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Neutral change∗

Henri Kauhanen
The University of Manchester

4 May 2016

Abstract

Language change is neutral if the probability of a language learner adopting any
given linguistic variant only depends on the frequency of that variant in the learner’s
environment. Ruling out non-neutral motivations of change, be they sociolinguis-
tic, computational, articulatory or functional, a theory of neutral change insists that
at least some instances of language change are essentially due to random drift, de-
mographic noise and the social dynamics of finite populations; consequently, it has
remained little investigated in the historical and sociolinguistics literature, which has
generally been on the lookout for more substantial causes of change. Indeed, recent
computational studies have argued that a neutral mechanism cannot give rise to ‘well-
behaved’ time series of change which would align with historical data, for instance
to generate S-curves. In this paper, I point out a methodological shortcoming of those
studies and introduce a mathematical model of neutral change which represents the
language community as a dynamic, evolving network of speakers. With computer
simulations and a quantitative operationalization of what it means for change to be
well-behaved, I show that this model exhibits well-behaved neutral change provided
that the language community is suitably clusterized. Thus, neutral change is not only
possible but is in fact a characteristic emergent property of a class of social net-
works. From a theoretical point of view, this finding implies that neutral theories of
change deserve more (serious) consideration than they have traditionally received in
diachronic and variationist linguistics. Methodologically, it urges that if change is to
be successfully modelled, some of the traditional idealizing assumptions employed
in much mathematical modelling must be done away with.
Keywords: language change, neutrality, mathematical modelling, prestige, S-curves

1 Introduction

An outstanding problem in diachronic linguistics concerns the extent to which language
change is and can be neutral. Once variation arises, are the competing variants created
equal, or is change instead motivated by functional, computational, social or other con-
siderations which favour certain variants over others? Expressing an agnostic take on this
question, Lass (1997) observes that
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it’s perfectly possible that both variation and change itself (as a result) are
neutral: even selection does not necessarily have to select that which is better
“adapted”. In any case, there are even in biology modes of (apparent) selec-
tion that are not (in the Darwinian sense) genuinely “selective” or “adaptive”
[. . . ]. All of these possibilities, given the much better understood nature of
variation and change in organisms, need to be considered before any claim
for “function” can be made for either variation or change. (Lass, 1997, 354,
my emphasis.)

The thrust of this programmatic message, mainly directed at functional explanation but
not limited in its scope to explanations of functionalist persuasions, is that the possibility
of neutral change has remained, and continues to remain, underinvestigated.

This paper examines that possibility by means of a simple mathematical model of vari-
ant competition in a finite population of speakers. Guided by the intuition that language
diachrony is typically well-behaved (in a sense to be made precise later), I propose a quan-
titative metric of well-behavedness and, with the help of computer simulations, investigate
how the neutrality hypothesis fares in its light. The upshot of this investigation is that well-
behaved neutral change is, indeed, found to be possible if the social network underlying
the language community has a suitable topology and dynamics: briefly, if the language
community is strongly clusterized, so that it can be partitioned into more central and more
peripheral speakers, neutral change is observed. Moreover, it is found that well-behaved
neutral change is a consistent, characteristic emergent feature of such social networks: the
effect is not a statistical anomaly, but flows naturally and robustly from the way in which
the language community is structured and the way in which that structure evolves over
time. On the other hand, in a classical well-mixed (unstructured) population we find that
change can rarely be neutral and well-behaved.

The model here studied differs from most previous mathematical models of language
change (and, more generally, cultural evolution) in two respects. Firstly, the model does
away with the classical idealizing assumption of representing language communities as
well-mixed populations, often infinite, and looks instead at finite social networks with
non-uniform degree distributions, that is to say networks in which different people have
different patterns of connectivity. Secondly, the model takes into account the fact that hu-
man social networks are never static but are constantly being rewired by the removal and
addition of individuals: friendship and even family ties are not fixed, people move from
one social network to another, and deaths and births occur. The fact that neutral change
cannot happen in a classical unstructured population but can happen in populations with
suitable topologies and rewiring dynamics points to the need to consider the particulari-
ties of socialization in language communities at a level of detail which mathematical and
computational models of language change have not attempted so far.

The relevance of the possibility of neutral change to diachronic and variationist lin-
guistics is as follows: unless assumptions of non-neutral motivations of change can be
supported for independent reasons, a neutral theory of change remains a viable explana-
tory strategy. More specifically, the observation that well-behaved neutral change is a char-
acteristic feature of certain kinds of social networks suggests that in some cases of change,
neutral selection may be at play in addition to, or instead of, non-neutral selection. More-
over, the parsimonious nature of neutral theory holds promise in clearing up certain puzzles
which have traditionally received rather ad hoc solutions in the research literature: by re-
moving the notion of (variant) prestige, a neutral mechanism can provide a fresh, bias-free
sociolinguistic take on change, as I will argue in Section 6.
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2 Neutrality

The possibility that language change might be neutral has, traditionally, received little
attention in historical and variationist linguistics. Aside from occasional remarks such as
Lass’s (1997) cited above, and Postal’s (1968, 283–285) suggestion that language change
is random, non-motivated ‘fashion change’, the neutrality hypothesis has received serious
consideration mainly from Trudgill (2008) who, in questioning the role of identity in new-
dialect formation, suggests that dialect contact and dialect mixing work in ‘automatic’,
non-biased ways. Although Trudgill’s position is avowedly anti-identity, and thus rejects
one form of (social) bias, it is not entirely clear whether his account might not admit some
other form of bias, however. In fact, whether argued for or against, the neutrality hypothesis
is rarely defined in precise, unequivocal terms in the literature. In this section, therefore, I
will explicate the hypothesis by putting forward a definition of neutrality and contrasting
neutral change with change governed by non-neutral factors.

Throughout this paper, I will focus on a situation in which a fixed number of linguistic
variants are in competition in a specific linguistic domain. To keep the discussion max-
imally general, I will not make further assumptions about the nature or composition of
these variants. Depending on the application, a variant could be a complete parametric
specification of Universal Grammar, a single value of one particular parameter, an allo-
phone of a phoneme, and so on. What matters is that there is a number of variants, each of
which could be adopted, in principle, by any speaker. The neutrality hypothesis can then
be stated, in intuitive terms, as follows.

(1) Neutrality
The probability with which a speaker acquires a certain linguistic variant out of a
number of competing variants equals the relative frequency of that variant in the
speaker’s neighbourhood, modulo a small probability of innovating, uniformly at
random, another variant from among all (biologically, cognitively) possible
variants.

‘Neighbourhood’ here means the speaker’s linguistic neighbourhood, a term to be expli-
cated in more detail shortly. The content of the neutrality hypothesis, then, is that variant
selection in individual speakers is controlled by the frequencies of the competing linguis-
tic variants: apart from a small amount of random noise that accounts for variant innova-
tion, no considerations other than the frequency distribution of variants could affect which
variant an individual acquires or adopts. To borrow terminology from biology, under an
assumption like (1) change (evolution) is frequency-driven, and the competing variants do
not have differential fitnesses which could bias the process of adoption, favouring one vari-
ant over another. In contrast to fitness-driven (e.g. Darwinian) selection, in neutral change
the adoption of a given variant is not adaptive in any sense. The innovation events, when
they do occur, are likewise neutral: the innovatory variant is chosen from among all pos-
sible variants uniformly at random, so there is no bias towards innovating any particular
variant.1

1Although one should beware of drawing facile cross-disciplinary analogies, it is worthwhile to point out
that neutral mechanisms of change have been proposed in evolutionary biology. In biological evolution, a
variant (a genotype or a phenotype, or some part of one) is said to be selectively neutral or simply neutral
if having that variant confers neither a selective advantage nor a selective disadvantage. Depending on one’s
take on the level of selection debate (Reeve and Keller, 1999), this implies that a neutral variant will neither
increase nor decrease the fitness of its bearer, of the bearer’s species, or of that variant itself. This mechanism
of neutral evolution (Alonso et al., 2006) is to be contrasted with Darwinian natural selection, which operates
on complicated fitness landscapes that confer selectional pressures on the competing replicators or vehicles.
Although (non-neutral) natural selection remains the de facto mechanism for explaining evolution on various
levels of biological organization, neutral theories have been proposed and defended for molecular evolution
(Kimura, 1994) as well as in ecology for competition within a trophic level (Hubbell, 2001).
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It will be instructive at this point to briefly consider models and modes of explana-
tion in diachronic linguistics which are either explicitly or implicitly non-neutral, so as to
bring the contrast into sharper relief. The typological-functional explanations Lass (1997)
alludes to in the quotation cited in Section 1 form an obvious but important instance: there,
it is assumed that a linguistic variant can perform better or worse in any given role; linguis-
tic forms perform communicative, cognitive and other functions, and some do this better
than others (e.g. Anttila, 1989). Under a functionalist hypothesis, processes of change will
then be guided by people’s intuitions (conscious or subconscious) concerning the perfor-
mance of different variants in serving these various functions. Change is not neutral, since
adopting some variants is deemed, in one sense or another, better than adopting other
variants, to the extent even that possible language states are classified into ‘consistent’
and ‘transitional’, or ‘preferred’ and ‘dispreferred’ ones (e.g. Hawkins, 1990; Vennemann,
1993; also see the critical discussion in Lightfoot, 1999, 85–87 and passim). In the most
extreme versions of this framework, linguistic systems are viewed as teleological (Itkonen,
1981, 1982), and ‘language change is language improvement’ (Vennemann, 1993, 322).

Another way of flouting the neutrality hypothesis (1) is by way of considerations of
economy of computation or of production. Starting with Lightfoot’s (1979) Transparency
Principle, the diachronic generative syntax literature has generally favoured explanatory
frameworks of this kind, where innate principles or third-factor processing constraints are
taken to bias the acquisition of syntax. To take a more recent example, Roberts and Rous-
sou (2003) assume a Merge-over-Move principle to account for parametric reanalysis and
grammaticalization under the right kind of trigger experience. In much the same vein,
theories and models of sound change which appeal to articulatory (e.g. aerodynamic, in-
ertial) constraints as a motivation or cause of change are non-neutral, in that speakers are
assumed to be biased to produce certain (e.g. centralized, lenited) phonetic variants over
other, possible ones. Such constraints are said to give rise to variation in the auditory input
available to the listener, eventually causing change in the speaker–listener loop (Ohala,
1989; Pierrehumbert, 2001).2

A third mechanism for non-neutral change is constituted by different kinds of social
biases. In a typical prestige-based explanation, for example, speakers are said to accommo-
date towards variants they consider prestigious or associate with a particular social group
(Labov, 1972). Again, the acquisition or adoption of a variant under such circumstances
will be non-neutral, as it is not driven simply by the frequency distribution of variants
in the speakers’ environments. In a prestige-based explanation, the explanatory onus is
on speakers’ estimations of the social ‘desirability’ of particular variants, either overt or
covert, and even sociolinguists who are careful to consider other components of processes
of actuation and propagation, such as variation in social network structure, have usually
assumed (often a priori) that at least a small amount of prestige is necessary for innovatory
forms to propagate through a language community. Thus

in view of the very general finding of sociolinguistic research that the prestige
values attached to language are often quite covert and difficult to tap directly,
we may suggest that a successful innovation needs to be evaluated positively,
either overtly or covertly. This is of course a necessary but not a sufficient con-
dition for its ultimate adoption (Milroy and Milroy, 1985, 368, my emphasis.)

These non-neutral mechanisms have been implemented, in varying degrees of detail,
in computational models of language change. For instance, Ke et al. (2008) find that an
innovatory variant must in their model be biased over the prevailing conventional variant,

2It perhaps needs to be stressed in this connection that the point of contest between neutral and non-
neutral theory is not whether things such as computational or articulatory constraints exist, but whether they
are operative or causative in language change on a population level.

4



sometimes twenty-fold, in order to secure successful propagation. Similarly, in a model
of sociolinguistic factors in change, Fagyal et al. (2010) find that speakers must be biased
to adopt variants from speakers who are both well-connected and prestigious in order for
the model to generate propagation curves that have the broad outline of an S-curve; the
S-curve being taken as a basic desideratum which a model of change should be able to
replicate. Finally, in what is perhaps the most extensive computational study so far of the
effect of various kinds of biases in variant adoption and propagation, Blythe and Croft
(2012) find that in their extension of the utterance selection model of language change
(Baxter et al., 2006, 2009) a neutral, non-biased mechanism is unable to generate realistic
time series of change such as S-curves.

The framework adopted in the latter study deserves more detailed comment, as it pro-
vides a useful sociolinguistic taxonomy of selection mechanisms in language change more
generally. Leaning on Croft’s (2000) evolutionary theory of language change, itself based
on Hull’s (1988) general theory of selection processes, Blythe and Croft (2012, 272–277)
classify replication mechanisms into four categories: (i) neutral evolution, which is ran-
dom, frequency-driven drift; (ii) neutral interactor selection, in which speaker–speaker in-
teraction frequencies play a role; (iii) weighted interactor selection, in which interactions
between different speakers are weighted differently; and (iv) replicator selection, in which
the competing linguistic variants themselves are weighted differently. The neutrality hy-
pothesis (1), as here defined, corresponds to (i) and (ii) with the proviso that interaction
frequencies play a role at the point of acquisition, not (necessarily) across the lifespan of
speakers as in the usage-based model of Blythe and Croft (2012). The difference between
the neutral mechanisms (i)–(ii) and the non-neutral ones (iii)–(iv) is that in the former case
no social evaluations take place, whereas in the latter case either speakers or the compet-
ing linguistic variants themselves receive potentially differential evaluations, which fact is
taken to be the motor of change. In fact, Blythe and Croft (2012) find that, in their model,
S-curves are reliably obtained only for replicator selection, in other words for selection
where the social evaluations mark linguistic variants directly, in the Labovian sense.

Although the aforementioned formal models have elucidated important aspects of vari-
ation and change in natural language, they have their limitations. Most importantly from
the point of view of our present concerns, each of the three models mentioned above (Ke
et al., 2008; Fagyal et al., 2010; Blythe and Croft, 2012) represents language communities
as static networks of speakers. That is to say, even though these models are rich enough
to represent differences in social network topology, or differences and asymmetries in the
probabilities with which different speakers interact, they lack a mechanism for evolving
that topology, and consequently fail to model the social dynamics of a language commu-
nity: in the aforementioned models, there is no way for individual speakers to be removed
from or added to the network, or for their connection sets or interaction probabilities to
evolve within a single simulation run. Importantly, the models then fail to address the
question of whether and how that social dynamics might affect the linguistic variant dy-
namics operating on the social network. The assumption of a static network clearly does
not hold of human societies – and the longer the time spans of any particular changes we
may be interested in explaining, the worse this approximation becomes. Moreover, recent
research in fields such as mathematical epidemiology and evolutionary game theory has
demonstrated that the qualitative features of a dynamical system operating on a network
may be significantly altered when that underlying network is endowed with a dynamics
of its own (Gross et al., 2006; Traulsen et al., 2009). It is then reasonable to ask whether
previous computational studies of language change may not have arrived at the wrong
conclusions concerning the neutrality hypothesis by making the wrong kinds of idealizing
assumptions.

5



3 Model

In this section, I will define the present model in intuitive terms, using as little mathemat-
ical notation as possible. A technical, mathematical definition will be found in Appendix
A.

As outlined in Section 2, I will be focussing on a situation in which some number C of
variants are in competition; often, the focus is on cases where C is small, but in general this
number could be arbitrarily large. The variants are assumed to be distributed across a lan-
guage community in the following sense: each one of N speakers will entertain exactly one
of the C variants at any time. The speakers themselves are distributed on a social network,
and the connections a speaker has in this network will affect their process of variant acqui-
sition or adoption. For simplicity, I assume that the network is symmetric, that connections
are binary, and that the network is not multiplex. In other words, if speaker i is connected
to speaker j, then speaker j will also be connected to speaker i; each pair of speakers is
either connected or not connected (there is no notion of ‘weight’ of connection); and only
one connection is allowed between any two speakers.

The set of speakers to whom a given speaker is connected I shall call the neighbour-
hood of that speaker; using basic graph-theoretical terminology, the cardinality of this set
is called the speaker’s degree (in other words, the degree of a speaker is simply the number
of speakers that speaker is connected to). When new speakers acquire their variant, their
neighbourhoods are all important. In line with (1), I assume that the probability of acquir-
ing variant r (r = 1, . . . ,C) equals the relative frequency of that variant in the speaker’s
neighbourhood, modulo random noise which is taken to model processes of innovation.
This random noise is inserted into the model as an innovation parameter µ which ranges
from 0 to 1 and gives the probability that the speaker picks a variant from among the C
possible variants uniformly at random. It is clear that this probability has to be rather low
for language communities to display a degree of coherence in what variants they use – and
this expectation is borne out by the simulations reported in Section 5, below. The param-
eter is, however, an essential part of the model, for without it, variation could not arise in
the first place.3

To model social dynamics, the network of speakers is mixed by a graph-rewiring pro-
cess over time, as follows: at each iteration step, one of the speakers is selected for removal
uniformly at random and is replaced by a new speaker, whose social connections are set
according to a socialization algorithm. The new speaker then acquires their variant as out-
lined above. The socialization algorithm is modelled on the intuition that human social
networks normally contain both more and less connected individuals (cf. Barabási and Al-
bert, 1999), and operates as follows. Let σ be a real number with 0 ≤ σ ≤ 1 and K an
integer with 1≤ K ≤ N−1. The new speaker is then given exactly K connections accord-
ing to the following procedure: for each connection, the speakers in the network are first
rank-ordered into a queue in terms of decreasing degree in such a way that the order of
speakers having the same degree is random, but speakers with higher degree occur earlier
in the queue than speakers with lower degree. Then, with probability σ , a connection is
made to the first speaker in this queue, and with the remaining probability mass 1−σ a
connection is made to a speaker chosen uniformly at random from the queue. Once the
connection is established, this speaker is removed from the queue and the procedure it-
erated until the new speaker has received K connections. (Note that this does not imply
that each speaker will, at any point of time, have exactly K connections: speakers’ degrees
will change during their lifetimes thanks to the graph-rewiring process, as other speakers

3To see this, suppose that each individual in the community happens to use the same variant, so that the
relative frequency of this variant in the community equals 1. If µ = 0, then, in line with (1), any new speaker
inserted into the network will acquire the said variant with probability 1, and change is impossible.
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σ = 0.0,  K = 5 σ = 0.0, K = 10 σ = 0.0, K = 20

σ = 0.5,  K = 5 σ = 0.5, K = 10 σ = 0.5, K = 20

σ = 1.0,  K = 5 σ = 1.0, K = 10 σ = 1.0, K = 20

Figure 1. Different values of the preferentiality parameter σ , combined with varying values of
K, lead to networks with different amounts of clusterization. Note that the networks are not static
but are rewired over time by the removal and addition of speakers; as a consequence, individual
speakers may at times become disconnected from the rest of the network. For the networks in this
figure, N = 50.

are removed from the network and replaced by new ones.) Different values of σ , a pref-
erentiality parameter, then give rise to networks with different amounts of clusterization
around a central component, and different combinations of K and σ can be used to model
different kinds of population structures: for high K and low σ (K ≈ N− 1 and σ ≈ 0),
the population is well-mixing, whereas for small K and high σ , for instance, the network
has a star-like appearance, with a clear partitioning into central and peripheral individuals
(Figure 1).

The model assumes invariant and categorical speakers – speakers who fix onto one
of the competing variants at the point of acquisition and never change thereafter – this
assumption being made in the interest of computational and mathematical tractability. Al-
though some linguistic features are known to remain variable throughout a speaker’s life-
time (e.g. Harrington 2006; Sankoff and Blondeau 2007), there is, equally, evidence that
for other features late-life change is unlikely or outright impossible. For instance, a num-
ber of studies have shown the existence of “hard features” – features which only young
children manage to acquire and for which plasticity is lost as the speaker matures (these
include, for example, phonological features with lexically irregular conditioning; see Ker-
swill 1996 for a review of a number of relevant studies). Moreover, there is evidence that
early categoricity predicts late-life stability: in a longitudinal panel study of a dozen pho-
netic variables undergoing change in a rural Finnish-speaking community, Nahkola and
Saanilahti (2004) found significant late-life change only in speakers who had acquired
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features as variable ones. For categorical or near-categorical features, late-life change ap-
pears to be unlikely. These findings suggest that categorical, acquisition-driven change is
one way in which languages change, and that the assumption of invariant speakers is there-
fore not unduly unrealistic – but future modelling work should, of course, investigate the
consequences of relaxing the assumption.

4 Well-behaving

Evaluating the neutrality hypothesis (1) requires us to compare the output of the neutral
model defined in Section 3 against some sort of standard. More specifically, our interest is
in two questions: (i) does the neutral mechanism give change in the first place? and (ii) if
so, do the trajectories of change look anything like real life change trajectories? In this sec-
tion, I introduce a way of operationalizing these two questions by way of a notion of the
‘well-behavedness’ of change. Following a preliminary, intuitive characterization, I will
show how this notion can be formalized in mathematical, quantitative terms, so that the
presence or absence of well-behaved change can be detected in simulation data generated
by mathematical models of language change. The following section then proceeds to eval-
uate the current model vis-à-vis this quantitative operationalization in order to investigate
the viability of neutral change.

Change, in a very general sense, can be said to occur when the distribution of linguistic
variants over a language community changes. In most cases of interest to the historical lin-
guist, such changes proceed from a state where one variant is dominant or nearly so in the
community (has relative frequency of, or close to, 1) to another such state where another
variant has become (near) dominant. Moreover, when diachronic data are consulted, such
shifts between two dominance states are, as a general rule, found to be remarkably smooth,
or well-behaved. Language change is not a random walk in the frequency space of possible
linguistic variants; on the contrary, time series of changes can often be approximated to
a good degree using a sigmoid, or S-shaped function (Bailey, 1973; Kroch, 1989; Croft,
2000; Blythe and Croft, 2012). Although it remains unknown whether all changes follow
an S-curve, and if so, whether the detailed ‘shape of S’ is the same in all changes (Niyogi
and Berwick, 1997; Denison, 2003; Ghanbarnejad et al., 2014), propagation curves of lin-
guistic variants tend to be reasonably monotone: they are unlikely to show oscillations by
repeatedly inflecting up and down in the time domain, but rather proceed smoothly from
one dominance state to another.

With these considerations in mind, I suggest that any model of language change should
fulfil the following three criteria, which I here lay, in a programmatic manner, as charac-
teristic properties of language diachrony under normal conditions:

(2) Dominance
For most of the time, the language community relaxes into a state in which one
variant is (nearly) dominant, so that most or even all speakers use that variant.

(3) Shifting
Upon introduction of an innovatory variant, this innovation may nonetheless begin
to spread and eventually permeate (most of) the community; thus, the community
may shift from a state of dominance by variant r to a state of dominance by variant
r′ 6= r.

(4) Monotonicity
Such shifts proceed in a monotone manner with the frequency of the invading
variant increasing, and the frequency of the receding variant decreasing, along
smooth propagation curves.
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Figure 2. Portion of an ill-behaved history that violates dominance and monotonicity in a system
of three variants. This trajectory was generated with parameter settings N = 100, K = 10, C = 3,
µ = 0.005 and σ = 0.

A language community that fulfils all three criteria I shall call well-behaved:

(5) Well-behavedness
Language change is well-behaved if, and only if, it satisfies dominance, shifting
and monotonicity.

To fix these ideas, let us inspect two simulation histories generated by the model de-
fined in Section 3 qualitatively. Figure 2 shows a snapshot of an ill-behaved history in a
three-variant system violating both dominance and monotonicity; this history was gener-
ated by setting σ = 0 and µ = 0.005, the remaining parameters having the values N = 100,
K = 10 and C = 3. Although the language community does display a kind of change, and
hence exhibits shifting, this change is not monotone: there is too much zig-zagging move-
ment in the propagation curves of the individual variants for this trajectory to be considered
well-behaved. Moreover, the community does not settle on a dominant variant for any ex-
tended period of time. The history in Figure 3, on the other hand, illustrates an entirely
different situation, even though it was produced by the very same neutral mechanism. This
history, generated with σ = 1, the other parameter values remaining the same, satisfies all
three conditions: dominance, shifting and monotonicity.

Well-behaved neutral change is, then, possible. It remains to show that this is not
merely a chance occurrence but a consistent behavioural characteristic of the model for
certain ranges of model parameter values. For this, a quantitative analogue of each of the
criteria (2)–(4) is needed, one that can be calculated over a large batch of simulation runs
for a number of possible combinations of model parameter values in order to estimate, in a
statistically robust manner, to what extent that criterion is satisfied by that combination of
model parameters. A formal definition of such quantitative measures is given in Appendix
B; here, I introduce the measures in prose.

To estimate to what extent a given simulation run satisfies dominance, I shall use a
measure of dominance time Dδ that ranges from 0 (language community never dominant)
to 1 (language community dominant all the time). The parameter δ , a small real number,
controls how strictly dominance is to be measured. More precisely, for given δ , I say that a
language community is δ -dominant, if some one variant has a relative frequency equal to
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Figure 3. Portion of a well-behaved history satisfying dominance, shifting and monotonicity. For
this simulation, N = 100, K = 10, C = 3, µ = 0.005 and σ = 1.

or greater than 1−δ ; the Dδ measure then gives the proportion of time (in relation to the
length of the entire simulation run) the system spends in a state of δ -dominance. Varying
δ allows one to calculate dominance times to varying degrees and, inter alia, to subsume a
notion of stable variation under the notion of dominance. For example, setting δ = 0.3, we
would call a community dominant if one of the competing variants had a relative frequency
of at least 0.7 – allowing the rest of the frequency mass, a number bounded from above by
0.3, to be distributed among the remaining variants in any manner.

To measure shifting, I shall simply determine, for a given simulation run, the number
of times the community shifts from a state of δ -dominance by some variant r to a state
of δ -dominance by another variant r′ 6= r, for a predefined dominance level δ . In what
follows, I shall denote this shifting measure with Sδ , where δ gives the desired dominance
level.

Finally, to quantify monotonicity, I shall look at the autocorrelation properties of indi-
vidual simulation histories. The idea is to place a short time window of some τ time steps at
a specific time point t0 of a history (so the time window extends from t0 to t0+τ), and then
to count how many times the frequency of each competing variant both increases and de-
creases inside that window. To be more precise, let m+

r = m+
r (t0,τ) be the number of times

the frequency of variant r increases within such a time window, and let m−r = m−r (t0,τ) be
the corresponding count of decreases. It is then easy to see that the product m+

r m−r equals
0 if, and only if, the frequency curve of variant r is monotone in the window: the product
is zero if and only if at least one of the multiplicands is zero, which is equivalent to mono-
tonicity. For technical reasons explained in Appendix B, I next take the square root of this
product and sum over competing variants, arriving at ∑C

r=1

√
m+

r m−r . Finally, an average
is taken over different selections of time window start point t0 (in other words, the time
window is slid across the entire simulation history) and an inversion and a normalization
performed so that the final measure, Mτ , ranges from 0 in the non-monotone case to 1 in
the perfectly monotone case, with τ controlling the resolution at which monotonicity is
measured.

Some of the properties of this measure, proved in Appendix B, are worth mentioning
here: it can be shown that Mτ = 0 for any even4 integer τ if the frequency of at least

4The technical reason for the restriction here, without loss of generality, to even (rather than odd) integers
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Figure 4. Four histories with their corresponding monotonicity scores Mτ for two different window
sizes τ = 10,50. Note that for a random walk the expected value of Mτ is 1/3 (see text), and that
Mτ approaches 1 as the history becomes more and more monotone.

one variant zig-zags persistently, increasing at every other iteration step and decreasing at
every other; that Mτ = 1/3 for large τ if the history is a random walk (so that for any variant
and any iteration step, it is equally probable that the frequency of this variant increases,
decreases or stays the same at that step); and that Mτ = 1 for any τ if the frequency curve
of each variant is monotone in all windows of size τ . Figure 4 illustrates a few histories
with their corresponding Mτ scores for different window sizes τ , to give an idea of what
amount of smoothness to expect for individual trajectories, given a value of Mτ .

We then have three measures, Dδ , Sδ and Mτ , to measure dominance, shifting and
monotonicity in individual simulation runs. Before proceeding to an application of these
measures to the neutral model, it is perhaps in order to clarify the purpose of defining
the measures in the first place. Importantly, the above operationalization of the well-
behavedness of linguistic change should not be taken to imply that no language community
is ever ill-behaved. After all, empirically demonstrated cases exist of both stable variation
(violation of strict dominance; cf. Wallenberg, 2013), and of zig-zagging or failing changes
(violation of monotonicity; Coussé and De Sutter, 2012; Postma, 2010). The purpose of
introducing dominance, shifting and monotonicity as conditions of well-behaved change
is to fashion a litmus test for the neutral model: insofar as the model satisfies the three
conditions, it can be taken seriously as a mathematical model of language change. With
the above operationalization, dominance and monotonicity are actually continuous quan-

is explained in Appendix B.
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tities, ranging from 0 to 1, and thus admit of a notion of degree. Requiring the neutral
model to satisfy well-behavedness to a large degree is the strictest possible analytical test
to which the model can be subjected in this regard, and if real life language communities
are found to be less well-behaved than that, then the case for neutral change is correspond-
ingly strengthened.

5 Simulations

To investigate to what extent the model defined in Section 3 satisfies dominance, shifting
and monotonicity, or criteria (2)–(4), a number of computer simulations of the model were
run using a range of model parameter settings. For each combination of model parameters
investigated, 50 simulations were run to arrive at the averages reported below, and in each
simulation, a social network of N = 100 speakers was assumed. The simulations were run
in parallel on a high-throughput computing cluster, with the pseudorandom number gen-
erator seeded using environmental noise to ensure statistical independence of simulation
runs. Before starting each actual linguistic simulation, the social network algorithm was
iterated for 100N = 104 iterations so that the degree distribution of the network settled;
each actual linguistic simulation (apart from the simulations reported in Section 5.5; see
below) lasted for 5×104 iterations and started from a state in which one of the competing
variants had strict dominance (relative frequency 1, or in other words, δ -dominance with
δ = 0).

5.1 Main result

Figure 5 gives shifting scores for a system of C = 3 competing variants, for various values
of preferentiality σ and innovation rate µ , and for two different values of attachment set
size K, using a dominance threshold of δ = 0.1. The results indicate that each of these
model parameters has their effect on shifting ability: keeping K and µ constant, the effect
of increasing σ from 0 towards 1 is a monotonic increase in shifting; for µ , on the other
hand, an optimal value exists that supports shifting ability the best. Increasing K, in turn,
has the effect of flattening the shifting measure with respect to σ : as the population be-
comes more and more well-mixing, preferential connectivity naturally ceases to have an
effect, and shifting becomes rarer. In sum, change is the more probable the smaller K is
and the larger σ is – the more clusterized the community is around a central component
(cf. Figure 1) – provided that innovations (µ) occur at a suitable rate.

Figure 6 plots dominance times and monotonicity, the former calculated assuming
δ = 0.1, the latter computed using a window size of τ = 10; variation in τ has only a minor
effect on the monotonicity measure (not reported; but cf. Figure 4). The main finding with
respect to dominance is that increasing the innovation rate µ results in a sharp drop in this
measure, with the value of σ attenuating the effect a bit so that communities with higher
preferentiality σ remain dominant for larger µ than communities with lower preferentiality
σ . A similar, but much less drastic drop as a response to variation in µ is observed for
monotonicity.

To gauge what combinations of model parameter values support well-behaved neu-
tral change the best overall, we can consider the product of the three measures, namely
S0.1D0.1M10. Figure 7 gives this product, and we find that communities with low K, high
σ and intermediate µ are the most likely to exhibit well-behaved neutral change.

12



0.0   

0.1      0.0

   1.0

0   

14   

µ

σ

K = 10

0.0   

0.1      0.0

   1.0

0   

14   

µ

σ

K = 30

0

2

4

6

8

10

12

14

Figure 5. Shifting S0.1 in a system of C = 3 competing variants, for various values of preferentiality
σ and innovation rate µ and for attachment set sizes K = 10,30, calculated using a dominance
threshold of δ = 0.1; averages over 50 simulation runs. Neutral change is supported the best by
tightly clusterized communities (small K, high σ ).
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Figure 6. Dominance D0.1 (bottom surface) and monotonicity M10 (top surface) in a system of
C = 3 competing variants; averages over 50 simulation runs. Both dominance and monotonicity
drop as the innovation rate µ is increased, with large preferentialities σ attenuating this effect.
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Figure 7. The combined well-behavedness measure S0.1D0.1M10 for a system of C = 3 variants;
averages over 50 simulation runs. Overall, well-behaved neutral change is supported best by tightly
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Figure 8. Difference (B−A) in shifting S0.1 between (A) the 3-variant system of Section 5.1 (Figure
5) and (B) another system with C = 30 competing variants ceteris paribus. For large σ , the 30-
variant community shifts more than the 3-variant system if µ has a modest value; for larger µ , the
reverse obtains.

5.2 Effect of number of variants

In the above simulations, the number of competing variants was fixed at C = 3. This is a
rather small number, and it is reasonable to ask whether the behaviour of the system would
not change if more variants were available to speakers. To investigate this, another batch
of simulations was run using identical model parameter settings except that the number of
competing variants was now fixed at C = 30.

Increasing the number of variants turns out to have a nontrivial effect on the well-
behavedness of a neutral system. Figure 8 gives the difference between the shifting scores
received by the new batch of simulations and those received by the simulations of Section
5.1. Here, we find that for certain combinations of preferentiality σ and innovation rate µ ,
the community with C = 30 shifts more than the community with C = 3, whereas for other
model parameter combinations the reverse is true: increasing the number of competing
variants improves shifting for large σ , but only if µ has a modest value.

Figure 9 reports, similarly, the difference in dominance and monotonicity scores re-
ceived by the two batches of simulation runs. Increasing C leads to slightly lower domi-
nance and monotonicity overall, an effect which is the strongest for an intermediate range
of values of µ .

Thus, overall, allowing speakers a larger space of grammatical options can have the
effect of increasing the probability of change, but only at the cost of some reduction in
how well-behaved that change is in terms of dominance and monotonicity.

5.3 Effect of dominance threshold

The dominance threshold δ = 0.1 used above is rather strict: it demands a variant to have
a relative frequency of more than 0.9 in order for that variant to be considered dominant.
Lowering the dominance threshold is expected to increase both shifting and dominance,
and this expectation is confirmed by calculations of Sδ and Dδ using a less stringent domi-
nance threshold of δ = 0.3 (Figures 10 and 11). A nontrivial finding is that the preferential-
ity parameter σ has a strong effect on dominance for less extreme dominance thresholds:
for δ = 0.3 and K = 10, for instance, σ = 0 implies practically no dominance if µ is on
the order of 0.1, while for σ = 1 dominance times remain in the > 0.5 region for such
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Figure 10. Shifting S0.3 for a system with model parameter values identical to those of the system of
Figure 5, calculated using a less stringent dominance threshold of δ = 0.3. Adjusting the threshold
in this way leads to more shifting events across all of the model parameter space.

innovation rates. Thus, the model predicts that when change is neutral, stable variation is
supported best by language communities which are tightly clusterized.

5.4 Effect of rewiring dynamics

We can also ask whether it is just the topology of the social network that licenses well-
behaved neutral change for certain ranges of parameter values, or whether the social dy-
namics induced by the removal and addition of speakers plays a role. To investigate this,
another batch of simulations was run with parameter settings identical to those of the first
ensemble (Section 5.1), but with the rewiring dynamics turned off. (In other words, the
network was first rewired for 104 iteration steps, as above, to give it the topology induced
by the particular choice of K and σ in each case, so that the network had the same topol-
ogy as in the rewired case. However, the rewiring dynamics was turned off at this point,
so that during the actual linguistic simulation no rewirings took place and the network
was thus static.) Figure 12 gives the difference in the overall well-behavedness score – the
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Figure 11. Dominance D0.3 (bottom surface) and monotonicity M10 (top surface) for a system with
model parameter values identical to those of the system of Section 5.1 (cf. Figure 6), calculated
using a less stringent dominance threshold of δ = 0.3. For this laxer dominance threshold, network
preferentiality σ has a strong effect on dominance: σ = 0 implies essentially no dominance if
innovations occur at a rate of about µ = 0.1, whereas for more tightly clusterized communities
(σ ≈ 1) dominance times remain in the > 0.5 region for such innovation rates. This means that
stable variation – δ -dominance with a lax dominance threshold such as δ = 0.3 – is supported best
by language communities which are tightly clusterized, when change is neutral.

product S0.1D0.1M10 – between these two ensembles. For less clusterized networks (large
K or small σ ) the difference is negligible, as would be expected. For strongly clusterized
networks, however, an entirely different picture emerges when the rewiring dynamics is
removed: the community without rewiring displays consistently lower well-behavedness
scores.

This finding may appear puzzling at first sight, but is actually connected in a natural
way to one of the central idealizing assumptions of the model, that speakers stabilize and
do not change after initial acquisition.5 With this assumption, a tightly clusterized network
gives rise to a central hub consisting of speakers who are connected to most other speak-
ers in the network, and whose role in the competition of linguistic variants depends on
whether the network is rewired or not. With rewiring, in a highly clusterized network new
speakers always receive many connections to these central speakers who, thanks to the
critical period assumption, do not themselves change after maturation. Central speakers
therefore become the vehicle of change, conserving their own variant while distributing it
to speakers newly joined to the network. If network rewiring is suppressed, however, the
central speakers of a clusterized network effectively sample from the majority of the pop-
ulation and thus get a very representative picture of the frequency of variants that exist in
the network. The central speakers, rather than advancing a change, serve to hinder changes
in this setting: as the frequency of an innovation is necessarily low, any innovation event
is likely to be quelled by speakers in the central hub, for when these speakers do update
their variant, they are unlikely to adopt the innovatory one.

This observation, then, reveals that interactions between features of within-speaker
dynamics (here, the critical period assumption) and between-speakers dynamics (here, the
degree of clusterization of the social network) may be important enough to affect causation
in language change, by adjusting the probability of an innovation surviving and propagat-
ing through a language community.

5I am much indebted to an anonymous reviewer for raising this point.
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Figure 12. Difference (B−A) in the overall measure of well-behavedness, S0.1D0.1M10, between
(A) the system of Section 5.1 (Figure 7) and (B) another one with the rewiring dynamics turned
off, model parameter settings remaining the same. When the community is tightly clusterized, sup-
pression of rewiring suppresses well-behaved neutral change. (Note that in this figure, in contrast
to previous ones, both the σ axis and the µ axis have been inverted to better exhibit the dip in the
high-σ regime.)

5.5 Rate of change

A comparison of Figures 2 and 3 suggests, impressionistically, that the speed with which
an innovation spreads through a community can depend quite drastically on the structure
of the community. To investigate this dependence systematically, a final batch of simula-
tions was run (200 simulations for each combination of model parameters), this time with
a number of innovative speakers inserted ‘by hand’ into an otherwise homogeneous com-
munity at the start of each simulation. Out of all simulation histories so generated, the ones
where change from this initial state to a state of δ -dominance with δ = 0 by the innovative
variant occurred were then selected for further investigation by recording the number of
iteration steps it took the community to traverse from the former state to the latter. Figure
13 gives this time-to-dominance for various combinations of K and σ for a network of size
N = 100, with 10 innovators. We find that the presence of a central, well-connected hub of
speakers in the network has the effect of speeding up change; for small K, the decrease in
time-to-dominance is as much as tenfold when moving from σ = 0 (no clusterization) to
σ = 1 (maximal clusterization).

6 Discussion

The above simulations show that the form a linguistic trajectory assumes – whether well-
behaved or not – can depend crucially on the social structure and social dynamics of the
language community, if none of the competing linguistic variants are biased over others.
The results demonstrate well-behaved neutral change for certain types of preferentially
attached societies and show that such change is much less likely in societies lacking pref-
erential connections. Whether real language communities exist with these parameter set-
tings is an empirical matter; the above considerations imply that if such communities exist,
well-behaved neutral change is a characteristic property of them.

It is worthwhile to point out explicitly how these results differ from earlier ones, par-
ticularly those obtained by Fagyal et al. (2010). While both studies investigate the role
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Figure 13. A log-lin plot of time-to-dominance for various values of attachment set size K and
preferentiality σ , quantified as the number of iterations it takes for an innovatory variant to per-
meate the community from an initial state where a number m0 of speakers entertain the innovatory
variant. Here, for each pair of K and σ , network size was fixed at N = 100 and number of innova-
tors at m0 = 10, and the latter were picked uniformly at random from among all speakers. C = 3
competing variants were assumed throughout with innovation rate µ = 0.01. Time-to-dominance
is found to be an exponential function of σ , so that increasing σ leads to a speed-up in change for
small K.

of network effects in language change, the model here studied is neutral in the sense that
variant acquisition is determined by frequency and does not depend on sociolinguistic con-
siderations. In the model of Fagyal et al. (2010), by contrast, speakers give more weight
to speakers who have high degree centrality, so a linguistic variant becomes the fitter the
more it is adopted by such central speakers, and their model is thus classified as weighted
interactor selection in the Blythe–Croft taxonomy (see p. 5, above). This difference has
nontrivial sociolinguistic implications. With a biased model, one assumes that speakers
are able to evaluate the centrality or prestige, or both, of each speaker to whom they are
connected, and that they in fact pay attention to such evaluations. In a neutral model, the
only causative social factor in language change is the way speakers are (happen to be)
connected, and one need not (or does not) assume that speakers have access to or make
use of prestige evaluations.

An important feature of the framework adopted in this paper is not exhibited by pre-
vious mathematical models of language change: it models evolution on and of a network
simultaneously. Infinite-population models have considered non-overlapping, well-mixed
generations (e.g. Niyogi and Berwick, 1997; Yang, 2000; Komarova et al., 2001; Mitch-
ener, 2006; Niyogi and Berwick, 2009), and in most if not all finite-population models
(including those of Ke et al. 2008, Fagyal et al. 2010, and Blythe and Croft 2012) the so-
cial network is not allowed to evolve as the linguistic variants compete on that network. In
the present model, the generations of speakers are overlapping and the network is updated
in accordance with the socialization algorithm in use, at each iteration. The simulation
results demonstrate that this interplay of the social network rewiring dynamics and the lin-
guistic variant dynamics has an effect on the probability of a language community shifting,
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as well as on the well-behavedness of any such shifts (Section 5.4); importantly, this re-
futes previous claims (based on static population modelling) that neutral change cannot be
well-behaved (Fagyal et al., 2010; Blythe and Croft, 2012).

An obvious criticism of the model is that there is, as yet, no independent evidence
for the sort of social network structure the model presupposes. Although the role and im-
portance of social network effects in language change have been noted before (Milroy,
1980; Milroy and Milroy, 1985), we still lack a deep understanding of the basic properties
of human social networks, both topological and dynamic. Two immediate goals can be
discerned in this regard. Firstly, empirical studies are needed to establish what the connec-
tivity patterns of actual language communities are – how exactly are they clusterized, what
are their typical degree distributions, are they possibly multiplex, do inter-speaker links
have weights on them or is a binary characterization sufficient, and so on. Secondly, these
patterns have to be captured in mathematical models that are considerably more complex
than the algorithms currently in use in the complex systems and network science literature
(for a review of the state of the art and some suggestions for future directions, see Kivelä
et al., 2014).

That said, it is possible to interpret the present model, in what is perhaps a promising
and productive way, in the light of earlier proposals concerning social factors in linguis-
tic change. We have seen the preferentiality parameter σ to control the clusterization of
the social network, and it is possible to take this as an operationalization of the degree
to which a language community is closeknit, in the terminology of Milroy and Milroy
(1985): networks with large (close to 1) σ will then correspond to communities which are
closeknit. Now, we may well imagine several such communities to be connected along
inter-community links, composing thereby a network of networks, so that many links are
found within the subcommunities but between the subcommunities a much smaller num-
ber of links exist. The intra-community links can then be thought to correspond to the
Milroys’ strong ties, the inter-community links corresponding to weak ties. In the present
model networks with large σ act as both strong conservers and rapid distributors of linguis-
tic variants: for instance, it can be shown that in the limiting case of σ = 1, the probability
of a speaker in the central cluster of the highly clusterized network distributing their variant
to at least one other speaker during the former’s lifetime is given by

q = 1−
(

1− 1
K
+µ

(
1
K
− 1

C

))N

(6)

as long as µ < 1/K. Importantly, this number is bounded from below by 1−1/e ≈ 0.63,
irrespective of the values of N (network size) and K (attachment set size), and tends to 1 as
K tends to 1 and µ tends to 0. Thus, it is always more probable for variants flowing from
the centre of the network to be replicated than not to be replicated, and the probability is
the greater the more clusterized the network (Figure 14). This explains both conservatism
and progressivism: on the one hand, if no innovatory variants happen to be introduced
into the centre of the strongly clusterized network, the centre acts as a strong suppressor
against innovations which occur in intermediately (but not strongly) connected speakers,
and on the other hand, if an innovatory variant happens to invade the centre of the network,
it is almost certainly distributed to at least one other speaker before the bearer of that
innovatory variant is removed from the network by the network-rewiring process.

This analogy between the present model and the Milroys’ framework can be pressed
further. Milroy and Milroy (1985) draw, following Rogers and Shoemaker (1971), a dis-
tinction between the innovators and the early adopters of a change. In the present model,
all innovation events occur in speakers whose degree is K; these speakers, who corre-
spond to the Milroys’ innovators, do not belong to the central cluster of the social network.
Clearly, language change only happens if, following this initial actuation of an innovatory
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Figure 14. The probability, q, of a central speaker distributing their variant to at least one other
speaker before the former is removed from the network by the network-rewiring algorithm, for
innovation rate µ = 0.01 and number of competing variants C = 30 (eqn. 6). Note that q→ 1 as
K→ 1 and µ → 0, and that q > 1−1/e≈ 0.63 for any choice of K and N satisfying µ < 1/K.

variant, the variant is subsequently propagated through the layers of the social network and
becomes, eventually, dominant. In the present model, this happens typically if the social
network comes to be so rewired that the innovating speaker is ‘promoted’ to the centre of
the clusterized, closeknit community, i.e. if their degree increases due to rewirings of other
speakers; this occurs with a finite probability which increases as σ is increased. Once in
the centre, the probability of this innovating speaker influencing the variant adoption pro-
cesses of new speakers is significantly increased; these speakers adopting the new variant
then correspond to the Milroys’ early adopters, and propagation of the innovatory variant
is successful if the number of early adopters is large enough.

Yet the present model does not serve merely as a computational implementation or
(partial) corroboration of the Milroys’ framework; it adds a positive contribution thanks to
the neutrality assumption. As I have noted above (p. 4), Milroy and Milroy (1985) assume
that innovatory variants must have a non-zero prestige value attached to them, if they are
to propagate successfully through a language community. This is prima facie puzzling, for
it raises the further question of how (and why) language communities should be able to
agree on the social valuation of invading variants:

The puzzle is of course how young people living in the closed communities
of Ballymacarrett, Clonard and Hammer, whose contact with others outside
their areas has been only of a very tenuous kind, have come to reach cross-
community consensus on the social value to be assigned to the two variants of
the (pull) variable (Milroy and Milroy, 1985, 374).

The above simulation results suggest that such cross-community consensus may, in fact,
be unnecessary. Prestige need not be attached either to linguistic variants or to individual
speakers; in order to have well-behaved neutral change, it suffices to have a non-uniform,
but dynamic population structure containing hubs of speakers.6 Prestige reduces to degree
centrality: the influence of individual speakers lies in the number of connections they have
in their language community, not in a social evaluation assigned on top of that number of
connections.

6Assuming again, as the model does, that speakers are categorical and invariant after a critical period.
The results in Section 5.4 suggest that the interaction of this assumption with the (language-external) social
dynamics of the language community is nontrivial; the consequences of relaxing the assumption need to be
systematically investigated in future research.

20



7 Conclusion

In this paper, I have investigated the possibility that language change is, in some cases, neu-
tral and not motivated by functional, social, articulatory or other biases. I have defined a
simple model of variant competition in a finite network of speakers in which variant adop-
tion is neutral, and have tested this model against three criteria that together constitute
well-behavedness of change, viz. dominance, shifting ability and monotonicity. Results
from computer simulations show that if the network of speakers is suitably clusterized, so
that it has a central component with some very well connected speakers, well-behaved neu-
tral change is observed in this model. I have proposed a way of interpreting this finding in
the framework of Milroy and Milroy (1985) and have suggested that a neutral mechanism,
such as the one here considered, calls for a re-evaluation of the role of prestige as a causal
factor in at least some cases of change. I have stressed the importance of approaching
language diachrony from the viewpoint of mathematical models and the need to increase
the complexity and realism of these models, and hope that results like those reported in
this paper can go some way towards justifying this angle of attack. Subsequent work on
the neutrality hypothesis should both incorporate more realistic models of social dynamics
and relax some of the simplifying assumptions made in this paper, to see if well-behaved
neutral change continues to be observed under such modifications.

The discrepancy seen between the results here reported and those obtained by Ke et al.
(2008), Fagyal et al. (2010) and Blythe and Croft (2012) is explained by the different as-
sumptions that go into the definition of each of these four models of language change.
In the latter three models, the social network structure underlying the linguistic variant
dynamics is not allowed to evolve during a simulation run, so that speakers’ neighbour-
hoods remain fixed. In the present model, speakers are added to and removed from the
social network in accordance with the network-rewiring algorithm described in Section 3
and Appendix A, and the neighbourhood of a speaker may change during their lifetime
if speakers in that neighbourhood are removed, or if new speakers are added thereto. The
simulation results show that this interplay between the network-rewiring dynamics and the
linguistic variant dynamics, together with the assumption of having speakers who latch
onto one or another variant early on and do not change thereafter, is instrumental in sup-
porting well-behaved neutral change in communities which are tightly clusterized (Figure
12).

The model here studied makes a number of predictions which are, in principle, open
to investigation and empirical testing. Firstly, the above simulations predict that increasing
the number of linguistic variants available to speakers makes neutral change more likely
if the innovation rate has a moderate value – but only at the expense of a slight drop
in the well-behavedness of change, when quantified using the notions of dominance and
monotonicity (Section 5.2). Secondly, the simulations predict that stable variation should
be more likely in clusterized communities than in well-mixing ones (Section 5.3). Finally,
change in a clusterized community is much faster than in a well-mixing one of correspond-
ing size (Section 5.5).

The possibility of well-behaved neutral change has implications for diachronic work
that seeks to establish non-neutral motivations for language change. While the possibility
of neutral change does not imply its probability and does not, per se, undermine non-
neutral theory in instances where sound reasons exist for believing in the presence of
non-neutral motivations, the results here reported do warn against appealing to non-neutral
explanations when such reasons are lacking; ‘these possibilities [. . . ] need to be considered
before any claim for “function” can be made for either variation or change’ (Lass, 1997,
354). Any particular case of change may in fact be a constellation of neutral and non-
neutral factors, and one important goal for research in language diachrony must be to tease
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apart the relative contributions of these two modes of change.

A Formal definition of the model

Consider a language community of N speakers distributed on an undirected graph (V,Et),
where V = {1, . . . ,N} is the set of speakers (vertices) and Et is an irreflexive, symmetric
relation giving the speaker adjacencies (edges), indexed for time t. Denote by Et(i) =
{ j ∈V : (i, j) ∈ Et} the neighbourhood of speaker i and by degt(i) = |Et(i)| the degree of
speaker i at time t. Let C = {1, . . . ,C} be the set of linguistic variants, and for each time t
define a function vt : V → C which gives the variant of speaker i at time t. Then define an
indicator function

χt(i,r) =
{

1 if vt(i) = r
0 otherwise

, (7)

and let the graph (V,Et) be rewired in discrete time by the following algorithm.

Algorithm 1. Define a stochastic process to shuffle the graph (V,Et) as follows:

1. Let 0≤ µ,σ ≤ 1 and K be a positive integer with K ≤ N−1.

2. At time 0, the relation E0 is initialized randomly; say, every speaker has a probability
of 1/2 to be connected to any other speaker.

3. Choosing a simulation length n, iterate from t = 1 to t = n:

(a) Select a speaker i from V uniformly at random.

(b) Remove all of i’s connections.

(c) For each d = 0, . . . ,N− 1, take each speaker other than i having a degree of
exactly d; put these speakers into a set Qd ; and shuffle Qd to make an ordered
tuple Q̂d .

(d) Define an ordered set Q, the queue, as follows, where ◦ denotes concatenation:

Q = Q̂N−1 ◦ Q̂N−2 ◦ · · · ◦ Q̂0. (8)

(e) Give the speaker i a connection as follows:

i. With probability σ , connect i to the first speaker in Q, and delete this
speaker from Q

ii. With probability 1−σ , connect i to a speaker selected uniformly at ran-
dom from Q, and delete this speaker from Q

(f) Repeat the previous step until i has received exactly K connections.

(g) Set the variant of speaker i as follows: for each possible variant r, the proba-
bility of setting vt(i) = r is to equal

µ

C
+

1−µ

K ∑
j∈Et(i)

χt( j,r). (9)

B Quantifying well-behavedness

In quantifying well-behavedness of change, our interest is in how the frequencies of the C
competing variants unfold in time. For this, let xr(t) denote the relative frequency of the
rth variant at time t, and let~x(t) = (x1(t), . . . ,xC(t)) be the frequency-state of the system. A
sequence of frequency states~x(1), . . . ,~x(n) I shall call a history or (frequency) trajectory.
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B.1 Dominance

Let 0≤ δ ≤ 1. I shall call a frequency-state~x(t) = (x1(t), . . . ,xC(t)) δ -dominant if xr(t)≥
1− δ for some r. Dominance times for a history ~x(1), . . . ,~x(n) are then obtained by the
time-averaged measure

Dδ =
1
n

n

∑
t=1

∆δ (t), (10)

where

∆δ (t) =
{

1 if~x(t) is δ -dominant
0 otherwise

. (11)

B.2 Shifting

To measure shifting ability, I shall record, for a given simulation run, the number of shifts
from δ -dominance by variant r to δ -dominance by another variant r′ 6= r, for a predefined
dominance threshold δ . More formally, for a history ~x(1), . . . ,~x(n), the shifting measure,
Sδ , is defined as the number of time points t ∈ {1, . . . ,n} such that xr(t)≥ 1−δ for some
t, some r, and xr′(t ′)≥ 1−δ for some t ′ < t, some r′ 6= r.

B.3 Monotonicity

A sequence x(1), . . . ,x(n) is monotone if t < t ′ implies either x(t) ≤ x(t ′) or x(t) ≥ x(t ′).
A history ~x(1), . . . ,~x(n) will be called monotone if each variant frequency sequence
xr(1), . . . ,xr(n) is monotone.

Generally, it is possible to estimate the monotonicity of a history by the following
measure, for integer τ > 0 and real α > 0:

Wτ,α =
1

n− τ

n−τ

∑
t0=1

C

∑
r=1


(

t0+τ−1

∑
t=t0

s+r (t)

)
︸ ︷︷ ︸

=m+
r (t0,τ)

(
t0+τ−1

∑
t=t0

s−r (t)

)
︸ ︷︷ ︸

=m−r (t0,τ)


α

, (12)

where

s+r (t) =
{

1 if xr(t)< xr(t +1)
0 if xr(t)≥ xr(t +1)

, (13)

and

s−r (t) =
{

1 if xr(t)> xr(t +1)
0 if xr(t)≤ xr(t +1)

. (14)

(For an intuitive characterization of this equation in terms of the quantities m+
r (t0,τ) and

m−r (t0,τ), see p. 10, above.) This has the following properties under our model:

Proposition 1. For a simulation operating under Algorithm 1 (Appendix A),

(i) 0≤Wτ,α ≤ τ2α/22α−1 for all τ,α;

(ii) Wτ,α = 0 for any τ and α if and only if the history is monotone;

(iii) Wτ,α = 0 for some (sufficiently small) τ and all α if and only if the history is piece-
wise monotone;

(iv) Wτ,α = τ2α/22α−1 for τ even, and Wτ,α = (τ2−1)α/22α−1 for τ odd, if and only if
the history zig-zags persistently;
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(v) For large τ , the expected value of Wτ,α is (2/3)2ατ2α/C2α−1 if the history is a
random walk.

Proof. Let m+(r, t0,τ) = m+
r (t0,τ) = ∑t0+τ−1

t=t0 s+r (t) and m−(r, t0,τ) = m−r (t0,τ) =

∑t0+τ−1
t=t0 s−r (t).

(i) That Wτ,α ≥ 0 is plain. The maximum is achieved when two variants r1 and r2 alter-
nate in upward and downward inflections. For τ even, this means that m+(ri, t0,τ) =
m−(ri, t0,τ) = τ/2 for i = 1,2, for all t0, and m+(ri, t0,τ) = m−(ri, t0,τ) = 0 for
i 6= 1,2, and therefore

Wτ,α =
1

n− τ

n−τ

∑
t0=1

2
((

τ

2

)2
)α

=
τ2α

22α−1 . (15)

If τ is odd, then 
m+(ri, t0,τ) = τ−1

2
m−(ri, t0,τ) = τ−1

2 +1
m+(r j, t0,τ) = τ−1

2 +1
m−(r j, t0,τ) = τ−1

2

(16)

either for i = 1, j = 2 or for i = 2, j = 1. In either case,

Wτ,α =
1

n− τ

n−τ

∑
t0=1

2
(

τ−1
2

(
τ−1

2
+1
))α

=

(
τ2−1

)α

22α−1 <
τ2α

22α−1 . (17)

(ii) If a history is monotone, then either m+(r, t0,τ) = 0 or m−(r, t0,τ) = 0 or both for
each variant r, for each time t0. Hence Wτ,α = 0. Conversely, if Wτ,α = 0, then
m+(r, t0,τ) = 0 or m−(r, t0,τ) = 0 for each r, for each t0, which implies that the
history is monotone.

(iii) Suppose that a history is monotone when viewed through a window of size τ0. Then
with the above reasoning m+(r, t0,τ) = 0 or m−(r, t0,τ) = 0 in such windows, and
consequently we have Wτ0,α = 0 for the average. Conversely, if Wτ0,α = 0, the history
is piecewise monotone in windows of size at most τ0.

(iv) This was shown in (i).

(v) Consider an arbitrary variant r at any time t. Then xr(t) can inflect upwards in two
ways: either r is selected to change so that xr increases while some r′ 6= r decreases,
or some r′ 6= r is selected so that xr′ decreases and xr increases. Since~x(t) is assumed
to be a random walk, the probability for xr(t) to increase is then given by

p =
1
C
· 1

3
+

C−1
C
· 1

3
· 1
C−1

=
2

3C
(18)

(probability of picking r times probability of xr increasing (rather than decreasing
or not changing), plus probability of picking r′ times probability of xr′ decreasing
so that xr increases). By symmetry, the probability for r to inflect downward is the
same. In a window of length τ , we would then expect pτ upward and pτ downward
inflections for variant r, if τ is sufficiently large. This gives us

F :=
C

∑
r=1

((
2

3C
τ

)2
)α

=C
22ατ2α

32αC2α
=

(
2
3

)2α
τ2α

C2α−1 , (19)

hence

Wτ,α =
1

n− τ

n−τ

∑
t0=1

F =

(
2
3

)2α
τ2α

C2α−1 , (20)

as wished.
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Now let

Mτ = 1−
Wτ,1/2

τ
. (21)

Then

Proposition 2. For a simulation operating under Algorithm 1 (Appendix A),

(i) 0≤Mτ ≤ 1 for any τ;

(ii) Mτ = 1 for any τ if and only if the history is monotone;

(iii) Mτ = 1 for some (sufficiently small) τ if and only if the history is piecewise mono-
tone;

(iv) Mτ = 0 for even τ if and only if the history zig-zags persistently;

(v) For large τ , the expected value of Mτ is 1/3 if the history is a random walk.

Proof. From Proposition 1 by simple substitution via (21).

Thus, the value of Mτ will range from 0 (inclusive) to 1 (inclusive) for even window sizes
τ . The closer this value is to 1 the more monotone the history; the closer the value is to
0, the less monotone the history. Having these desirable properties, Mτ (restricted, without
loss of generality, to even τ) will serve as our measure of monotonicity.
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