̄ = P (0). We will refer to si (p̄) as the ‘maximum quantity’of a given schedule. We

also restrict attention to pure strategies.

For any supply function profile s = {si (·)}i∈N , a market price p and a subset of players A ⊆ N ,

define the following ‘aggregate supply’functions:

SA (s, p) =
∑

i∈A
si (p) , S

−
A (s, p) =

{
limp′→p− SA (s, p′) for p ∈ (0, p̄]

0 for p = 0

Note that for p > 0 the existence of the left-sided limit involved in the above is guaranteed by the

monotonicity of each si (·) , and hence the aggregate supply schedule of any subset of players as well.
A market-clearing price p∗ (s) must then satisfy:

D (p∗) ∈
[
S−N (s, p∗) , SN (s, p∗)

]
, D (·) = P−1 (·) (2)

Due to the monotonicity of SN (s, ·) and D (·), a unique price p∗ ∈ [0, p̄] satisfying (2) always exists.

Indeed, consider an alternative price p ∈ [0, p̄] such that p > p∗, which implies S−N (s, p) ≥ SN (s, p∗)

and D (p) < D (p∗) . Thus, it cannot be the case that D (p∗) ≤ SN (s, p∗) and D (p) ≥ S−N (s, p), so p

and p∗ cannot both satisfy (2).

As there is a possibility of excess supply at the market-clearing price p∗, some firms may not be

able to sell as much as si (p∗) . Let xi (s) ≤ si (p
∗) denote the quantity of output that firm i is actually
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able to sell at market clearing, and note that xi (s) must lie within the following interval:[
max

{
S−{i} (s, p∗) , D (p∗)− SN\{i} (s, p∗)

}
,min

{
si (p

∗) , D (p∗)− S−N\{i} (s, p∗)
}]

(3)

Observe that when all supply schedules are continuous at p∗, we have xi (s) = si (p
∗), since:

S−{i} (s, p∗) = si (p
∗) = D (p∗)− SN\{i} (s, p∗) = D (p∗)− S−N\{i} (s, p∗)

When the supply schedule of at most one firm (i) is discontinuous at p∗, it follows from (2) that:

D (p∗)− SN\{i} (s, p∗) = D (p∗)− S−N\{i} (s, p∗) ∈
[
S−{i} (s, p∗) , si (p

∗)
]

which implies that xi (s) = D (p∗) − SN\{i} (s, p∗), i.e. firm i only gets what remains after all coun-

terparts have sold their entire outputs.

Finally, suppose the supply schedule of more than one firm is discontinuous at p∗, leading to excess

supply at p∗. Let N0 denote the set of those firms. Then (3) is a proper interval for all i ∈ N0

(while xi (s) = si (p
∗) for all i ∈ N\N0). The exact value of xi (s) for i ∈ N0 is then determined by a

sharing rule, specifying how the D (p∗)−SN\N0 (s, p∗) part of the demand is to be distributed among

the firms in N0. Since the results of this paper turn out to hold for any such sharing rule, it is left

unspecified throughout the remainder of the text.

2.3 Costs and Payoffs

With the firms’sales xi (s) determined, the resulting profits are:

πi (s) = p∗ (s)xi (s)− C (xi (s) , si (p̄)) (4)

Thus, we assume that, in order to commit to the chosen supply schedule prior to getting to know

the market clearing price, the firm needs to build the capacity required to produce the maximum

quantity that may be prescribed by the schedule, si (p̄). Upon discovering that it only needs to

produce xi (s) ≤ si (p̄), the firm may recoup some of the cost of its excess capacity si (p̄)− xi (s), but
the remainder of that cost is sunk. As was suggested in Section 2.1, we may also think of this in

terms of ‘long-run’(prior to setting the supply schedule) vs. ‘short-run’(at market-clearing), where

in the latter case some of the input factors are fixed and constitute a sunk cost.

Note that this cost specification generalizes the one normally used in the SFC literature, which

restricts to cost functions that depend only on actual sales, i.e. ones that satisfy C (x, q) = C (x, q′)

for all x, q and q′.
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3 Results

The first step is to specify a definition to help formalize the relationships between the two games:

the Cournot game (denoted GC) and the SFC game (denoted G), both as described in Section 2.

Definition 3.1 The outcome of a profile of quantities q = {qj}j∈N in GC is equivalent to the outcome
of a profile of supply functions s = {sj (·)}j∈N in G, when for all i ∈ N we have xi (s) = qi and

πi (s) = πci (q).

Note that the fact that xi (s) = qi for all i ∈ N also implies that the Cournot market clearing price

given q is the same as the SFC market clearing price given s.

Proposition 3.1 Under assumption (A1), and for any profile of quantities q = {qj}j∈N , q is a
Nash Equilibrium of GC if and only if there exists a profile of supply-functions s = {sj (·)}j∈N such

that s is a Nash Equilibrium of G and the outcome of s in G is equivalent to the outcome of q in GC.

In other words, for every equilibrium of the SFC game there is a corresponding equilibrium of the

Cournot game that yields the same outcome (in terms of market prices, outputs and profits), and

the converse is also true.

Let us compare this result with those of Delgado and Moreno [2004] (DM). They show that

requiring the supply-functions to be non-decreasing means only prices not greater than the Cournot

equilibrium price may be sustained (where any SFC equilibrium that yields the Cournot price also

exhibits the symmetric Cournot outputs). The assumption of non-decreasing supply-functions has the

same effect here, even though, unlike in DM, the supply schedules are not required to be continuous.

The main difference is that in order to eliminate the equilibria that support prices strictly below

the Cournot level, DM impose an additional requirement of ‘coalition-proofness’on the set of equi-

libria (which must be invulnerable to improving deviations by any coalition of players). Intuitively,

this requirement becomes stronger when the number of players is greater, and when it is suffi ciently

large the only equilibrium outcome that remains is the Cournot outcome.

In contrast, the present paper does not use an equilibrium refinement criterion (or assume firms

communicate prior to taking actions, which coalition-proofness necessitates). Instead, we consider a

generalization of the usual cost specification, allowing for sunk costs of excess capacity. It turns out

that when additional capacity is always costly (A1), only Cournot prices (and outputs) may occur

in SFC equilibria.

The intuition behind this result is simple. Given a profile of supply-schedules which a firm expects

its rivals to choose, it can always alter its own supply-schedule so as to keep the same market price and

individual sales as before, but eliminate any excess capacity, thereby reducing costs and increasing

profits. Thus, profit-maximizing supply schedules must equalize sales and the capacity level, which

ensures that the best-response dynamics of the SFC game is analogous to the Cournot one (the role

of Cournot quantity played by the SFC sales / capacity level).
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The result also mirrors those of Moreno and Ubeda [2006] (MU), who consider a choice of capacity

at stage one followed by setting a reservation price, which amounts to constructing a discontinuous

one-step supply schedule over the two stages of the game. However, unlike in both DM and MU,

here the supply-schedules can be multi-step discontinuous, which permits additional applications of

the model. For instance, sellers in on-line auctions can set several one-unit auctions with different

reservation prices, which is equivalent to setting a step-wise supply schedule with several steps. In

addition, unlike DM and MU, the present model will apply to situations in which there is no prior

communication between players, and no knowledge of others’prior capacity decisions.

We now turn to the other main result of the paper, namely extending the correspondence between

SFC and Cournot by means of iterated weak dominance.

To this end, let Xi denote the strategy set of player i in GC , and let Yi denote the strategy set of
player i in G. Let G ′C and G ′ denote the corresponding restricted games, obtained by eliminating some
of the strategies in GC and G, so that the set of strategies X ′i of player i in G ′C satisfies X ′i ⊆ Xi, and

the set of strategies Y ′i of player i in G ′ satisfies Y ′i ⊆ Yi for every i ∈ N .

Definition 3.2 Restricted games G ′C and G ′ are equivalent (G ′C ≡ G ′) when there exists a collection
of surjective functions {ϕi : Y ′i → X ′i}i∈N such that, for any s = {sj (·)}j∈N ∈ ×j∈NY ′j , the outcome
of s in G is equivalent to the outcome of q =

{
ϕj (sj (·))

}
j∈N in GC.

In other words, every supply schedule in G ′ corresponds to some quantity in G ′C , and vice-versa, in
the sense that the firms’sales, profits and the market clearing price for a given profile of strategies

in G ′ (respectively G ′C) are the same as they would have been for a corresponding profile of strategies
in G ′C (resp. G ′). A player’s choice in G ′ is the same as in G ′C , except for a possible duplication of
strategies, when multiple supply schedules correspond to the same Cournot strategy, and so always

yield the same payoffs. Hence, the two games are strategically equivalent.

We will use the term ‘iterated elimination of weakly dominated strategies’(IEWDS) in the usual

sense, and say that G ′ (or G ′C) is an outcome of IEWDS from G (resp. GC), when it is obtained by
IEWDS from G (resp. GC), but no further strategies are weakly dominated in G ′ (resp. G ′C)

Proposition 3.2 Suppose assumption (A2) holds and, in addition:

P ′ (nqc) qc + P (nqc) > Cx (qc, qc) (5)

We then have:

1. For any G ′ being an outcome of IEWDS from G, there exists a G ′C being an outcome of IEWDS
from GC, such that G ′C ≡ G ′.

2. Conversely, for any G ′C being an outcome of IEWDS from GC, there exists a G ′ being an outcome
of IEWDS from G, such that G ′C ≡ G ′.
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In other words, for every outcome of IEWDS from the SFC game, there is a corresponding

equivalent outcome of IEWDS from Cournot, and vice-versa. Thus, under the conditions specified in

Proposition 3.2, given avoidance of weakly dominated strategies and common knowledge of rationality,

the two games (G and GC) are strategically equivalent.
Under assumption (1), the LHS of (5) is the lowest possible marginal revenue of an individual

firm from selling more output (as it corresponds to a case where everyone already sell up to qc, and

are willing to do so even as the firm’s increase in output leads to a reduced market price). Likewise,

under (A2) the RHS is the highest possible marginal cost of selling more output without increasing

the maximum quantity si (p̄), or the required capacity, of the supply schedule. Hence, condition (5)

implies that even when rivals want to sell their output regardless of the price, it pays off to be equally

competitive, making fixed-quantity schedules optimal regardless of what others do.

Condition (5) holds when n, qc and Cx (·) , the marginal cost of extra sales (or cost-saving from
a marginal sales reduction), are not too big. In particular, Cx (·) is small when costs depend mostly
on the required capacity level si (p̄), and not on actual sales, i.e. when the capacity costs are ‘sunk’.

The intuition for this is that, on the one hand, the main advantage of quantity competition à la

Cournot is that it eliminates the cost of excess capacity. This is because players fix the exact amounts

they will sell, and so are able to build only the capacity that they actually need, which is particularly

important when the capacity costs are ‘sunk’. On the other hand, a greater number of players and

higher maximum capacity add to strategic uncertainty about the other players’total output. Hence,

this makes Cournot strategies less advantageous compared to more flexible supply-functions, because

the latter can prepare the player for various aggregate supply / market price scenarios. Thus, more

firms and relaxed capacity constraints make the equivalence between Cournot and SFC in terms of

IEWDS more diffi cult to obtain.

4 Concluding Remarks

The paper provided a new link between the Cournot model and competition in supply functions,

by considering a possibility that firms must build suffi cient capacity to produce any quantity that

may be prescribed by the chosen supply schedule. In contrast with existing literature, there is no

assumption of prior communication between players or knowledge of others’prior capacity decisions.

Moreover, the firms’supply schedules need not be continuous, which makes the model applicable

to a wider range of real-world situations. Lastly, the paper established a one-to-one correspondence

not only between the sets of Nash Equilibria of the two games in question, but also, under certain

conditions, between the sets of strategies that survive the process of iterated elimination of weakly

dominated strategies. This provides support not only for the Cournot equilibrium outcome, but also

for quantity competition in general, as a reduced form of competition in supply functions.
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Appendix: Proofs

Proof of Proposition 3.1. Suppose s∗ =
{
s∗j (·)

}
j∈N is a profile of supply functions, and p

∗ is the

associated market-clearing price.

We will first prove that for any i ∈ N such that xi (s∗) < s∗i (p̄), it is possible for player i to profitably

deviate from her strategy s∗i (·). Suppose that, in addition to xi (s∗) < s∗i (p̄) for some i ∈ N , we have
S−{i} (s∗, p∗) < s∗i (p∗), which implies S−N (s∗, p∗) < D (p∗) < SN (s∗, p∗). Suppose now player i changes

her supply schedule to a s′i (·) such that s
′
i (p) = xi (s

∗) for p ≤ p∗, and s
′
i (p) = s∗i (p) for p > p∗.

From (3), we know that:

xi (s
∗) ∈

[
D (p∗)− SN\{i} (s∗, p∗) , D (p∗)− S−N\{i} (s∗, p∗)

]
Hence, given the new profile of supply functions s′ = s′i (·) ∪

{
s∗j (·)

}
j∈N\{i}, and from the fact that

S−N\{i} (s∗, p∗) = S−N\{i} (s′, p∗) and SN\{i} (s∗, p∗) = SN\{i} (s′, p∗) we have:

S−N (s′, p∗) = S−N\{i} (s∗, p∗) + xi (s
∗) ≤ D (p∗)

SN (s′, p∗) = SN\{i} (s∗, p∗) + xi (s
∗) > D (p∗)

Hence, p∗ is still the market-clearing price under s′, and xi (s
′) = xi (s

∗). Since s
′
i (p̄) = s∗i (p̄),

the costs incurred by firm i are also the same under s′i (·) as under s∗i (·), and so are the profits.
Hence, to show that i can profitably deviate from s∗i (·), we now assume that s∗i (·) is such that
S−{i} (s∗, p∗) = s∗i (p∗), because one can always alter s∗i (·) to satisfy this property without changing
the profit of firm i. Hence, it remains to consider a situation where:

S−{i} (s∗, p∗) = s∗i (p∗) = xi (s
∗) < s∗i (p̄)

Suppose then player i switches to an alternative supply schedule s′i (·) such that s
′
i (p) = s∗i (p) for

p ≤ p∗, and s
′
i (p) = s∗i (p∗) = xi (s

∗) for p > p∗. Once again, let s′ = s′i (·) ∪
{
s∗j (·)

}
j∈N\{i} . We then

have S−N (s∗, p∗) = S−N (s′, p∗) and SN (s∗, p∗) = SN (s′, p∗), which means p∗ is still the market-clearing

price under s′, and xi (s′) = xi (s
∗). However, we have:

C (xi (s
′) , s′i (p̄)) = C (xi (s

∗) , xi (s
∗)) < C (xi (s

∗) , s∗i (p̄))

Given assumption (A1) holds and using xi (s∗) < s∗i (p̄), this means costs are lower under s′i (·) than
under s∗i (·), making the profit of firm i larger in the former case. Hence, any player i ∈ N who sets a

supply schedule s∗i (·) such that xi (s∗) < s∗i (p̄) , can benefit by unilaterally deviating to an alternative

supply schedule s′i (·) such that xi (s′) = s
′
i (p̄). Consequently, any Nash Equilibrium strategy profile

s∗ must satisfy xi (s∗) = s∗i (p̄) for all i ∈ N .
Suppose then q∗NE is a Cournot Nash Equilibrium quantity, i.e. we have q∗NE = qBR ((n− 1) q∗NE),
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where qBR (Q) is the Cournot best-response to an aggregate quantity Q produced by all other players.

Consider a profile of supply schedules s∗ =
{
s∗j (·)

}
j∈N such that for every j ∈ N we have s∗j (p) = q∗NE

for all p > 0. This means πj (s∗) = P (n q∗NE) q∗NE − C (q∗NE) for all j ∈ N , i.e. profits are equal to
the Cournot Nash Equilibrium ones. Thus, an optimal deviation by player i from s∗i (·) must entail a
supply schedule s′i (·) such that xi (s′) = s

′
i (p̄) , where again s

′ = s′i (·)∪
{
s∗j (·)

}
j∈N\{i}. The resulting

profit would be πi (s′) = P ((n− 1) q∗NE) s
′
i (p̄)−C

(
s
′
i (p̄)

)
, i.e. it would equal the Cournot profit given

quantity s
′
i (p̄) when others produce (n− 1) q∗NE in total. Thus, it cannot exceed the profit resulting

from s∗i (·) due to s∗i (p̄) = qBR ((n− 1) q∗NE) being the Cournot best-response quantity. As a result,

the Nash Equilibrium outcome of the Cournot game is also a NE outcome of the supply-function

competition game.

Conversely, suppose a profile of supply schedules s∗ =
{
s∗j (·)

}
j∈N is a NE of the supply-function

competition game, which means it must satisfy

xi (s
∗) = s∗i (p̄) and πi (s

′) = P
(∑

j∈N s
∗
j (p̄)

)
s∗i (p̄)− C (s∗i (p̄)) for all i ∈ N

Suppose further that we do not have s∗i (p̄) = q∗NE for all i ∈ N, where q∗NE is a Cournot Nash

Equilibrium quantity. It must then be the case that for some i ∈ N and some q′ 6= s∗i (p̄) we have:

P
(
q′ +

∑
j∈N/{i} s

∗
j (p̄)

)
q′ − C (q′) > P

(∑
j∈N s

∗
j (p̄)

)
s∗i (p̄)− C (s∗i (p̄))

Hence, by deviating from s∗i (·) to a s′i (·) such that s′i (p) = q′ for all p > 0, player i can increase

its payoff in the supply-function game, i.e. s∗ is not a Nash Equilibrium if it does not implement a

Cournot Nash Equilibrium outcome.

Proof of Proposition 3.2. Consider a strategy profile s∗ =
{
s∗j (·)

}
j∈N such that for some i ∈ N

we have xi (s∗) < s∗i (p̄), and a strategy s′i (·) such that s′i (p) = s∗i (p̄) for all p > 0. In the first

part of the proof, we will show that under the condition stated in the proposition we then have

πi (s
′) > πi (s

∗), where s′ = s′i (·) ∪
{
s∗j (·)

}
j∈N\{i}.

Observe first that xi (s′) = s∗i (p̄) based on (3) , since S−{i} (s′, p) = S{i} (s′, p) = s∗i (p̄) for any p >

0 (note that we must have p∗ (s′) > 0, since condition (5) together with assumption (A2) imply

P ′ (nqc) qc + P (nqc) > 0, and so P (nqc) > 0). Let qi = s∗i (p̄) and Q−i = D (p∗)− s∗i (p̄) , where p∗ is

the market-clearing price associated with s′, i.e. one that satisfies D (p∗) ∈
[
S−N (s′, p∗) , SN (s′, p∗)

]
.

We then have:

πi (s
′) = πci (qi, Q−i) = P (qi +Q−i) qi − C (qi)

The market-clearing price under s∗ cannot be smaller than p∗, since S−N (s∗, p) ≤ S−N (s′, p) and

SN (s∗, p) ≤ SN (s′, p) for all p > 0. Hence, as supply schedules are non-decreasing, the demand

allocated to other players cannot be smaller than Q−i. This means:

πi (s
∗) ≤ π̂i (q̂i, Q−i) = P (q̂i +Q−i) q̂i − C (q̂i, qi) for q̂i = xi (s

∗)
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We proceed to show that the RHS of the above inequality is strictly smaller than πci (qi, Q−i). A

suffi cient condition for this is that ∂π̂i/∂q̂i is non-negative for all and strictly positive for some

q̂i ∈ [xi (s
∗) , qi]. We have:

∂π̂i/∂q̂i = P ′ (q̂i +Q−i) q̂i + P (q̂i +Q−i)− Cx (q̂i, qi)

and, by virtue of assumptions (1) and (A2) :

P ′ (q̂i +Q−i) q̂i + P (q̂i +Q−i)− Cx (q̂i, qi) > P ′ (nqc) qc + P (nqc)− Cx (qc, qc)

where the inequality is strict for q̂i ∈ [xi (s
∗) , qi) , and the RHS of the inequality is non-negative by

virtue of the condition imposed in the proposition. Thus, we have shown that πi (s′) > πi (s
∗).

As a result, observe that we can conduct IEWDS in G until we end up with a restricted game G ′ such
that:

1. for any strategy profile s∗ that is part of G ′ we have xi (s∗) = si (p̄) for all i ∈ N

2. for any q ∈ [0, qc] , i ∈ N there exists a si (·) in G
′
such that si (p̄) = q

In other words, we then have G ′ ≡ GC . Suppose then a quantity q′i weakly dominates qi in GC for
some player i, and as such qi can be eliminated, resulting in a restricted game G

′
C . This means we can

equally eliminate all such si (·) in G
′
that satisfy si (p̄) = qi, as each of them is weakly dominated in

G ′ by any s′i (·) in G
′
that satisfies s′i (p̄) = q′i. Eliminating all such si (·) results in a further restricted

game G ′′ , where G ′′ ≡ G ′C . Thus, we can continue to apply the same reasoning to eliminate any
further strategies from G ′C , and, correspondingly, from G

′′
. In the end of the IEWDS process, we end

up with two restricted games, G ′′C and G
′′′
, such that G ′′′ ≡ G ′′C . Consequently, for any restricted game

obtained from GC by IEWDS, an equivalent game can be obtained from G by the same process.

We proceed to show the converse, i.e. that for any restricted game obtained from G by IEWDS,
there exists an equivalent restricted game obtained from GC by the same process. By virtue of what
was shown above, any restricted game G∗ that remains after completing the process of IEWDS in G,
must satisfy xi (s∗) = s∗i (p̄) for all i ∈ N and any strategy profile s∗ in G∗.

Consider then the first round of IEWDS in G after which for some q ∈ [0, qc] , i ∈ N there exists no

si (·) in the resulting restricted game G
′
such that si (p̄) = q. In particular, this means strategy si (·)

such that si (p) = q for all p > 0 must have already been eliminated, being weakly dominated by some

other strategy s′i (·). Thus, it must also have been weakly dominated by a strategy s′′i (·) such that
s′′i (p) = s′i (p̄) for all p > 0. This implies πi (s′′i (·) , s−i) > πi (si (·) , s−i) for all s−i = {sj (·)}j∈N/{i}
such that for every j ∈ N/{i} we have sj (p) = q′ for all p > 0 and some q′ ∈ [0, qc]. This in turn

means that πci (s′i (p̄) , Q−i) > πci (q,Q−i) for all Q−i ∈ [0, (n− 1) qc].

Under condition (1) , the last inequality must be strict for at least some Q−i ∈ [0, (n− 1) qc], i.e.
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quantity q must be weakly dominated by quantity s′i (p̄) in GC . Thus, one could eliminate q from GC
to obtain a restricted game G ′C such that G ′C ≡ G ′.

One could then apply the same reasoning again, and consider the first round of IEWDS in G after
which for some i ∈ N, q′ ∈ [0, qc] , q′ 6= q there exists no si (·) in the resulting restricted game G

′′
such

that si (p̄) = q′. Repeating the same steps would show that it is then possible to remove q′ from the

set of strategies available to player i in G ′C , to obtain a further restricted game G ′′C such that G ′′C ≡ G ′′.

The process could be repeated until such time that it is impossible to eliminate any further strategies

from G, and G∗ is the restricted game that remains. Correspondingly, there will then exist a G∗C ,
obtained from GC by IEWDS, such that G∗ ≡ G∗C . Clearly, there may not exist two quantities q, q′

in G∗C such that q weakly dominates q′ in G∗C . If this was the case, then a strategy si (·) such that
si (p) = q for all p > 0 would weakly dominate a strategy s′i (·) such that s′i (p) = q′ for all p > 0.

As both si (·) and s′i (·) would be part of G∗ by virtue of G∗ ≡ G∗C , this would then contradict the
fact that G∗ is what remains after the IEWDS process is complete. Thus, we have shown that for
any restricted game obtained from G by IEWDS, there exists an equivalent restricted game obtained
from GC by the same process.
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