
The University of Manchester Research

Finding Finite Models in Multi-Sorted First-Order Logic

DOI:
10.1007/978-3-319-40970-2_20

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Reger, G., Suda, M., & Voronkov, A. (2016). Finding Finite Models in Multi-Sorted First-Order Logic. In N.
Creuignou, & D. Le Berre (Eds.), Theory and applications of satisfiability testing -- SAT 2016 : 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings (pp. 323-341). (Theory and Applications of
Satisfiability Testing – SAT 2016; Vol. 9710). Springer Nature. https://doi.org/10.1007/978-3-319-40970-2_20
Published in:
Theory and applications of satisfiability testing -- SAT 2016 : 19th International Conference, Bordeaux, France,
July 5-8, 2016, Proceedings

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2022

https://doi.org/10.1007/978-3-319-40970-2_20
https://www.research.manchester.ac.uk/portal/en/publications/finding-finite-models-in-multisorted-firstorder-logic(c82e7b14-966b-47ea-98aa-838e44088396).html
https://doi.org/10.1007/978-3-319-40970-2_20

Selecting the Selection?

Giles Reger1, Martin Suda1, Andrei Voronkov1,2,3, and Kryštof Hoder

1 University of Manchester, Manchester, UK
2 Chalmers University of Technology, Gothenburg, Sweden

3 EasyChair

Abstract. Modern saturation-based Automated Theorem Provers typically im-
plement the superposition calculus for reasoning about first-order logic with or
without equality. Practical implementations of this calculus use a variety of lit-
eral selections and term orderings to tame the growth of the search space and
help steer proof search. This paper introduces the notion of lookahead selection
that estimates (looks ahead) the effect of selecting a particular literal on the num-
ber of immediate children of the given clause and selects to minimize this value.
There is also a case made for the use of incomplete selection strategies that at-
tempt to restrict the search space instead of satisfying some completeness criteria.
Experimental evaluation in the VAMPIRE theorem prover shows that both looka-
head selection and incomplete selection significantly contribute to solving hard
problems unsolvable by other methods.

1 Introduction

This paper considers the usage of literal selection strategies in practical implementa-
tions of the superposition calculus (and its extensions). The role of literal selection in
arguments for completeness have been known for a long time [1], but there has been
little written about their role in proof search. This paper is concerned with the proper-
ties of literal selections that lead to the quick proofs i.e. those that restrict proof search
in a way that can make finding a proof quickly more likely. In fact, our disregard for
completeness is strong enough to suggest incomplete literal selections as a fruitful route
to such fast proofs. Our approach is based on the (experimental) observation that it is
generally most helpful to perform inferences that lead to as few new clauses as possible.
The main conclusion of this is a notion of lookahead selection that selects exactly the
literal that is estimated to take part in as few inferences as possible.

The setting of this work is saturation-based first-order theorem provers based on
the superposition calculus. These are predominant in the area of first-order theorem
proving (see the latest iteration of the CASC competition [16]). Provers such as E [11],
SPASS [18], and VAMPIRE [7, 10] work by saturating a clause search space with respect
to an inference system (the superposition calculus) with the aim of deriving the empty
clause (witnessing unsatisfiability of the initial clause set). Various techniques are vital
to avoid explosion of the search space. Predominant among these is redundancy elim-
ination (such as subsumption) used to remove clauses. One can also consider methods
? This work was supported by EPSRC. Kryštof Hoder’s contribution was carried out while at the

University of Manchester. Andrei Voronkov is also supported by the Wallenberg Foundation.

to restrict the number of generated clauses, this is where we will consider the role of
literal selection. The idea is that inferences are only performed on selected literals and
literals are selected in a way to restrict the growth of the search space. Another effect of
literal selection is to avoid obtaining the same clauses by permutations of inferences.

For the resolution calculus there is a famous result about completeness with respect
to selection and term orderings [1] that supposes properties of the selection strategy
to construct a model given a saturated set of clauses. This result carries over to super-
position. As a consequence, particular selections and orderings can be used to show
decidability of certain fragments of first-order logic, see e.g. [3, 5]. However, the re-
quirements placed on selection by this completeness result are some times at odds with
the aim of taming proof search. This paper presents different selection strategies (in-
cluding the aforementioned lookahead selection) that aim to effectively control proof
search and argues that dropping the completeness requirements can further this goal.

The main contributions of this paper can be summarised as follows: a) we formu-
late a new version of the superposition calculus which captures the notion of incomplete
selections while being general enough to subsume the standard presentation (Sect. 3);
b) we introduce quality selections, an easy to implement compositional mechanism
for defining literal selections based on a notion of quality (Sect. 4), and c) we introduce
lookahead selection and describe how it can be efficiently implemented (Sect. 5). These
ideas have been realised within VAMPIRE and complemented by several selections
adapted from other theorem provers (Sect. 6). Our experimental evaluation (Sect. 7)
shows that these new selections (incomplete and lookahead) are good at both solving
the most problems overall and solving problems uniquely.

2 Preliminaries

We consider the standard first-order predicate logic with equality. Terms are of the form
f(t1, . . . , tn), c or x where f is a function symbol of arity n ≥ 1, t1, . . . , tn are terms, c
is a zero arity function symbol (i.e. a constant) and x is a variable. The weight of a term t
is defined as w(t) = 1 if t is a variable or a constant and as w(t) = 1+

∑
i=1,...,n w(ti)

if t is of the form f(t1, . . . , tn). In other words, the weight or a term is the number of
symbols in it. Atoms are of the form p(t1, . . . , tn), q or t1 ' t2 where p is a predicate
symbol of arity n, t1, . . . , tn are terms, q is a zero arity predicate symbol and ' is the
equality symbol. The weight function naturally extends to atoms: w(p(t1, . . . , tn)) =
1 +

∑
i=1,...,n w(ti), w(t1 ' t2) = w(t1) + w(t2), and w(q) = 1. A literal is either

an atom A, in which case we call it positive, or a negation ¬A, in which case we call it
negative. We write negated equalities as t1 6' t2. The weight of a literal is the weight
of the corresponding atom. We write t[s]p and L[s]p to denote that a term s occurs in a
term t (in a literal L) at a position p.

A clause is a disjunction of literals L1 ∨ . . . ∨ Ln for n ≥ 0. We disregard the
order of literals and treat a clause as a multiset. When n = 0 we speak of the empty
clause, which is always false. When n = 1 a clause is called a unit clause. Variables in
clauses are considered to be universally quantified. Standard methods exist to transform
an arbitrary first-order formula into clausal form.

A substitution is any expression θ of the form {x1 7→ t1, . . . , xn 7→ tn}, where
n ≥ 0, and Eθ is the expression obtained from E by the simultaneous replacement of

2

each xi by ti. By an expression here we mean a term, an atom, a literal, or a clause. An
expression is ground if it contains no variables.

A unifier of two expressions E1 and E2 different from clauses is a substitution θ
such that E1θ = E2θ. It is known that if two expressions have a unifier, then they have
a so-called most general unifier. Let mgu be a function returning a most general unifier
of two expressions if it exists.

A simplification ordering (see, e.g. [4]) on terms is an ordering that is well-founded,
monotonic, stable under substitutions and has the subterm property. Such an ordering
captures a notion of simplicity i.e. t1 ≺ t2 implies that t1 is in some way simpler than
t2. VAMPIRE uses the Knuth-Bendix ordering [6]. Such term orderings are usually total
on ground terms and partial on non-ground ones. There is a simple extension of the
term ordering to literals, the details of which are not relevant here.

3 The Superposition Calculus and Literal Selection

The superposition calculus as implemented in modern theorem provers usually derives
from the work of Bachmair and Ganzinger [1] (see also [2, 8]). There, the inference
rules of the calculus come equipped with a list of side conditions which restrict the
applicability of each rule. The rules are sound already in their pure form, but the addi-
tional side conditions are essential in practice as they prevent the clause search space
from growing too fast. At the same time, it is guaranteed that the calculus remains refu-
tationally complete, i.e. able to derive the empty clause from every unsatisfiable input
clause set.

Here we are particularly interested in side conditions concerning individual literals
within a clause on which an inference should be performed. The formulation by Bach-
mair and Ganzinger derives these conditions from a simplification ordering ≺ on terms
and its extension to literals, and from a so called selection function S which assigns to
each clauseC a possibly empty multiset S(C) of negative literals inC, which are called
selected. The ordering and the selection function should be understood as parameters
of the calculus.

The calculus is designed in such a way that an inference on a positive literalLwithin
a clause C must only be performed when L is a maximal literal in C (i.e. there is no
literal L′ in C such that L ≺ L′) and there is no selected literal in C. Complementarily,
an inference on a negative literal L within a clause C must only be performed when L
is a maximal literal in C and there is no selected literal in C or L is selected in C. Such
conditions are shown to be compatible with completeness.

In this paper, we take a different perspective on literal selection. We propose the
notion of a literal selection strategy, or literal selection for short, which is a procedure
that assigns to a non-empty clause C a non-empty multiset of its literals. We avoid the
use of the word “function” on purpose, since it is not guaranteed that we select the same
multiset even if the same clause occurs in a search space again after being deleted. In
addition, we do not want the selection to depend just on the clause itself, but potentially
also on a broader context including the current state of the search space.

We formulate the inference rules of superposition such that an inference on a literal
within a clause is only performed when that literal is selected. This is evidently a simpler
concept, which primarily decouples literal selection from completeness considerations

3

Resolution Factoring

A ∨ C1 ¬A′ ∨ C2

(C1 ∨ C2)θ
, A ∨A′ ∨ C

(A ∨ C)θ
,

where, for both inferences, θ = mgu(A,A′) and A is not an equality literal

Superposition

l ' r ∨ C1 L[s]p ∨ C2

(L[r]p ∨ C1 ∨ C2)θ
or

l ' r ∨ C1 t[s]p ⊗ t′ ∨ C2

(t[r]p ⊗ t′ ∨ C1 ∨ C2)θ
,

where θ = mgu(l, s) and rθ 6� lθ and, for the left rule L[s] is not an equality literal,
and for the right rule ⊗ stands either for ' or 6' and t′θ 6� t[s]θ

EqualityResolution EqualityFactoring

s 6' t ∨ C
Cθ

,
s ' t ∨ s′ ' t′ ∨ C

(t 6' t′ ∨ s′ ' t′ ∨ C)θ
,

where θ = mgu(s, t) where θ = mgu(s, s′), tθ 6� sθ, and t′θ 6� s′θ

Fig. 1. The rules of the superposition and resolution calculus.

as it also allows incomplete literal selection. At the same time, however, it is general
enough so that completeness can be easily taken into account when a particular selection
strategy is designed.
The Calculus. Our formulation of the superposition and resolution calculus with literal
selection is presented in Fig. 1. It consists of the resolution and factoring rules for deal-
ing with non-equational literals and the superposition, equality resolution and equality
factoring rules for equality reasoning. Although resolution and factoring can be simu-
lated by the remaining rules provided non-equational atoms are encoded in a suitable
way, we prefer to present them separately, because they also have separate implemen-
tations in VAMPIRE for efficiency reasons.

The calculus in Fig. 1 is parametrised by a simplification ordering ≺ and a literal
selection strategy, which we indicate here (and also in the rest of the paper) by under-
lining. In more detail, literals underlined in a clause must be selected by the strategy.
Literals without underlying may be selected as well. Generally, inferences are only per-
formed between selected literals with the exception of the two factoring rules. There
only one atom needs to be selected and factorings are performed with other unifiable
atoms.

We remark that further restrictions on the calculus can be added on top of those
mentioned in Fig. 1. In particular, if literal selection captures the maximality condition
of a specific literal in a premise, this maximality may be required to also hold for the
instance of the premise obtained by applying the mgu θ. We observed that these addi-
tional restrictions did not affect the practical performance of our prover in a significant
way and for simplicity kept them disabled during our experiments.

4

We also note that the calculi based on the standard notion of selection function can
be captured by our calculi – all we have to do is to select all maximal literals in clauses
with no literals selected by the function.

Selection and Completeness. We now reformulate the previously mentioned side
conditions on literals which are required by the completeness proof of Bachmair and
Ganzinger [1] in terms of literal selection strategies. In the rest of the paper we refer to
strategies satisfying the following completeness condition as complete selections:

Select either a negative literal or all maximal literals with respect to ≺. (1)

Although selections which violate condition (1) cannot be used for showing satisfiabil-
ity of a clause set by saturation, our experimental results will demonstrate that incom-
plete selections are invaluable ingredients for solving many problems.

As an example of what can happen if condition (1) is violated, consider the follow-
ing unsatisfiable set of clauses where all selected literals are underlined.

p ∨ q p ∨ ¬q ¬p ∨ q ¬p ∨ ¬q

Note that this set is clearly unsatisfiable as one can easily derive p and ¬p and then the
empty clause. However, using the given selection it is only possible to derive tautolo-
gies. The selection strategy does not fulfill the above requirements as either p � q and
p must be selected in p ∨ q, or q � p and ¬q must be selected in p ∨ ¬q.

4 Quality Selections

Vampire implements various literal selections in a uniform way, using preorders on
literals, which try to reflect certain notions of quality. We convert such a preorder to
a linear order by breaking ties in an arbitrary but fixed way. This order on literals (a
quality order) induces two selections, one incomplete and one complete. Essentially,
the incomplete one simply selects the literal greatest in this order and the complete one
modifies the incomplete literal selection where the latter violates the sufficient condi-
tions for completeness. We call the resulting class of selections quality selections. We
believe that this is a new way of defining literal selections that has not been reported in
the literature or observed in other systems before.

The preorders we use capture various notions of quality the literals we want to select
should have. Let us now discuss what it is that we want to achieve from selection. The
perfect selection strategy contains an oracle that knows the exact inferences necessary
to derive the empty clause in the shortest possible time. Without such an oracle we can
employ heuristics to suggest those inferences that are more desirable.

There is a general insight that a slowly growing search space is superior to a faster
growing one, provided completeness is not compromised too much. It should be evident
that a search space that grows too quickly will soon become unmanageable, reducing
the likelihood that a proof is found. This has been repeatedly observed in practice. This
insight holds despite the fact that the shortest proofs for some formulas may theoreti-
cally become much longer in the restricted (slowly growing) setting. Therefore, the aim
of a selection strategy in our setting is to generate the fewest new clauses.

5

4.1 Quality Orderings
Let us consider several preorders B on literals that capture notions of preference for
selection i.e. l1 B l2 means we should prefer selecting l1 to l2. If they are equally
preferable, that is l1 B l2 and l2 B l1, we will write l1 ≡ l2. We are interested in
preorders that prefer literals having as few children as possible, this means decreasing
the likelihood that we can apply the inferences in Fig. 1.
Unifiability. Firstly we note that all inferences require the selected literal (or one of its
subterms) to unify with something in another clause. Therefore, we prefer literals that
are potentially unifiable with fewer literals in the search space.

To this end, we first note that a heavy literal is likely to have a complex structure
containing multiple function symbols. It is therefore unlikely that two heavy literals
will be unifiable. This observation is slightly superficial because, for example, a lit-
eral p(x1, . . . , xn) for large n has a large weight but unifies with all negative literals
containing p. Let l1 Bweight l2 if the weight of l1 is greater than the weight of l2.

Next, we note that the fewer variables a literal contains the less chance it has to
unify with other literals e.g. p(f(x), y) will unify with every literal that p(f(a), y) will
unify with, and potentially many more. Let l1 Bvars l2 if l1 has fewer variables than l2.

However, we can observe that not all variables are equal, the literal p(x) will unify
with more than p(f(f(x))). As a simple measure of this we can consider only variables
that occur at the top-level i.e. immediately below a predicate symbol. Let l1 Btop l2 if
l1 has fewer top-level variables than l2. Similarly, p(f(x), f(y)) will unify with more
than p(f(x), f(x)) as the repetition of x constrains the unifier. To capture this effect we
can prefer literals with fewer distinct variables. Let l1 Bdvar l2 if l1 has fewer distinct
variables than l2.
Equality and Polarity. We can observe from the inference rules in Fig. 1 that positive
equality is required for superposition, which can be a prolific inference as it can rewrite
inside a clause many times. Therefore, we should prefer not to select positive equality
where possible. Let L Bnposeq s ' t, where L is a non-equality literal, and s 6'
t Bnposeq s

′ ' t′.
In a similar spirit, we observe that negative equality otherwise only appears in

Equality Resolution which is in general a non-problematic inference as it is performed
on a single clause and decreases the number of its literals. Therefore, in certain cases we
should prefer negative equalities. Let s 6' t Bneq L where L is a non-equality literal.

Finally, for non-equality literals it is best to default to selecting a single polarity as
literals with the same polarity cannot resolve. Furthermore, selecting negative literals
seems to be preferable as it keeps the corresponding selection strategy from compro-
mising the completeness condition. We let ¬A Bneg A

′.

4.2 Quality-Based Selections
We want to compose different notions of quality so that we can break ties when the first
notion is too coarse to distinguish literals. We define the composition of two preorders
Ba and Bb, denoted by Ba ◦ Bb, by l1 (Ba ◦ Bb) l2 if and only l1 Ba l2, or l1 ≡a l2
and l1 Bb l2. Evidently, a composition of two preorders is also a preorder.

Given a preorder B we define a selection strategy πB that selects the greatest (high-
est quality) literal with respect to B breaking ties arbitrarily, but in a deterministic fash-
ion. We call such strategies quality selections.

6

4.3 Completing the Selection
Quality selections are not necessarily complete i.e. they do not satisfy the completeness
condition (1) introduced in Sect. 3. It is our hypothesis that these incomplete selection
strategies are practically useful. However, there are cases where complete selection is
desirable. One obvious example is where we are attempting to establish satisfiability.4

Given a quality selection πB, it is possible to also define a complete selection strat-
egy using the following steps. Let N initially be the set of all literals in a clause and M
be the subset of N consisting of all its literals maximal in the simplification ordering.

1. If πB(N) is negative then select πB(N)
2. If πB(N) ∈M and all literals in M are positive then select M
3. If M contains a negative literal then set N to be the set of all negative literals in
M and goto 1

4. Remove πB(N) from N and goto 1

This attempts to, where possible, select a single negative literal that is maximal with
respect to the quality ordering. The hypothesis being that it is always preferable to
select a single negative literal rather than several maximal ones.

5 Lookahead Selection

In this section we introduce a general notion of lookahead selection and describe an
efficient implementation of the idea. Our discussion in the previous section suggested
that we try to find preorders that potentially minimize the number of children of a
selected literal. Essentially, lookahead selection tries to select literals that result in the
smallest number of children. Note that this idea requires a considerable change in the
design and implementation, because the number of children depends on the current state
of the search space rather than on measures using only the clause we are dealing with.

5.1 Given-Clause Algorithms and Term Indexing
Before we can describe lookahead selection we give some context about how VAMPIRE
and other modern provers implement saturation-based proof search.

VAMPIRE implements a given-clause algorithm that maintains a set of passive and
a set of active clauses and executes a loop where (i) a given clause is chosen from the
passive set and added to the active set, (ii) all (generating) inferences between the given
clause and clauses in active are performed, and (iii) new clauses are considered for
forward and backward simplifications and added to passive if they survive. The details
of (iii) are not highly relevant to this discussion, but are very important for effective
proof search.

Generating inferences are implemented using term indexing techniques (see e.g.
[13]) that index a set of clauses (the active clauses in this case) and can be queried for
clauses containing subexpressions that match or unify with a given expression.

We can view a term index T for an inference rule as a map that takes a clause l∨D
with a selected literal l and returns a list of candidate clauses, which is a set containing

4 It should be noted that VAMPIRE always knows when it is incomplete and therefore returns
Unknown when obtaining a saturated set with the help of an incomplete strategy.

7

all clauses that can have this inference against l ∨ D. VAMPIRE maintains two term
indexes for superposition and a separate one for binary resolution. Term indexes are not
required for factoring or equality resolution as these are performed on a single clause.

5.2 General Idea Behind Lookahead Selection

The idea of lookahead selection is that we directly estimate for each literal l in C how
many children the clause C would have when selecting l and applying inferences on l
against active clauses.

Ideally we would have access to a function children(C, l) that would return the
number of children of clause C resulting from inferences with active clauses, given that
the literal l was selected in C. We discuss how we practically estimate such a value
below.

Given this value we can define a preorder5 that minimises the number of children:

l1 Blmin l2 iff children(C, l1) < children(C, l2)

This is based on our previous assertion that we want to produce as few children as pos-
sible. But now we have an effective way of steering this property we can also consider
the opposite i.e. introduce a quality ordering that maximises the number of children:

l1 Blmax l2 iff children(C, l1) > children(C, l2)

Our hypothesis is that a selection strategy based on this second ordering will perform
poorly, as the search space would grow too quickly.

5.3 Completing the Selection... Differently

In Sect. 4.3 selection strategies were made complete by searching for the best negative
literal where possible. The same approach is taken for selection strategies based on
lookahead selection but because it is now relatively much more expensive to compare
literals it is best to decide on the literals to compare beforehand.

Firstly, if there are no negative literals all maximal literals must be selected and
no lookahead selection is performed. Otherwise, selection is performed on all negative
literals and a single maximal positive literal (if there is only one). This ignores the com-
plex case where the combination of all maximal literals would lead to fewer children
than the best negative literal.

5.4 Efficiently Estimating Children

To efficiently estimate the number of children that would arise from selecting a partic-
ular literal in a clause we make use of the term indexing structures.

Let T1, . . . , Tn be a set of term indexes capturing the current active clause set. An
estimate for children(C, l) can then be given by:

estimate(l) = Σn
i=1|Ti[l]|.

5 Note that this is not a preorder in the same sense as before as it requires the context of a clause
and active clause set. In other words, this preorder is a relation that changes during the proof
search process.

8

This is an overestimate as the term indexes do not check side-conditions related to
orderings after substitution. For example, if we apply a superposition from l ' r with
θ = mgu(l, r) and we have r 6� l, rθ � lθ, the index will select l ' r ∨ C1 as a
candidate clause but the rule does not apply. In addition, the number of children is not
the same as the number of children that survive retention tests (those neither deleted nor
simplified away). However, applying all rules and simplifying children for every literal
can be very time-consuming, so we use an easier-to-compute approximation instead.

It is possible to extend the estimate to include inferences that do not rely on indexes.
We have done this for equality resolution but not factoring, due to the comparative
effort required. In general, our initial hypothesis was that selection should be a cheap
operation and so it is best to perform as few additional checks as possible.

In VAMPIRE term indexes return iterators over clauses. This allows us to compute
estimate in a fail-fast fashion where we search all literals at once and terminate as
soon as the estimate for a single literal is finished. This assumes we are minimising
(i.e. computing maximal literals with respect to Blmin), otherwise we must exhaust the
iterators of all but one of the literals.

Of course, as selecting literals in this way now depends on the active clauses it
is desirable to do selection as late as possible to maximise accuracy of the estimate.
Therefore, VAMPIRE performs literal selection at the point when it chooses a clause
from the passive set for activation.

Note that the technique described here can be extended to any setting that uses
indexes for generating inferences.

6 Concrete Literal Selection Strategies
In this section we briefly describe concrete literal selection strategies. To have a more
general view of selections, we also implemented some selections found in other sys-
tems. Of course, when considering selections adapted from other systems we cannot
draw conclusions about their utility in the original system as the general implemen-
tation is different. But it is useful to compare the general ideas. Strategies have been
given numbers to identify them that is based on an original numbering in VAMPIRE,
these numbers are used in the next section.

6.1 Vampire
We give a brief overview of the selection strategies currently implemented in VAMPIRE.
Total Selection. The most trivial literal selection strategy is to select everything. This
corresponds to the calculus without a notion of selection and is obviously complete.
This is referred to by number 0.
Maximal Selection. VAMPIRE’s version of maximal selection either selects one maxi-
mal negative literal, if one of the maximal literals is negative, or all maximal literals, in
which case they will all be positive. This is referred to by number 1.
Quality Selections. VAMPIRE uses four quality selections obtained by combining pre-
orders defined in the previous section as follows:

B2 = Bweight

B3 = Bnoposeq ◦ Btop ◦ Bdvar

B4 = Bnoposeq ◦ Btop ◦ Bvar ◦ Bweight

B10 = Bneq ◦ Bweight ◦ Bneg

9

VAMPIRE uses both the incomplete versions of the selection strategies, which it num-
bers 1002, 1003, 1004 and 1010, and the complete versions, which it numbers 2, 3,
4 and 10. We note that not all combinations of the preorders discussed in Sect. 4 are
used. As may be suggested by the numbering, previous experimentation introduced and
removed various combinations thereof, leaving the current four.
Lookahead Selection. VAMPIRE uses two lookahead selections based on preorders
defined as follows

B11 = Blmin ◦ B3

B12 = Blmax ◦ B3

The incomplete versions of the associated strategies are numbered 1011 and 1012 whilst
the complete versions are numbered 11 and 12.

6.2 SPASS Inspired
We consider three literal selection strategies adapted from SPASS (as found in the
prover’s source code)6:

– Selection off (20) selects all the maximal literals. From the perspective of the orig-
inal Bachmair and Ganzinger theory nothing is selected, but in our setting this
effectively amounts to selecting all the maximal literals.

– Selection always (22) selects a negative literal with maximal weight, if there is
one. Otherwise it selects all the maximal ones.

– If several maximal (21) selects a unique maximal, if there is one. Otherwise it
selects a negative literal with maximal weight, if there is one. And otherwise it
selects all the maximal ones.

6.3 E Prover Inspired
We consider the following five literal selection strategies adapted from E (as mentioned
in the prover’s manual [12]):

– SelectNegativeLiterals (30) selects all negative literals, if there are any. Otherwise
it selects all the maximal ones.

– SelectPureVarNegLiterals (31) selects a negative equality between variables, if
there is one. Otherwise it selects all the maximal literals.

– SelectSmallestNegLit (32) selects a negative literal with minimal weight, if there
is one. Otherwise it selects all the maximal literals.

– SelectDiffNegLit (33) selects a negative literal which maximises the difference be-
tween the weight of the left-hand side and the right-hand side,7 if there is a negative
literal at all. Otherwise it selects all the maximal literals.

– SelectGroundNegLit (34) selects a negative ground literal for which the weight
difference between the left-hand side and the right-hand side terms is maximal, if
there is a negative literal at all. Otherwise it selects all the maximal literals.

6 SPASS also has “select from list”, which requires the user to specify predicates that will be
preferred for selection. We did not implement this for the obvious reason.

7 In E, all literals are represented as equalities. A non-equational atom p(t) is represented as
p(t) = >, where > is a special constant true. Thus it makes sense to talk about left-hand and
right-hand side of a literal even in the non-equational case.

10

– “SelectOptimalLit” (35) selects as (34) if there is a ground negative literal and as
(33) otherwise.

It should be noted that our adaptations of E’s selections are only approximate, be-
cause E uses a different notion of term weight than VAMPIRE, defining constants and
function symbols to have basic weight 2 and variables to have weight 1. Also we do not
consider E’s NoSelection strategy separately as it is the same as SPASS’s Selection off
and E’s SelectLargestNegLit strategy as it is the same as SPASS’s Selection always
(modulo the notion of term weight).

7 Experimental Evaluation

Here we report on our experiments with selection strategies using the theorem prover
VAMPIRE. Our aim is to look for strategies which help to solve many problems, but
also for strategies which solve problems other strategies cannot solve. This is because
we are ultimately interested in constructing a portfolio combining several strategies
which solve as many problems as possible within a reasonably short amount of time.

Experimental Setup. For our experiments we took all the problems from the TPTP
[15] library version 6.3.0 which are in the FOF or CNF format, excluding only unit
equality problems (for which literal selection does not play any role) and problems of
rating 0.0 (which are trivial to solve). This resulted in a collection of 11 107 problems.8

We ran VAMPIRE on these problems with saturation algorithm set to discount and
age-weight ratio to 1 : 5 (cf. [7, 10]), otherwise keeping the default settings and varying
the choice of literal selection. By default, VAMPIRE employs the AVATAR architecture
to perform clause splitting [17, 9]. AVATAR was also enabled in our experiments.

The time limit was set to 10 seconds for a strategy-problem pair. This should be suf-
ficient for obtaining a realistic picture of relative usefulness of each selection strategy,
given the empirical observation pertaining to first-order theorem proving in general, that
a strategy usually solves a problem very fast if at all. The experiments were run on the
StarExec cluster [14], whose nodes are equipped with Intel Xeon 2.4GHz processors.
Experiments used Vampire’s default memory limit of 3GB.

Result Overview. In total, we tested 23 selection strategies i.e. those summarised in
Sect. 6. With AVATAR, VAMPIRE never considers clauses with ground literals for se-
lection, therefore selection 34 behaves the same as 20 and 35 the same as 33. Conse-
quently, results for 34 and 35 are left out from initial discussions, but will be discussed
later when we consider what happens when AVATAR is not used.

Out of our problem set, 5 908 problems were solved by at least one strategy.9 This
includes 31 problems of TPTP rating 1.0. Out of the solved problems, 5 621 are unsat-
isfiable and 287 satisfiable. Because we are mainly focusing on theorem proving, i.e.
showing unsatisfiability, we will first restrict our attention to the unsatisfiable problems.

8 A list of the selected problems, the executable of our prover as well as the results of the exper-
iment are available at http://www.cs.man.ac.uk/˜sudam/selections.zip.

9 And 1 952 problems were solved by every strategy.

11

Table 1. Left: performance of the individual selection strategies. Right: statistics collected from
the runs: #child is the average number of children of an activated clause, %incomp is the average
percentage of the cases when an incomplete selection violates the completeness condition. The
values marked ‘s.o.’ (solved only) are collected only from runs which solved a problem, the values
marked ‘all’ are collected from all runs.

selection #solved %total #unique u-score #child (s.o./all) %incomp. (s.o./all)
1011 4718 83.9 156 563.6 4.2 / 9.9 3.3 / 4.5
1010 4461 79.3 31 384.1 9.4 / 14.6 2.1 / 2.5

11 4333 77.0 26 354.7 6.5 / 13.6
1002 4327 76.9 62 396.1 8.7 / 15.4 9.7 / 7.6

10 4226 75.1 8 283.3 9.9 / 14.5
21 4113 73.1 6 274.2 10.7 / 13.8

2 4081 72.6 1 261.0 10.3 / 14.9
1004 4009 71.3 8 276.2 6.3 / 14.1 19.5 / 7.3

4 3987 70.9 2 247.2 7.8 / 13.7
3 3929 69.8 1 235.5 8.7 / 13.8

1003 3907 69.5 6 258.2 6.5 / 14.7 22.6 / 8.6
33 3889 69.1 1 239.2 7.1 / 18.3
22 3885 69.1 0 236.2 7.0 / 18.4

1 3778 67.2 6 227.9 9.4 / 19.9
31 3702 65.8 0 218.2 13.4 / 23.1
20 3682 65.5 0 217.1 13.3 / 23.2
30 3559 63.3 3 204.9 16.6 / 28.8
32 3538 62.9 5 209.8 6.3 / 19.9
0 3362 59.8 8 203.1 35.8 / 48.7

12 3308 58.8 3 183.4 14.0 / 24.5
1012 2532 45.0 5 146.1 13.9 / 30.8 7.6 / 5.8

Ranking the Selections. Table 1 (left) shows the performance of the individual se-
lection strategies. We report the number of problems solved by each strategy (which
determines the order in the table), the percentage with respect to the above reported
overall total of problems solved, the number of problems solved by only the given strat-
egy (unique), and an indicator we named u-score. U-score is a more refined version
of the number of uniquely solved problems. It accumulates for each problem solved
by a strategy the reciprocal of the number of strategies which solve that problem. This
means that each uniquely solved problem contributes 1.0, each problem solved also by
one other strategy adds 0.5, etc. It also means that the sum of u-scores in the whole
table equals the number of problems solved in total.

By looking at Table 1 we observe that 1011, the incomplete version of the lookahead
selection, is a clear winner both with respect to the number of solved problems and
the number of uniques. It solves more than 80% of problems solvable by at least one
strategy and accumulates by far the highest u-score. Other very successful selections
are the incomplete 1010 and 1002, and 11, the complete version of lookahead.

Inverted lookahead in the incomplete (1012) and complete (12) version end up last
in the table, which can be seen as a confirmation of our hypothesis from Sect. 5. Sim-
ilarly the experimental selection 0, which selects all the literals in a clause, and the

12

selection 32 adapted from E, which selects the smallest negative literal, inverting the
intuition that large (with large weight) literals should be selected, end up at the end of
the table.10 Interestingly, however, to each of these “controversial” selections we can
attribute several uniquely solved problems.

Table 1 also shows that, with the exception of selection 3 (and 12), the incomplete
version of a selection always solves more problems than the complete one.

Additional Statistics. Table 1 (right) displays for each selection two interesting aver-
ages obtained across the runs. The first is the average number of children of an activated
clause and the results confirm that the lookahead selections (1011 and 11), in accord
with their design, achieve the smallest value for this metric. This further confirms our
hypothesis that preferring to generate as few children as possible leads to successful
strategies. The second is the average number of times an incomplete strategy selects
in such a way as to violate the completeness condition. We can see that there is lot of
variance between the selections in this regard and that the “most complete” incomplete
selection is the second best selection 1010.

Time spent on performing selection. As we might expect, lookahead selections are
far more expensive to compute. On average, performing quality selection consumes
roughly 0.1% of the time spent on proof search, with other non-lookahead selections
taking similar times, whereas complete and incomplete lookahead selection consumes
roughly 1.74% and 4.27% respectively. These numbers are taken from all proof at-
tempts, not just successful ones. Incomplete lookahed selection is more expensive than
its complete counterpart as the latter is not performed when there are no negative lit-
erals. The previously observed success of lookahead selection confirms that the extra
time spent on selecting is more than well spent.

The Effect of Turning Splitting off. The previous results were obtained running VAM-
PIRE with splitting turned on. In order to establish how much the standing of the indi-
vidual selections depends on running within the context of the AVAVAR architecture,
we ran a separate experiment with the same strategies but turning AVATAR off. Ar-
guably, these results are more relevant to implementations that do not incorporate the
effective AVATAR approach.

In total, the strategies without AVATAR solved 5 563 problems (5 356 unsatisfiable,
207 satisfiable). The number of problems solved by all strategies was 1 748. Table 2
presents a view analogous to Table 1 for these strategies. Strategies 34 and 35 are now
relevant (see experimental setup above). Notably, selection 1011 has dropped to the
second place in the overall ranking (after 1010). However, the incomplete lookahead
still accumulated the highest u-score as a standalone strategy and we see the same gen-
eral trend that incomplete versions of strategies outperform their complete counterpart
(again with the exception of 3 and 12).

Focusing on Satisfiable Problems. Recall that in our experiments 287 satisfiable
problems were solved by at least one strategy. Table 3 (left) shows the performance of
the best 5 complete selections on these problems.11 The first two places are taken by a

10 The selection strategy selecting the largest negative literal has number 22.
11 The table has been shortened due to space restrictions. However, the #unique and u-score

indicators still take into account all the other complete selections.

13

Table 2. Performance of the individual selection strategies (left) and statistics collected from the
runs (right) for runs with AVATAR turned off. Columns analogous to those described in Table 1.

selection #solved %total #unique u-score #child (s.o./all) %incomp. (s.o./all)
1010 4289 80.0 64 379.8 9.3 / 17.0 9.0 / 9.4
1011 4255 79.4 104 412.7 8.5 / 15.0 6.5 / 8.3
1002 4207 78.5 45 356.2 7.5 / 18.5 17.6 / 8.6

11 4121 76.9 25 292.9 12.1 / 25.7
10 4116 76.8 9 251.7 13.1 / 21.2
2 4063 75.8 0 235.7 16.5 / 23.5

21 4055 75.7 4 244.1 16.3 / 23.6
22 3896 72.7 0 218.0 8.8 / 30.3
33 3895 72.7 1 218.0 9.0 / 30.1

4 3892 72.6 3 216.5 9.6 / 19.8
35 3858 72.0 1 211.7 9.0 / 30.2

1004 3810 71.1 8 228.2 8.6 / 20.4 23.8 / 10.5
3 3755 70.1 3 205.4 12.0 / 20.8
1 3744 69.9 2 207.3 13.1 / 31.5

30 3731 69.6 11 220.0 8.9 / 33.8
1003 3654 68.2 2 211.2 8.2 / 22.8 25.7 / 11.1

31 3517 65.6 0 184.9 22.4 / 33.2
34 3491 65.1 1 183.0 21.5 / 31.9
32 3482 65.0 2 188.5 7.8 / 31.9
20 3479 64.9 0 182.2 21.7 / 33.3
12 3313 61.8 6 173.8 25.0 / 33.9
0 3279 61.2 24 206.4 59.2 / 83.1

1012 2403 44.8 7 126.7 17.9 / 36.4 7.2 / 10.6

selection from E and SPASS while the lookahead selection is third. The differences be-
tween the three places are, however, only by one problem. Moreover, in Table 3 (right)
we can see that when AVATAR was turned off in a separate experiment lookahead se-
lection came first.

8 Impact of Selection on Portfolio Solving

As mentioned at the beginning of Sect. 7, VAMPIRE, like most leading first-order theo-
rem provers, will (when asked) try to use a portfolio of strategies to solve a problem. To
make an effective portfolio we want a mix of strategies that either solve many problems
and or unique problems. One measure of the usefulness of a selection strategy is its im-
pact on the creation of a portfolio mode with respect to the second of these properties
i.e. which problems can only be solved using a particular approach.

To find useful strategies for VAMPIRE we have a dedicated cluster using a semi-
guided method to randomly search the space of strategies. At the time of writing over
786k proofs have been found of 11,354 problems out of 13,770 (unsatisfiable, non unit-
equality) problems taken from TPTP 6.1.0. It took over 160 CPU-years of computation
to collect these data. Table 4 gives results for the best four selection strategies and four
groups of selection strategies. Numbers are given for all problems and for the subset
of problems that were not solved by any other theorem prover at the time TPTP 6.1.0

14

Table 3. Performance of the five best complete selection strategies on satisfiable problems.

AVATAR on (total 287) AVATAR off (total 207)
selection #solved %total #unique u-score selection #solved %total #unique u-score

33 248 86.4 0 24.5 11 195 94.2 0 16.7
22 247 86.0 0 24.1 4 191 92.2 0 17.1
11 246 85.7 0 23.4 3 190 91.7 0 16.9
32 241 83.9 1 23.8 32 184 88.8 0 14.7

1 238 82.9 0 21.6 35 183 88.4 0 14.6

Table 4. Numbers of problems solved only by a strategy using a particular selection strategy.

selection Problems solved only using this selection
All Problems solved only by VAMPIRE

11 151 118
1011 78 62
1 62 58
10 55 41
lookahead 278 216
non-lookahead 502 377
complete 824 691
incomplete 229 169

was released12. From this we can see that both lookahead and incomplete selections
are required to solve many problems unsolvable by other methods. Additionally, this
shows that having a spread of different selection strategies is useful as they contribute
to uniquely solving different problems.

9 Conclusion

Selection strategies can have a very large impact on proof search, often making the
difference between solving and not solving a problem. Little had been written about
how effective selection strategies could be designed and implemented, although most
successful implementations of the superposition calculus have relied on them.

We have introduced two new ways of performing literal selection based on the ob-
servation that it is good to select those literals that lead to as few children as possible.
The first approach, quality selection, is an easy to implement compositional mechanism
for defining literal selection based on qualities of literals that lead to few children. We
described different selection strategies based on concrete qualities and demonstrated
their effectiveness. What may be surprising to some is how effective incomplete ver-
sions of such strategies can be. Experimentally establishing this phenomenon is a large
contribution of this work. However, our main result is the second approach, the power-
ful idea of lookahead selection based on the observation that if we want to select literals
leading to as few children as possible then the best thing to do is just that. Experimental
results showed that by using this approach we could solve many problems that could not
otherwise be solved by any other selection strategy taken from VAMPIRE, E or SPASS.

12 See the ProblemAndSolutionStatistics file distributed with TPTP.

15

References
1. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and

simplification. Research Report MPI-I-91-208, Max-Planck-Institut für Informatik, 1991.
Revised version in the Journal of Logic and Computation 4, 3 (1994), pp. 217–247.

2. L. Bachmair and H. Ganzinger. Resolution theorem proving. In Handbook of Automated
Reasoning, vol. I, chapter 2, pp. 19–99. Elsevier Science, 2001.

3. L. Bachmair, H. Ganzinger, and U. Waldmann. Superposition with simplification as a de-
sision procedure for the monadic class with equality. In Computational Logic and Proof
Theory, Third Kurt Gödel Colloquium, KGC’93, Brno, Czech Republic, August 24-27, 1993,
Proceedings, vol. 713 of Lecture Notes in Computer Science, pp. 83–96. Springer, 1993.

4. N. Dershowitz and D. A. Plaisted. Rewriting. In Handbook of Automated Reasoning, vol. I,
chapter 9, pp. 535–610. Elsevier Science, 2001.

5. H. Ganzinger and H. de Nivelle. A superposition decision procedure for the guarded frag-
ment with equality. In 14th Annual IEEE Symposium on Logic in Computer Science, Trento,
Italy, July 2-5, 1999, pp. 295–303. IEEE Computer Society, 1999.

6. D. Knuth and P. Bendix. Simple word problems in universal algebra. In Computational
Problems in Abstract Algebra, pp. 263–297. Pergamon Press, 1970.

7. L. Kovács and A. Voronkov. First-order theorem proving and Vampire. In CAV 2013, vol.
8044 of Lecture Notes in Computer Science, pp. 1–35, 2013.

8. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In Handbook of
Automated Reasoning, vol. I, chapter 7, pp. 371–443. Elsevier Science, 2001.

9. G. Reger, M. Suda, and A. Voronkov. Playing with AVATAR. In Automated Deduction -
CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany, Au-
gust 1-7, 2015, Proceedings, vol. 9195 of Lecture Notes in Computer Science, pp. 399–415.
Springer, 2015.

10. G. Reger and A. Voronkov. The Vampire manual. Technical report, 2016 (in preperation).
11. S. Schulz. E — a brainiac theorem prover. AI Communications, 15(2-3):111–126, 2002.
12. S. Schulz. E 1.8 User Manual. http://wwwlehre.dhbw-stuttgart.de/

˜sschulz/WORK/E_DOWNLOAD/V_1.9/eprover.pdf, 2015. [Online; accessed 22-
January-2016].

13. R. Sekar, I. Ramakrishnan, and A. Voronkov. Term indexing. In Handbook of Automated
Reasoning, vol. II, chapter 26, pp. 1853–1964. Elsevier Science, 2001.

14. A. Stump, G. Sutcliffe, and C. Tinelli. StarExec, a cross community logic solving service.
https://www.starexec.org, 2012.

15. G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom. Reasoning,
43(4):337–362, 2009.

16. G. Sutcliffe and C. Suttner. The State of CASC. AI Communications, 19(1):35–48, 2006.
17. A. Voronkov. AVATAR: The architecture for first-order theorem provers. In Computer Aided

Verification, vol. 8559 of Lecture Notes in Computer Science, pp. 696–710. Springer Inter-
national Publishing, 2014.

18. C. Weidenbach. Combining superposition, sorts and splitting. In Handbook of Automated
Reasoning, vol. II, chapter 27, pp. 1965–2013. Elsevier Science, 2001.

16

