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ABSTRACT  17 

Clinical isolates of glycopeptide resistant enterococci (GRE) were used to compare 18 

three rapid phenotyping and analytical techniques. Fourier transform infrared (FT-19 

IR) spectroscopy, Raman spectroscopy and matrix-assisted laser 20 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were 21 

used to classify 35 isolates of Enterococcus faecium representing 12 distinct pulsed-22 

field gel electrophoresis (PFGE) types. The results show that the three analytical 23 

techniques provide clear discrimination among enterococci at both the strain and 24 

isolate levels. FT-IR and Raman spectroscopic data produced very similar bacterial 25 

discrimination, reflected in the Procrustes distance between the datasets (0.2125-26 

0.2411, p<0.001); however, FT-IR data provided superior prediction accuracy to 27 

Raman data with correct classification rates (CCR) of 89% and 69% at the strain 28 

level, respectively. MALDI-TOF-MS produced slightly different classification of 29 

these enterococci strains also with high CCR (78%). Classification data from the 30 

three analytical techniques were consistent with PFGE data especially in the case of 31 

isolates identified as unique by PFGE. This study presents phenotypic techniques as 32 

a complementary approach to current methods with a potential for high-throughput 33 

point-of-care screening enabling rapid and reproducible classification of clinically 34 

relevant enterococci.  35 
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INTRODUCTION  36 

Enterococcus is a highly significant genus of bacteria, which causes important 37 

clinical infections including urinary tract infections (UTIs), endocarditis, meningitis, 38 

catheter-related infections, bacteremia, wound infections, pelvic and intra-abdominal 39 

infections amongst others. Some of these Gram-positive cocci were originally 40 

classified as Streptococcus spp. until genomic analysis by Schleifer and Kilpper-41 

Balz in 1984 demonstrated the requirement for a separate genus classification (1). 42 

This well-known genus is part of the normal intestinal microflora of humans and 43 

other animals (2). Enterococcus are also part of the lactic acid bacteria (LAB) group 44 

present in foods, and whilst they are able to spoil fresh meats (3), they are important 45 

in ripening and development of certain foods (i.e. dairy products), as well as being 46 

used as probiotics in humans (4).   47 

The majority of human clinical isolates of enterococci belong to two species, 48 

Enterococcus faecalis and Enterococcus faecium (5). In addition to their prevalence 49 

and pathogenicity, another very important factor associated with enterococcus is the 50 

high level of antimicrobial resistance, particularly resistance to glycopeptide 51 

antibiotics (such as vancomycin, teicoplanin and telavancin); resistant strains are 52 

referred to as GRE (glycopeptide-resistant enterococci) (6, 7).  53 

There is a constant requirement to develop analytical methods for the 54 

discrimination of bacteria, which can be used in clinical diagnostics and food quality 55 

control. These methods should ideally be rapid, reproducible, easy to use and 56 

automated, in addition to having high resolution and sensitivity (8). Over a decade 57 

ago, it was common to use methods, such as polymerase chain reaction (PCR) for 58 

identification of specific DNA sequences and recognition by antibodies via enzyme-59 

linked immunosorbent assay (ELISA), to characterize bacteria. Although these 60 
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techniques are sensitive and specific, they are time-consuming and their use is 61 

limited by the complexity of preparation procedures and the requirement for specific 62 

primers and antibodies (9-12). Nowadays, modern analytical techniques, such as 63 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 64 

(MALDI-TOF-MS) (13-16), Fourier transform infrared (FT-IR) spectroscopy (17-65 

21) and Raman spectroscopy (22-24) are also used for the characterization of 66 

bacteria. High dimensional and information rich datasets are produced from these 67 

techniques, which has also directly led to the requirement of robust and reliable 68 

chemometric methods to assist with data deconvolution and in-depth analysis (25). 69 

This saw the introduction, acceptance and use of chemometrics, such as discriminant 70 

function analysis (DFA) (22) and hierarchical cluster analyses (HCA) (26-28).  71 

Previously, MALDI-TOF-MS has shown promising results for bacterial 72 

characterization (13). FT-IR and Raman spectroscopy complement each other for 73 

bacterial classification; both are robust metabolic fingerprinting techniques and need 74 

little sample preparation (29, 30). FT-IR spectroscopy is used by many researchers 75 

since it is not only rapid but also offers a high-throughput and non-destructive 76 

method, allowing the analysis of intact bacteria and producing unique, reproducible 77 

and distinct biochemical fingerprints (31). Raman spectroscopy shares similar 78 

advantages to FT-IR spectroscopy and also has the additional advantage of water 79 

being a very weak Raman scatter (32) so that samples do not need to be dried.  80 

Here, the aim was to use these three distinct phenotypic approaches (namely 81 

MALDI-TOF-MS, FT-IR and Raman spectroscopies) in combination with rigorous 82 

chemometric analysis of the resultant datasets to classify 35 clinically relevant 83 

isolates of enterococci, which had been previously typed by pulsed-field gel 84 

electrophoresis (PFGE). This was carried out in order to compare the results from, 85 
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and determine the efficiency of, these analytical techniques for the rapid 86 

differentiation of E. faecium strains. In future, this may allow clinical diagnostic 87 

laboratories to analyze multiple bacterial samples rapidly for infection control 88 

purposes in point-of-care setting within hospitals, clinics, or GP surgeries which 89 

would significantly accelerate diagnosis, and potentially ensure that the correct 90 

antimicrobial therapies were used if required, and eliminate the delay associated with 91 

sending strains to reference laboratories when analyzing patient samples.  92 

 93 

 94 

MATERIALS AND METHODS  95 

General chemicals. Trifluoroacetic acid (TFA), HPLC grade water, acetonitrile, 96 

sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA), and ferulic acid 97 

(FA) were purchased from Sigma-Aldrich (Dorset, UK). 98 

Enterococci strains. Isolates were from faecal samples from patients in a surgical 99 

ward in a hospital in Belfast, UK and were collected following an increase in 100 

enterococcal infections on the ward. They were identified as E. faecium by a 101 

VITEK® system (bioMérieux) and their identity confirmed by MALDI-ToF analysis 102 

using a Bruker microflex instrument. The 35 isolates were typed using pulsed-field 103 

gel electrophoresis (PFGE) of SmaI-digested genomic DNAby Public Health 104 

England’s National Reference Laboratory as described previously (33). Table S1 105 

summarizes information on the 35 clinical isolates, which were classified into 12 106 

groups (12 PFGE-defined types) named: EC04, EC09, EC10, EC13, EC14, EC15, 107 

EC19, EC20, UNI 156, UNI 178, UNI 191 and UNI 214, where ‘UNI’ types 108 

describe isolates that were unique within the set.  109 

Bacterial isolates.  110 
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     The samples analyzed by the three techniques (viz. MALDI-TOF-MS, FT-IR and 111 

Raman) were collected from the same flask to avoid any variations between different 112 

preparations that may affect results obtained using the different anlaytical platforms. 113 

First, enterococci were cultured on nutrient agar (NA) plates for 24 h at 37ºC. A 114 

single colony from the agar culture was used to inoculate 50 mL of Lysogeny broth 115 

(LB) in a 250 mL flask which was incubated overnight at 37ºC with shaking at 200 116 

rpm. This was followed by measuring the optical density (OD) at 600 nm using a 117 

Biomate 5 spectrophotometer (Thermo, Hemel Hempstead, UK) for each isolate. 118 

The volume of analyzed bacterial suspension was then normalized to account for 119 

variation in cell biomass in the different replicate cultures (4 biological replicates 120 

were prepared for each isolate) and used to inoculate a fresh  flask of broth, which  121 

was incubated at 37ºC for 11 h (when the bacteria reached the stationary phase). 122 

Then, 10 mL from each flask was collected and centrifuged at 4800 g for 10 min and 123 

the pellet washed three times with sterile deionized water. Figure S1 illustrates the 124 

preparation process. 125 

     For vibrational spectroscopic analysis, the collected pellets were suspended in 126 

suitable volumes of saline (0.9% (w/v) NaCl) depending on the OD (all isolates had 127 

approximately the same cell density). Then, 15 µL was spotted onto a silicon plate 128 

(Bruker Ltd., Coventry, UK) and was allowed to dry at 40ºC for 45 min before 129 

analysis with FT-IR spectroscopy. For Raman spectroscopy, 4 µL of each sample 130 

was spotted onto a stainless steel plate and then allowed to dry at 40ºC for 45 min. 131 

      For MALDI-TOF-MS, three different matrices were tested to find the most 132 

compatible matrix with enterococci; these matrices were: FA, SA and CHCA. In 133 

addition, 3 different deposition methods (sample-matrix) were tested as described 134 

previously (16) to find the best method for depositing the samples: mix, overlay and 135 
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underlay (data not shown). SA matrix and the mix deposition method were found to 136 

be the optimal combination for MALDI-TOF-MS analysis for these samples. On the 137 

day of analysis of the samples, the biomass was suspended in 1000 µL of 2% TFA 138 

then vortexed for 3 min. An equal volume of 10 µL of bacterial suspension and 139 

matrix were vortexed for 2 s and 2 µL of this mixture spotted onto a MALDI 140 

stainless steel plate and allowed to dry at ambient temperature. 141 

Fourier transform infrared (FT-IR) spectroscopy. FT-IR spectroscopy plate 142 

(Bruker Ltd., Coventry, UK) which contained 96 locations/spots was washed using 143 

5% sodium dodecyl sulfate (SDS) solution. This was followed by washing the plate 144 

using deionized water and allowing it to dry at room temperature (34). High-145 

throughput screening (HTS) was carried out using a Bruker Equinox 55 FT-IR 146 

spectrometer. The HTX™ module described by Winder et al. (35) was used with this 147 

instrument. Transmission mode was used to analyze the dried biomass to produce 148 

FT-IR spectra. The parameters used for FT-IR analysis included the following: 149 

spectra were collected in the wavenumber range between 4000 and 600 cm-1, 150 

resolution was 4 cm-1 and each spectrum was the average of 64 co-adds. Spectral 151 

acquisition and subtracting the background were achieved using Opus software 152 

(Bruker Ltd.). Four biological replicates, each in four analytical replicates, were 153 

analyzed and analysis was performed in three machine runs, resulting in 1680 FT-IR 154 

spectra. 155 

Raman Spectroscopy. This was carried out using a confocal Raman system (inVia, 156 

Renishaw plc., Wotton-Under-Edge, UK) coupled with a 785 nm wavelength laser. 157 

A power intensity of ~30 mW was applied on the samples at an exposure time of 158 

20 s. Four biological replicates and seven different locations within each sample spot 159 

were analyzed, resulting in a total of 980 Raman spectra. 160 
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MALDI-TOF-MS. The enterococci isolates were analyzed using an AXIMA-161 

Confidence MALDI-TOF-MS (Shimadzu Biotech, Manchester, UK), equipped with 162 

a nitrogen pulsed UV laser with a wavelength of 337 nm. The parameters of this 163 

device were set as follows: 90 mV laser power, 91 acquired profiles with each 164 

profile containing 20 shots, linear TOF, positive ionization mode, and mass-to-165 

charge (m/z) range of 1,000-18,000. The spectra were collected using a circular 166 

raster pattern. The MALDI-TOF-MS device was calibrated using a protein mixture: 167 

insulin (5,735 Da), cytochrome c (12,362 Da), and apomyoglobin (16,952 Da) 168 

(Sigma-Aldrich). Each of 4 biological replicates from the 35 isolates was analyzed in 169 

four technical replicates on four different days; this led to the generation of a total of 170 

560 MALDI-TOF-MS spectra (35 isolates × 4 biological replicates × 4 analytical 171 

replicates). 172 

Data analysis  173 

Data pre-processing. Opus software was used to export FT-IR data into ASCII 174 

format; the data were then transferred into MATLAB 2012a (The Mathworks Inc., 175 

MA, US). All FT-IR spectra were baseline corrected using standard normal variate 176 

(SNV) to remove any light scattering effect. The three analytical replicates were then 177 

averaged to reduce the number of redundant samples. Due to the large number of 178 

samples, 8 separate (96 spot silicon) sampling plates were used; therefore, it was 179 

necessary to correct for the subtle differences in signals from different silicon plates. 180 

This was achieved by using a piece-wise direct standardization (PDS) model (36). 181 

The PDS model was built on two different ‘reference’ isolates which were spotted on 182 

every plate. The pre-processed FT-IR spectra were then subjected to multivariate 183 

analysis (MVA, see below). Raman spectra were also normalized using standard 184 

normal variate (SNV) and then subjected to MVA. 185 
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    MALDI-TOF-MS data were pre-processed as follows: (i) the baseline was 186 

corrected using asymmetric least squares (AsLS) (37), and (ii) spectra were 187 

normalized by dividing each individual baseline corrected spectrum by the square 188 

root of the sum of squares of the spectrum (38). The pre-processed MALDI-TOF-189 

MS data were subjected to the same data analysis flow as Raman and FT-IR spectral 190 

data. 191 

Multivariate data analysis. A flowchart of multivariate data analysis is provided in 192 

Figure 1. For all three datasets, two types of classification were performed: one at 193 

the strain level (i.e. 12 classes) defined by PFGE, and the other at the isolate level 194 

(i.e. 35 classes, one for each isolate). 195 

     For cluster analyses, principal components-discriminant function analysis (PC-196 

DFA) (39-41) was applied to reduce the dimensionality of the data and discriminate 197 

samples from the designated classes. The PC-DFA scores of each class were then 198 

averaged and subjected to hierarchical cluster analysis (HCA) (42). Dendrograms 199 

from each analysis were generated to illustrate the relative relatedness of these 200 

bacteria.  201 

     Partial least squares-discriminant analysis (PLS-DA) (43), with 1,000 202 

bootstrapping validations (44), was also applied to obtain a validated supervised 203 

classification model for discriminating different strains or isolates. In each 204 

bootstrapping process, the data were randomly split into two different sets:  a 205 

training set and a test set. A PLS-DA model was trained on the training set and then 206 

applied to the test set to predict the class membership of the samples in the test set. 207 

This process was repeated 1,000 times and the results were recorded and averaged to 208 

produce a c×c confusion matrix (c is the number of designated classes, either 12 209 

(strains) or 35 (isolates)), in which the element at the ith row, jth column is the 210 
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percentage of samples in class i being predicted as class j on average. In order to 211 

assess the statistical significance of the predictive performance of the PLS-DA 212 

models, a corresponding permutation test within each bootstrapping resampling was 213 

also performed. This means that in addition to building the PLS-DA model using the 214 

known class membership, another model (called the ‘null’ model) was also built 215 

using a randomly permuted class membership. The results of the null model were 216 

also recorded and from this the null distribution was obtained. An empirical p-value 217 

was calculated by counting the number of cases where the null model had obtained 218 

better predictive accuracy than the real model and dividing the obtained number by 219 

the total number of bootstrapping resampling (i.e. 1,000 in this study).  220 

     Finally, similarities between the three different datasets (FT-IR spectroscopy, 221 

Raman spectroscopy and MALDI-TOF-MS data) were measured using Procrustes 222 

analysis (45). Procrustes analysis is an excellent approach for assessing the 223 

differences and similarities between different ordination space from cluster analyses 224 

and has been used previously for the assessment of different analytical techniques 225 

(46). The distances were calculated based on the averaged PC-DFA scores for the 226 

biological replicates.  227 

 228 

RESULTS AND DISCUSSION  229 

     Table S1 shows all 35 isolates belonging to 12 strains (PFGE-defined 12 types) 230 

including: EC04, EC09, EC10, EC13, EC14, EC15, EC19, EC20 UNI 156, UNI 178, 231 

UNI 191 and UNI 214. These strains were previously confirmed to belong to E. 232 

faecium using a VITEK® system and by MALDI-ToF analysis using a Bruker 233 

Microflex system (data not shown). The PFGE results (Fig. S2) were compared to 234 



11 
 

results obtained in this study using FT-IR spectroscopy (17, 30, 46-49), Raman 235 

spectroscopy (25, 30, 50, 51) and MALDI-TOF-MS (13, 14, 16, 52-54). We believe 236 

that these analytical techniques in combination with chemometrics offer an 237 

improvement in the classification of bacteria due to their higher biochemical 238 

resolution.   239 

Classification using FT-IR spectroscopy.  240 

     In this study, four biological replicates of bacterial isolates were analyzed in four 241 

analytical replicates and analysis was performed in three machine runs, resulting in a 242 

total of 1680 FT-IR spectra. The three machine replicate measurements were 243 

performed in order to evaluate the reproducibility of the FT-IR technique. Typical 244 

spectra based on four biological replicates of representatives of 12 strains from 245 

enterococcus (EC04, EC09, EC10, EC13, EC14, EC15, EC19, EC20, UNI 156, UNI 246 

178, UNI 191 and UNI 214) are provided in Figure S3A. The infrared spectra 247 

contain different distinct regions that can be used to characterize bacterial samples. 248 

These have been well documented previously and include: wavenumbers around 249 

3400-2850 cm-1 corresponding to fatty acids, at 1705-1454 cm-1 related to amide I 250 

and II regions attributed to peptides and proteins, and around 1085-1052 cm-1 251 

corresponding to polysaccharides (19, 55, 56). 252 

     Discrimination between the strains based on visual inspection of the spectra was 253 

difficult (17) because these strains are very similar phenotypically. Therefore, in 254 

order to develop a classification model to distinguish between bacterial samples 255 

based on similarities in the spectral data, multivariate analysis was used to reduce the 256 

high dimensionality of the data. First, PC-DFA was applied using 40 principal 257 

components (PC) to the 12 strains (i.e. 12 classes) and 35 isolates (i.e. 35 classes) 258 

using the pre-processed FT-IR spectra (Fig. 2A and 3A, respectively). Figure 2A 259 
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shows a clear separation between the 12 strains, displaying 4 main clusters; Cluster 1 260 

is a single-member cluster (SMC) containing only (EC10), Cluster 2 includes (EC20 261 

and UNI 156), Cluster 3 (UNI 191, EC04 and EC15) and Cluster 4 formed a large 262 

group and is a combination of (EC13, EC19, EC14, EC09, UNI 214 and UNI 178). 263 

Each cluster is represented by a different color in the figure. As described above, 264 

HCA was undertaken using spectral data in order to simplify the DFA plot and to 265 

illustrate the related strains. Cluster analysis was based on averaged DFA scores (12 266 

classes/strains), using Ward’s linkage as shown in Figure 2B. Clusters seen in Figure 267 

2A are reflected in the HCA dendrogram plot (Fig. 2B). 268 

     PC-DFA was subsequently performed for all the 35 isolates and the results are 269 

provided in Figure 3. Clear separation between all 35 isolates was observed despite 270 

the fact that there were a much higher number of classes to be separated than the 271 

number of strains. For example, clear separation was observed between the two 272 

representatives of EC10 (139 and 151). Furthermore, results generated using PFGE 273 

correlated well with FT-IR spectroscopic data. For example, the UNI 156 and 274 

UNI 178 were seen as unique by both techniques. In addition, the three EC20 275 

isolates (192, 198 and 204) and EC19 isolates (173, 174 and 175) clustered together 276 

and were not differentiated using FT-IR spectroscopy, which was also observed in 277 

the PFGE results, where the bands were quite similar (Fig. 3B). This implies that the 278 

isolates within each of these groups are highly similar to each other phenotypically 279 

and genetically. Finally, two more clusters were observed, with one cluster 280 

containing all the EC04, EC15 and UNI 191 strains and the remainder of the isolates 281 

forming another cluster. 282 

     The PLS-DA classification using FT-IR spectral data achieved an average correct 283 

classification rate (CCR) of 89.4% at the strain level and 54.3% at the isolate level, 284 
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both with an empirical p-value of <0.001, i.e. not a single case where the null model 285 

obtained better results, indicating that the predictive accuracies were highly 286 

significant. The null distributions are provided in Figure S4A and B at the two 287 

levels.  288 

     The confusion matrices of strains and isolates classification are presented in 289 

Table 1 and Table S3, respectively. Most of the 12 strains showed high prediction 290 

accuracies, for example EC04, EC10, EC13 and EC20 had accuracies of 89.9%, 291 

99.7%, 99.8% and 99.2%, respectively. However, EC14 and UNI 214 had lower 292 

prediction accuracies of 47.3% and 58.9%, respectively. The confusion matrix 293 

showed that there was a certain level of overlap between (EC14 and EC09) and (UNI 294 

214 and EC19).  295 

 296 

     Furthermore, in-depth analysis of the confusion matrix (Fig. 4) showed that 297 

classification of unique strains was generally in line with PFGE results. In Figure 4, 298 

high percentage class membership assignments are represented by warm colors (e.g. 299 

red), indicating agreement between predicted classes and known classes. It is also 300 

interesting to see that representatives from EC19 and EC20 formed two “squares” of 301 

“tiles” on the diagonal line, in which the colors were similar to each other. Results 302 

from Figure 4 suggest that the PLS-DA model was not able to differentiate the 303 

isolates within EC19 and EC20, yet another observation that is consistent with PFGE 304 

results. On the other hand, all representatives of EC04 and EC09 (160 and 133) were 305 

unique in the FT-IR spectroscopy profile using the PLS-DA model but had visually 306 

similar PFGE profiles. This is most likely due to PFGE providing genetic 307 

information (57, 58) while FT-IR spectroscopy describes phenotypes (27, 59). This 308 

implies that isolates from EC19 and EC20 are highly conserved phenotypically, 309 
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whereas those from EC04 and EC09 are not, and such subtle differences in 310 

phenotypes were detected by FT-IR spectroscopy. Our observations showed that FT-311 

IR spectroscopy appears to be a very promising analytical approach for 312 

discrimination of enterococci at different levels. In line with the results presented in 313 

this study, work carried out by Guibet et al. showed that clear discrimination and 314 

classification of enterococci strains can be achieved using FT-IR spectroscopy (60, 315 

61). 316 

Classification using Raman spectroscopy. In addition to the FT-IR spectroscopy 317 

technique used in this study, Raman spectroscopy was used as a complementary 318 

technique (17, 61-63). As expected, the two techniques generated different spectra. 319 

These two approaches are complementary due to the selection rules, whereby 320 

infrared causes a change in the net dipole moment in a particular functional group, 321 

induced by molecular vibrations, whereas Raman causes a change in the polarization 322 

of bonds within a molecule. Therefore, bonds within a molecule are generally 323 

infrared or Raman active with the result being that the two techniques can provide 324 

complementary (bio) chemical information (29, 64). 325 

     Raman spectra of the 12 E. faecium strains are shown in Figure S3B. Raman 326 

spectra for these types appeared almost indistinguishable and no differences were 327 

detected on visual inspection. Moreover, some specific peaks which were identified 328 

in these spectra included: peaks at around 722 cm-1, 783 cm-1, 854 cm-1, 1004 cm-1, 329 

1098 cm-1, 1334 cm-1, 1451 cm-1 and 1664 cm-1, which correspond to adenine, 330 

cytosine/uracil, tyrosine, phenylalanine, phosphate, guanine, protein and amide I, 331 

respectively (65-67).  332 

     PC-DFA scores plot of pre-processed Raman spectra for the 12 PFGE-defined 333 

types is shown in Figure S5A. The figure shows classification results similar to those 334 
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seen with FT-IR spectroscopy data. There was an obvious overlap between the two 335 

spectroscopic techniques, especially with representatives of EC10. However, EC20 336 

overlapped with UNI 156 in FT-IR spectroscopy data, whereas EC20 was closer to 337 

UNI 178 based on Raman spectroscopy data. These observations can be seen in the 338 

HCA dendrogram based on Raman data (Fig. S5B), which was quite similar to the 339 

HCA results generated from FT-IR data. Looking back at the dendrogram in 340 

Figure S2 based on PFGE data, visual inspection showed that there were some 341 

similarities between results generated via spectroscopic techniques and those based 342 

on PFGE; for example, EC04 and EC15 were shown to overlap in both sets of results 343 

(Fig. S2). 344 

     As with FT-IR data, Raman spectroscopy data on the 35 isolates were also 345 

analyzed using to PC-DFA and HCA (Fig. S6A and B, respectively). The results 346 

suggested that Raman spectroscopy was also successful in discriminating the two 347 

representatives of EC10 (139 and 151), which was also the case using FT-IR 348 

analysis (Fig. 3). Furthermore, in order to ensure the classification is robust, the data 349 

were analyzed using a heat map based on PLS-DA (Fig. S6C). The results suggested 350 

that all the isolates indicated as unique (UNI) by PFGE were also unique in the PLS-351 

DA model generated using Raman spectroscopy data. 352 

     In addition, chemometric-based identification was carried out using PLS-DA at 353 

both the strain and isolate levels and the predictive accuracies were calculated based 354 

on 1,000 bootstrapping resampling using Raman spectral data. The null distribution 355 

was obtained (Fig. S4C and D) at both the strain (12 classes) and isolate levels (35 356 

classes) resulting in average CCR of 69.3% (p<0.001) and 21.1% (p<0.001), 357 

respectively. The CCR from FT-IR data was higher at both levels compared to 358 

Raman data possibly due to the higher reproducibility of FT-IR data. Confusion 359 
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matrices were also generated at both the strain level (Table S2A) and the isolate 360 

level (data not shown); these results suggested that Raman spectroscopy can also be 361 

used as a robust technique for bacterial discrimination. In-depth analysis showed that 362 

Raman spectroscopy generated around 70% prediction accuracy at the strain level 363 

which is lower than that of FT-IR spectroscopy (nearly 90%). This is most likely due 364 

to the low concentration of cells used for analysis: the infrared interrogation beam 365 

used was ca. 1 mm and passes completely through the dried bacterial film; while the 366 

Raman microscope delivers a highly focussed laser beam with an interrogation 367 

volume of ~1 pL and therefore measures very few bacteria. To overcome this 368 

limitation with Raman, bacteria can be analyzed directly from the agar plates or 369 

surface-enhanced Raman spectroscopy (SERS) as an alternative technique (68-70), 370 

but this is an area for future study. 371 

Classification using MALDI-TOF-MS. As described in the Materials and Methods 372 

section, four biological replicates were analyzed in four analytical replicates for each 373 

bacterial strain, resulting in 560 MALDI-TOF-MS spectra; both the biological and 374 

technical replicates clustered closely together ensuring good bioanalytical 375 

reproducibility (data not shown). The spectra for the 35 enterococci isolates were 376 

pre-processed before data analysis. The typical pre-processed positive ion mode 377 

MALDI-TOF-MS spectra for all 12 Enterococcus strains (EC04, EC09, EC10, 378 

EC13, EC14, EC15, EC19, EC20, UNI 156, UNI 178, UNI 191 and UNI 214) are 379 

provided in Figure S3C. In general, the MALDI-TOF-MS spectra were of high 380 

quality with high signal-to-noise ratios in the acquisition m/z range 1,000-18,000 and 381 

a high number of peaks for each studied strain were detected. There are many factors 382 

that can affect MALDI-TOF-MS results and some of these can differ from lab to 383 

another, such as the type of medium used (71), sample handling, type of matrix (72), 384 
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sample deposition method (73), solvents, instrument settings (74, 75) and the type of 385 

data analysis chosen (41, 76). These can inadvertently affect MALDI-TOF-MS 386 

results and subsequent PC-DFA and HCA. 387 

        MALDI-TOF-MS spectra are not readily interpretable from the 35 isolates as 388 

they are similar phenotypically and MALDI-TOF-MS spectra show only two 389 

dimensions (m/z × intensity). Therefore, as is the case for the vibrational 390 

spectroscopy techniques, robust multivariate analysis methods were employed for 391 

this purpose. The results of PC-DFA using 12 classes (12 strains) in a three-392 

dimensional plot of DF1 vs DF2 vs DF3 and a two-dimensional plot of DF2 vs DF3 393 

are shown in Figure S7A and B, respectively. Four main clusters were observed in 394 

the PC-DFA plots; SMC (Cluster) 1 contains only UNI 178; Cluster 2 contains 395 

EC20; Cluster 3 consists of EC04, EC10, EC15 and UNI 191; and Cluster 4 formed 396 

a large group of (EC13, EC19, EC14, EC09, UNI 214 and UNI 156). Results from 397 

the HCA dendrogram (Fig. S7C) confirmed the separation between the 12 classes 398 

(i.e. 12 strains). This indicated that UNI 178 is phenotypically very different from 399 

the other strains based on MALDI-TOF-MS data. 400 

PC-DFA was also applied to data from the 35 isolates; the results showed 401 

that isolates number 160 and 219 (both from EC09) were very different from the 402 

other isolates. Therefore, another PC-DFA was carried out with these two outliers 403 

removed and the HCA results are shown in Figure S8D. It appears that all 404 

representatives of  EC20 (204, 198 and 192) overlap with each other, which was also 405 

observed in FT-IR and Raman spectroscopy data, with the exception that isolate 192 406 

slightly differed from the other two representatives (204 and 198) in the HCA 407 

dendrogram when using Raman data (Fig. S6B). However, analysis by PFGE 408 
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showed that isolates 192 and 198 clustered more closely with each other than with 409 

isolate 204.  410 

          Furthermore, PLS-DA model applied to MALDI-TOF-MS data achieved an 411 

average CCR of 78.2% (p<0.001) and 35.7% (p<0.001) for the 12 (strains) and 35 412 

(isolates) classes, respectively. When PLS-DA was undertaken with 33 isolates (with 413 

isolates 160 and 219 removed), the average CCR for the isolates increased to 414 

53.95% (p<0.001). The prediction accuracies for the 12 classes are shown in Table 415 

S2B and those for the 35 classes (isolates) are shown in Table S4. Table S2B shows 416 

that discrimination between most of the strains (12 classes) using MALDI-TOF-MS 417 

data achieved high correct classification rates, except for EC14 and UNI 191, which 418 

had rather low classification rates. Confusion matrices for the 35 classes and the 33 419 

classes (160 and 219 isolates removed) are shown in Figure S8A and C, respectively. 420 

From these matrices, it can be seen that all the isolates identified by the reference 421 

laboratory as unique (UNI), which included isolates 156, 178, 191 and 214, were 422 

also classified as unique based on MALDI-TOF-MS data. Moreover, EC20 and 423 

EC19 were assigned the same classification in PFGE typing, and this was in 424 

agreement with MALDI-TOF-MS, FT-IR spectroscopy and Raman spectroscopy 425 

data. In addition, based on MALDI-TOF-MS data (Fig.S8A and C), representatives 426 

of EC13 (152, 154 and 155) belonged to the same cluster, and isolates 177 from 427 

EC13 was significantly different from the remaining EC13 strains; this was also 428 

observed in FT-IR and PFGE data. Looking back at Figure S8C, it can be seen that 429 

all the strains from EC04 were unique in MALDI-TOF-MS and FT-IR profiles when 430 

using PLS-DA modelling. 431 

Procrustes distance test of the three analytical techniques. Analytical techniques 432 

such as FT-IR spectroscopy, Raman spectroscopy and MALDI-TOF-MS are 433 
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currently used in clinical research studies worldwide and many reports have been 434 

published showing advantages of using such techniques (24, 54, 77, 78). Kirschner 435 

et al. (61) demonstrated accurate identification and classification of 18 strains from 6 436 

different species belonging to enterococci using vibrational spectroscopic techniques 437 

in combination with chemometrics. This study suggested that FT-IR and Raman 438 

spectroscopies can offer potential alternatives to the conventional typing tests due to 439 

their speed and ease of use. Oliveira et al. (51) showed that Raman spectroscopy, in 440 

combination with a chemometric algorithm, can be used to discriminate between 441 

seven different colonies of Gram-positive and Gram-negative bacteria. In another 442 

previous study, it was also shown that 59 clinical bacterial strains associated with 443 

urinary tract infections (UTIs) could be identified using FT-IR and Raman 444 

spectroscopy (17). As an alternative to vibrational spectroscopic techniques, 445 

MALDI-TOF-MS is a relatively new technique which has shown very promising 446 

results for identification in agreement with methodologies carried out in 447 

microbiological laboratories, and therefore has been used for the identification and 448 

classification of bacterial species (15, 79, 80) and is appearing in many clinical 449 

microbiology testing laboratories (54, 81, 82).  450 

        Previous studies have generally focussed on the application of just one or two 451 

analytical techniques for the classification of Enterococcus spp. However, to 452 

generate complementary data and more comprehensive analysis, this study combines 453 

three different analytical techniques – FT-IR spectroscopy, Raman spectroscopy and 454 

MALDI-TOF-MS – to analyze whole bacterial cells. Successful classification was 455 

demonstrated at the strain (i.e. 12 classes) and isolate (i.e. 35 classes) levels based on 456 

data generated by the three analytical platforms. In order to assess the overall 457 

information content in the spectra that has been revealed by the cluster analysis from 458 



20 
 

the scores plots, Procrustes analysis was employed to assess the overall similarity 459 

between the patterns detected by these three platforms. The results are presented in 460 

terms of Procrustes distance (Table 2A and B), where the Procrustes distance varies 461 

from 0 to 1; the lower the distance, the higher the similarity between the results. The 462 

comparisons were made using averaged PC-DFA scores. For each dataset, there 463 

were two sets of PC-DFA scores, one at the strain level (12 classes) and another for 464 

isolates classification (33 classes). For each set of PC-DFA scores, the scores were 465 

then averaged according to their strain label and isolate label to give two sets of 466 

averaged PC-DFA scores. 467 

The findings in Table 2 can be summarized as follows: 468 

(i) The patterns in the PC-DFA scores at strain and isolate levels were highly 469 

similar to each other for all the three analytical platforms. The Procrustes 470 

distances varied from 0.0681 to 0.1812. This suggested that the variation 471 

originating from different bacteria is the main factor in PC-DFA, i.e. the 472 

differences between different bacterial genotypes were significantly higher 473 

than those between different isolates. 474 

(ii) The two vibrational spectroscopic techniques (FT-IR and Raman) generated 475 

highly similar results both at the strain and isolate classification levels, with 476 

the corresponding Procrustes distances varying from 0.2112 to 0.3187. 477 

(iii) However, the results generated by MALDI-TOF-MS were significantly 478 

different from those generated by the two spectroscopic techniques, and the 479 

corresponding Procrustes distances were all above 0.8. Such differences can 480 

be mainly attributed to data on isolate UNI 178, which appeared to be very 481 

different to other strains in the MALDI-TOF-MS dataset.  482 
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Table S5 shows a summative comparison of the 4 main clusters identified based on 483 

the three analytical techniques using PC-DFA plots of the 12 E. faecium strains (12 484 

classes). It can be seen from this table that despite the large Procrustes distances 485 

between data generated by MALDI-TOF-MS and those generated by the other two 486 

techniques, the main identified clusters patterns observed in all three datasets were 487 

still largely consistent. 488 

 489 

 490 

CONCLUSIONS  491 

The results obtained from the two vibrational spectroscopic techniques 492 

demonstrated that good discrimination can be achieved at both the strain and isolate 493 

levels and the detected patterns from the two techniques were highly similar. In 494 

addition, bacterial classification results from MALDI-TOF-MS were generally 495 

consistent with these vibrational spectroscopic techniques. However, UNI 178 was 496 

detected to be very different in MALDI-TOF-MS data, which differed from the other 497 

two analytical techniques employed in this study. 498 

The results obtained using these spectroscopic phenotyping approaches were 499 

mostly consistent with previous results obtained from experiments carried out using 500 

the genotypic classification method, PFGE. Some of the results differed when 501 

directly comparing our analytical approach with results from the molecular approach 502 

and these differences may be due to comparing phenotypic differences from whole-503 

organism fingerprinting with genotypic differences using PFGE.  504 

In conclusion, we have assessed multiple analytical phenotypic as 505 

complementary approaches to current molecular methods. All methods provided 506 

excellent clustering which was in general agreement with genotypic baseline 507 
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methods, as well as allowing excellent discrimination to the strain level and good 508 

resolution at the sub-strain level. We believe that these three different 509 

physicochemical techniques have excellent potential as high-throughput point-of-510 

care screening tools, and for the rapid and reproducible classification of clinically 511 

relevant bacteria, such as E. faecium. 512 
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FIGURE LEGENDS 759 

FIG 1. Workflow of data analysis undertaken for FT-IR spectroscopy, Raman spectroscopy 760 

and MALDI-TOF-MS. The data were first pre-processed then multivariate analysis MVA 761 

was applied using PC-DFA at both the (ST) strain (12 classes) and (IS) isolate (35 classes) 762 

levels. This was followed by PLS-DA. 763 

FIG 2. (A) Discriminant function analysis (DFA) scores plot from FT-IR data after pre-764 

processing, illustrating the relationship between the 12 enterococci. (B) Cluster analysis on 765 

averaged PC-DFA scores (12 classes/strains) using Ward’s linkage. 766 

FIG 3. (A) PC-DFA plot from FT-IR data after pre-processing which illustrates the 767 

relationship between the 35 enterococcus isolates. (B) Hierarchical cluster analysis on 768 

averaged PC-DFA scores (35 classes/isolates) using Ward’s linkage (right) and PFGE 769 

results (left). Each isolate is represented by the same color in both the boxes around the 770 

PFGE images and the FT-IR dendrogram. 771 

FIG 4. PLS-DA trained on 35 classes (i.e. 35 isolates) from FT-IR spectral data. High 772 

percentage class membership assignments are represented by warm colors (e.g. red) whilst 773 

the cold colors (e.g. blue) represent low percentage class membership assignments. The 774 

diagonal “tiles” are much warmer than off-diagonal “tiles”, which indicates agreement 775 

between predicted classes and known classes.   776 
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Figure 2 780 
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Figure 3 784 
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Figure 4  786 
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Table 1. The prediction accuracies of the 12 enterococci strains using FT-IR spectroscopy 787 

data 788 

 789 

Table 2. The similarity between three different datasets using Procrustes distance 790 

(A) PC-DFA at the strain level 791 

Averaging on ST 
level 

FT-IR 
(IS) 

FT-IR 
(ST) 

Raman 
(IS) 

Raman 
(ST) 

MALDI 
(IS) 

MALDI 
(ST) 

FT-IR (IS) -           
FT-IR (ST) 0.0858 -         
Raman (IS) 0.2125 0.2933 -       
Raman (ST) 0.2314 0.3187 0.1502 -     
MALDI (IS) 0.8602 0.889 0.899 0.8202 -   
MALDI (ST) 0.9125 0.8846 0.9149 0.8988 0.1812 - 

 792 

(B) PC-DFA at the isolate level 793 

Averaging on IS 
level 

FT-IR 
(IS)

FT-IR 
(ST)

Raman 
(IS)

Raman 
(ST)

MALDI 
(IS) 

MALDI 
(ST) 

FT-IR (IS) -           
FT-IR (ST) 0.1085 -         
Raman (IS) 0.2112 0.2446 -       
Raman (ST) 0.2411 0.3168 0.1132 -     
MALDI (IS) 0.8593 0.8719 0.8196 0.8001 -   
MALDI (ST) 0.8975 0.8608 0.8841 0.8703 0.0681 - 

(ST) and (IS) indicate the PC-DFA was calculated at the strain (12 classes, PFGE-794 
defined 12 types) and isolate (33 classes) levels, respectively.  795 

Class 
Known/Predicted EC04 EC09 EC10 EC13 EC14 EC15 EC19 EC20 UNI 

156 
UNI 
178 

UNI 
191 

UNI 
214 

EC04 89.9% 0.5% 0.0% 0.0% 0.4% 8.3% 0.1% 0.0% 0.0% 0.0% 0.7% 0.1% 

EC09 0.1% 90.3% 0.0% 1.3% 4.8% 0.0% 3.5% 0.0% 0.0% 0.0% 0.0% 0.0% 

EC10 0.0% 0.1% 99.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.1% 

EC13 0.0% 0.0% 0.0% 99.8% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 

EC14 0.1% 48.9% 0.0% 1.1% 47.3% 1.0% 1.4% 0.1% 0.0% 0.0% 0.1% 0.0% 

EC15 6.8% 1.4% 0.0% 0.0% 0.5% 91.1% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 

EC19 1.6% 9.3% 0.0% 0.2% 3.6% 0.0% 83.5% 0.0% 0.0% 0.0% 0.0% 1.8% 

EC20 0.0% 0.1% 0.0% 0.0% 0.0% 0.7% 0.0% 99.2% 0.0% 0.0% 0.0% 0.0% 

UNI 156 0.4% 0.0% 0.0% 0.5% 0.0% 0.0% 0.1% 0.9% 98.1% 0.0% 0.0% 0.0% 

UNI 178 0.0% 5.3% 0.0% 0.1% 0.0% 0.0% 0.4% 0.0% 0.0% 93.9% 0.2% 0.0% 

UNI 191 6.5% 0.9% 0.0% 25.2% 0.0% 1.3% 0.0% 0.0% 0.0% 0.0% 66.1% 0.1% 

UNI 214 1.9% 13.4% 0.0% 1.0% 0.1% 0.0% 20.4% 0.0% 0.0% 0.0% 4.2% 58.9% 


