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Abstract—Deep neural networks have become the state-of-

the-art approach for classification in machine learning, and

Deep Belief Networks (DBNs) are one of its most successful

representatives. DBNs consist of many neuron-like units, which

are connected only to neurons in neighboring layers. Larger

DBNs have been shown to perform better, but scaling-up poses

problems for conventional CPUs, which calls for efficient im-

plementations on parallel computing architectures, in particular

reducing the communication overhead. In this context we in-

troduce a realization of a spike-based variation of previously

trained DBNs on the biologically-inspired parallel SpiNNaker

platform. The DBN on SpiNNaker runs in real-time and achieves

a classification performance of 95% on the MNIST handwritten

digit dataset, which is only 0.06% less than that of a pure

software implementation. Importantly, using a neurally-inspired

architecture yields additional benefits: during network run-time

on this task, the platform consumes only 0.3 W with classification

latencies in the order of tens of milliseconds, making it suitable

for implementing such networks on a mobile platform. The

results in this paper also show how the power dissipation of the

SpiNNaker platform and the classification latency of a network

scales with the number of neurons and layers in the network and

the overall spike activity rate.

I. INTRODUCTION

In recent years, Deep Learning architectures such as Deep
Belief Networks (DBNs) [1], [2] and Convolutional Net-
works [3] have surpassed all previous benchmarks in common
machine learning tasks, including visual classification and
speech recognition [4], and have thus been named one of the
breakthrough technologies of the decade [5]. The performance
of these networks can be increased by increasing the size of the
networks, i.e. using networks with more layers, as described
by theoretical results showing that adding more layers can only
improve performance bounds [2]. Networks with large number
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(BIMPA), SNF Grant 200021 146608, and the Samsung Advanced Institute
of Technology.

of neurons and layers have very high computational demands,
and training state-of-the-art deep networks can easily take mul-
tiple days, even on very large computer clusters [6], therefore
calling for hardware accelerations, either through GPUs, or
custom chips [7]. Even the execution of a trained network on
standard PCs is expensive due to the large number of neurons
involved, and results in high energy demands, communication
overhead, and high response latencies. In particular, the long
latency response is a problem for real-time applications in
mobile and robotic systems, which have limited computing
resources and power but require quick system responses.

One way to overcome these issues was recently demon-
strated through a transformation of DBNs into spiking neural
networks [8], which provide low-latency and energy efficient
solutions that can be optimally implemented on event-based
neuromorphic hardware platforms. The previous study de-
veloped the theory of training spiking DBNs and provided
a proof-of-concept software implementation with very good
performance numbers, leading to an implementation on an
event-driven Field-Programmable Gate Array (FPGA) called
Minitaur [9]. Here we present a more efficient implementation
of this architecture on the SpiNNaker platform, a hardware
platform optimized for scalable event-based simulations [10].
This platform has a biologically-inspired architecture designed
to enable low-power and low-latency massively parallel large-
scale simulations of heterogeneous models of spiking neurons
in real-time.

We present as contributions a proof of concept spiking DBN
running in real-time on a single SpiNNaker chip achieving
a classification accuracy of 95% on the MNIST dataset [3],
almost identical to a reference software simulator, while dis-
sipating 0.3 W, with a mean classification latency of 20 ms.
Furthermore, we characterise the latencies and power require-
ments of the SpiNNaker platform relevant to spiking DBNs
and derive a power estimation model to predict the scalability,
in terms of energy requirements, of larger DBNs running on



larger SpiNNaker machines.
The paper is structured as follows: Section II introduces

the theory behind spike-based DBNs. Section III describes the
SpiNNaker architecture and the mapping of DBN parameters
between software and SpiNNaker implementation. Section IV
presents the results from the use of the DBN on classification
of digits from the MNIST dataset [3] and evaluates the
classification accuracy and latencies, as well as the power dis-
sipation of spike-based DBNs running on SpiNNaker. Section
V discusses related work of spiking RBMs and DBNs. Lastly,
Section VI concludes with a discussion regarding advantages
of this approach and future implementations.

II. SPIKE-BASED DEEP BELIEF NETWORKS

DBNs are multi-layered neural networks, in which each
layer pair is formed by a Restricted Boltzmann Machine
(RBM), a recurrent network with full connectivity between
two layers of visible and hidden units, but without connections
between neurons of the same layer. Each neuron unit is a
stochastic binary neuron, whose “on” probability is given by
the weighted sum of its inputs and passed through a sigmoid
nonlinearity. Training is performed layer-by-layer using the
unsupervised Contrastive Divergence (CD) rule [2]. After
training one layer, the outputs of the hidden units of the
previous layer are used as the input to the subsequent layer.
At the topmost level, a label is jointly trained with the input to
give a supervised signal that guides the output of the network.

Several methods exist for training spiking versions of a
neural network. In this work, we follow the formulation
developed in [8]. This method is remarkably similar to the
traditional method given in [2] and variations such as per-
sistent contrastive divergence [11]. To perform training, only
one change is made to the standard learning procedure: the
activation function of the neuron is altered to account for
the non-idealities of a spiking neuron. The so-called Siegert
approximation [12] will yield the expected firing rate of a
neuron given input firing rates, input weights, and standard
neuron parameters. By normalizing the output firing rate of the
Siegert function by the maximum firing rate of the neuron, the
Siegert function can be viewed as just an abstract nonlinear
activation function, real-valued between zero and one. After
training, the parameters and weights can be used directly in a
spiking neural network in which they produce the firing rates
which match those in the training. Since these firing rates
match, the implementation on biologically-realistic spiking
neurons then is able to achieve the same accuracy as the rate-
based network. Further details can be found in [8].

The LIF neuron model follows the membrane potential
dynamics

⌧m
dV

dt

= EL � V +RmI(t) , (1)

where ⌧m is the membrane time constant set to 5 s, V is the
membrane voltage, EL is the resting potential set to 0 mV,
Rm is the membrane resistance set to 1 ⌦ and I is the input
current from the synapses (see Eq. 2). When the membrane
voltage surpasses a threshold value (Vth = 1 mV) a spike is

fired, and the membrane potential resets to V

reset

= 0 mV. A
neuron is not allowed to fire a second spike for a refractory
period of T

refrac

= 2 ms.
Equation 2 describes the synapse model used for this work:

I(t) =
nX

i=0

w̄

miX

j=0

�(t� tij) , (2)

where w̄ is the synaptic weight, n is the total number of
synapses to a neuron, mi the number of spikes received from
the i

th synapse, and �(x) is the Dirac delta function, which is
0 everywhere except for x = 0.

III. THE SPINNAKER PLATFORM

SpiNNaker [10] is a biologically-inspired Application Spe-
cific Integrated Circuit (ASIC) designed to enable large-scale
simulations of heterogeneous models of spiking neurons in
real-time. The SpiNNaker chip consists of 18 identical fully-
programmable ARM9 cores. Each core has its own local 96
kB tightly-coupled memory (TCM) for data and instructions,
while all the cores access a 128 MB SDRAM, through an
asynchronous network on chip (NoC), where the synapses are
stored.

At the centre of the SpiNNaker chip lies the router, which
is responsible for communicating the spikes to the local
cores or to any of the 6 bi-directional links, through an
asynchronous Communications NoC. The router has been
designed to handle one-to-many communication of spikes
efficiently. Spikes are transmitted as multicast (MC) pack-
ets implementing the Address Event Representation (AER)
scheme [13]. Each MC packet consists of a control byte that
holds information about the packet type, emergency routing
and time stamp information and a 32 bit routing key where
the address of the neuron that fired is stored. Every SpiNNaker
core has a communication controller whose purpose is to send
and receive MC packets to and from the router through the
Communications NoC.

By combining several SpiNNaker chips together larger
machines are created. Fig. 1 shows a SpiNNaker board with 48
chips (SpiNN-5). This is the largest prototype system currently
available and it will be the building block for constructing
larger SpiNNaker machines. The final SpiNNaker machine
will comprise approximately 1,200 of these boards, which is
over a million ARM9 cores, and it aims at simulating one
billion neurons with trillions of synapses in real-time. For this
work the ARM9 clocks have been configured to 150 MHz,
routers and system buses to 100 MHz, while the off-chip
SDRAM memory clocks to 133 MHz.

The software on SpiNNaker consists of two parts, the
software that runs on SpiNNaker and on the host side. On
the SpiNNaker side, each core runs an application run-time
kernel (SARK) with two threads that share the processor’s
time and are responsible for queueing and executing the tasks.
The SpiNNaker Application Programming Interface (API) is
built on top of SARK and allows users to develop neural and
synapse models using sequential C code and by assigning call-
back functions that respond to particular system events [14].



Some of these events are hardware interrupts generated by
one of the two hardware timers, that are available on each
SpiNNaker core, and are used to solve the neural equations
(Timer event). By the communications controller upon the
receipt of a MC packet (Packet received event) to initiate DMA
transfer in order to fetch the synapses from the SDRAM to the
local memory, and by the DMA controller (DMA done event)
to inform the core that the synapses have been copied to the
local TCM.

On the host side, pyNN [15], a simulator-independent neural
specification language, is used to describe neural topologies
and their parameters using abstractions such as populations
and projections. Partition And Configuration MANagement
(PACMAN) [16] a tool that is based on a pyNN script, maps
a spiking neural network to a SpiNNaker machine based on
the available resources.

Fig. 1. A SpiNNaker board with 48 chips (SpiNN-5).

To implement spiking DBNs on SpiNNaker, a collection of
functions were developed in Python that read a MATLAB file
of an off-line trained DBN [8] and automatically generate a
pyNN description of that network ready to run on SpiNNaker.
The same network can also be tested on the Brian [17]
spiking neural network simulator as a method to verify the
classification performance of spiking DBNs on SpiNNaker.

By taking advantage of the re-programmability of the SpiN-
Naker cores we increased the precision of our weight model
using a fixed-point accuracy of 22 bits, 6 for the integer
part and 16 fractional part (Q6.16), while the resolution for
synaptic delays was decreased from 4 to 1 bit as delays do
not play an important role in the current implementation.

IV. RESULTS

A. Spike-Based Deep Belief Networks on SpiNNaker

We chose the MNIST dataset [3] as a classification bench-
mark. The MNIST dataset consists of 28⇥28 gray-scale pixel

images of handwritten digits and is divided into a training set,
which comprises 60,000 digits, and a test set, which consists of
10,000 digits. The DBN topology is a 784-500-500-10 network
trained off-line as described in [8].

Static images are transformed into spike trains by converting
each pixel of an MNIST image into a Poisson spike-train
with a rate proportional to its intensity, while all firing rates
are scaled such that the total firing rate of the population is
constant [8]. Fig. 2 shows the topology and firing rates of
each layer of the spiking DBN for an MNIST digit running
on SpiNNaker. We chose the classification accuracy (CA) as
our metric of performance, which is the percentage of correctly
classified digits over the whole MNIST test set. We compared
the performance of the SpiNNaker implementation against
the software implementation in MATLAB and Brian [17].
Where possible we also compare these results against those
on Minitaur [9], an FPGA event-based implementation of the
same topology network.

Both the MATLAB implementation and the Brian simulator
employ double floating-point arithmetic and achieved a CA of
96.06% and 95.07% respectively. In SpiNNaker the weights
are represented using 16 bits for the fractional part (Q6.16),
while Minitaur uses 11 bits (Q5.11). SpiNNaker achieved a CA
of 95.01%, while Minitaur achieved 92% (see Table I). The
results indicate that there is only a 1% loss in performance
when switching to spiking neuron models, which is in accor-
dance with a previous study [8]. Furthermore, our SpiNNaker
implementation with reduced weight precision achieves almost
equivalent performance as a spiking software model. The
difference in performance between the two hardware platforms
is likely due to the weight precision; the quantized look-up
table Minitaur uses for the membrane decay; and the event
driven update of Minitaur.

TABLE I
CLASSIFICATION ACCURACY (CA) OF THE SAME DBN RUNNING ON

DIFFERENT PLATFORMS.

Simulator CA (%) Description

Matlab 96.06 Rate-based (Siegert)
Brian 95.07 Clock-driven

SpiNNaker 95.01 Hybrid
Minitaur 92.00 Event-driven

B. Classification Latencies

In order to investigate the real-time performance of spike-
based DBNs running on SpiNNaker, two sets of experiments
are conducted. The first experiment measures the classification
latency of the spiking DBN as implemented on SpiNNaker.
The second experiment investigates how the mean classifica-
tion latency and accuracy are affected by the total number
of input spikes. The increase in classification latency as the
network scales up is also estimated in this experiment.

In order to measure the classification latency of a spike-
based DBN running on SpiNNaker in the first experiment, a
Tektronix TDS 3034B oscilloscope is used to measure the time
from the first input spike to the first output spike by recording



Fig. 2. The topology and firing rates of the 784-500-500-10 spiking DBN
under investigation for a single input MNIST digit. The bottom plot shows
firing rates of the 28⇥28 neurons in the input population. The next two rows
of 5⇥100 show the firing rates of the neurons in the first and second hidden
layer (500 neurons each), and finally the top plot shows the firing rates of
the 10 neurons in the output population, one for each digit from 0 to 9. The
arrows indicate all-to-all connections, which means that a neuron in one layer
connects to all neurons in the next layer.

Fig. 3. Histogram of the classification latencies for the first 5,000 MNIST
digits of the test set using 100 bins. The mean classification latency is shown
as a red dashed line. Results are from the SpiNNaker implementation.

the signals from the general-purpose input/output (GPIO) pins
of the SpiNNaker board. The results as seen in Fig. 3 show a
mean classification latency of 20 ms. A latency in the order of
ms is expected since the timer events used to solve the neuron
equations for the experiments are set to 1 ms, which is the
default SpiNNaker configuration.

Two additional experiments are carried out using the Brian
software simulator to investigate how the number of input
spikes affects the mean classification latency and to estimate
the classification latencies of larger DBNs. For the first experi-
ment, the static images of the MNIST test digits are converted
to spike-trains using rates between 500 to 2,000 spikes per
second. Results in Fig. 4 show that increasing the number of

Fig. 4. Mean classification latency and classification accuracy as a function of
the input spikes per second. As firing rates increase, the classification latency
drops and accuracy increases. Results are averaged over 4 trials, error bars
show standard deviations.

Fig. 5. Estimated classification latencies of larger spiking DBNs as a function
of the total number of hidden layers and the latency per hidden layer.

input spikes reduces the mean classification latency, and has
a positive effect on the classification accuracy of the spiking
DBN.

The latency of the hidden layers also varies with the number
of input spikes. For the MNIST test set encoded with 2,000
spikes per second the mean spike latency between the hidden
layers is 2.3 ms, while when 500 spikes per second are used the
mean latency per hidden layer rises to 6.22 ms. A classification
latency estimation model is developed in order to predict the
mean classification latencies of larger spiking DBNs for a
number of fixed values of latencies per layer. Results are
summarised in Fig. 5.

C. Power Requirements

The power requirements of the SpiNNaker platform as the
size of the network scales up is explored here. Two sets of
experiments are conducted: The first experiment aims at char-



acterising the energy requirements of a SpiNNaker chip and
deriving a power estimation model. The second experiment
investigates the power requirements of a spiking DBN running
on a single SpiNNaker chip and utilises the power estimation
model to explore the scalability of spiking DBNs on larger
SpiNNaker machines in terms of energy requirements.

1) Power estimation model of SpiNNaker: The same
methodology in measuring the power is used as in [18],
but with measurements on a board with a single SpiNNaker
chip (see Fig. 6). This setup allows for a more accurate
energy measurement, and these measurements are then used
to build a power estimation model for the SpiNNaker platform
based on the number of neurons and the number of synaptic
events per second. A 0.05 ⌦ shunt resistor is placed in series
with the 1.2V voltage regulator that supplies voltage to the
SpiNNaker chip, and an 1.0 ⌦ resistor is placed in series with
the 1.8V voltage regulator that supplies the SDRAM and the
inputs/outputs of the chip (Fig. 6). A BK Precision 2831E
voltage meter is used to measure the voltage drop across the
resistors (sampled once per second) which is proportional to
the current flowing into the chip.

The benchmark neural network used in the power char-
acterisation task comprises 16 populations of LIF neurons,
recurrently connected in an all-to-all fashion, using delta-
current synapses (Eq. 2), Fig. 7. The activity of the network
is controlled through a single parameter, the current injected
directly into the neurons, while all synaptic weights are set
to zero so they would not alter the dynamics of the network.
Whenever a neuron’s membrane potential reaches its threshold
value, it fires a spike (MC packet) and the router routes
it back to the originating core. Despite the fact that all
synapses are zero-valued the same process takes place upon
the receipt of a MC packet, that is initiating a look-up process,
starting a DMA request to fetch synapses from the SDRAM
to the local memory and updating the status of each synapse.
Table II summarises the neural parameters used during these
experiments.

TABLE II
PARAMETERS OF THE LIF NEURONS. VALUES INSIDE THE BRACKETS

INDICATE THE RANGE OF A UNIFORM DISTRIBUTION FROM WHICH
PARAMETER VALUES ARE DRAWN.

Parameters Values Units

⌧m 64.0 mV
Vinit [�65.0,�125.0] mV
Vreset [�90.0,�125.0] mV
Vthresh [�50.0,�60.0] mV
⌧refract 3.0 ms

The power estimation model of a SpiNNaker chip can be
described as:

P

tot

= PI + PB + (PN ⇥ n) + (PS ⇥ s) (3)

where PI is the power dissipated by a SpiNNaker chip after the
booting process with no applications loaded, PB is the baseline
power which consists of the power dissipated by SARK and

Fig. 6. A board with a single SpiNNaker chip attached to a zero insertion
force (ZIF) socket. The 1.2V voltage regulator (green color) supplies power
to the SpiNNaker chip and the 1.8V voltage regulator supplies power to the
inputs/outputs of the chip and the SDRAM.

Fig. 7. The benchmark neural network used to derive a power estimation
model. This neural architecture comprises 16 populations of LIF neurons self-
connected in an all-to-all fashion. The activity of the network is controlled
through the current injected to the neurons.

TABLE III
EXPERIMENTAL RESULTS OF THE SPINNAKER POWER ESTIMATION

MODEL.

Parameters Values Units Description

PI 0.25 W Idle power
PB 4.0 mW Baseline power
PN 23.4 µJ Energy to simulate an LIF per ms
PS 11.3 nJ Energy per synaptic event



Fig. 8. Power dissipation of a SpiNNaker chip. a) Real and estimated power
dissipation when the number of neurons is fixed to 2,400 and total synaptic
events per second are varied. b) Real and estimated power dissipation when
the total synaptic events are fixed and the number of neurons is varied from
0 to 2,400.

the SpiNNaker API without running any neurons on it, PN

is the power required to simulate an LIF neuron with a 1 ms
time-step, n are the total number of neurons, PS is the energy
consumed per synaptic event (activation of neural connections)
and s are the total synaptic events.

In order to calculate the power required to simulate an
LIF neuron (PN ), the benchmark network is simulated on
SpiNNaker. Each population consists of 150 neurons and the
injected current is set to 2.45 nA in order to generate a
mean firing rate of 46 Hz per population, while the spike
transmission was disabled. Table II summarises the neuron pa-
rameters used during the experiments. The difference between
the power when running the benchmark network simulation,
and the sum of PI and PB is PN . For calculating the energy
consumed per synaptic event, the spike transmission is re-
enabled and PS is the difference between this simulation and
the aforementioned one. Results are summarised in Table III.

Two additional experiments are conducted in order to val-
idate the accuracy of the power estimation model using the
benchmark neural topology. For the first experiment 2,400 LIF
neurons are used and the total number of synaptic events per
second are varied from 0 to 16,560,000. Fig. 8a shows the
power dissipated by a single SpiNNaker chip (dots) during the
experiments and the estimated ones (dashed line) by utilising
Eq. 3. For the second experiment the total synaptic events
per second are kept constant and the number of neurons are
varied from 0 to 2,400. Fig. 8b shows the power dissipated by
a SpiNNaker chip (black dots) and the estimated ones (dashed
line).

When the SpiNNaker cores are clocked at 150 Mhz, a
SpiNNaker chip can simulate 2,400 LIF neurons (150 per
core) and handle up to 16,560,000 synaptic events per second
(1,035,000 per core), while fulfilling the real-time restriction

(ms updates) and dissipating 0.5 W.
2) Power dissipation of spike-based DBNs on SpiNNaker:

In order to investigate the power requirements of a spike-
based DBN running on a single SpiNNaker chip, the same
methodology is employed as in the previous subsection, Fig.
6. The simulation ran for 10 seconds, while the number of
input spikes generated for the same MNIST digit varied from
0 to 2000 spikes per second. Results show that both the power
dissipation and number of output spikes increase with the
number of input spikes per digit (Fig. 9). When 2000 spikes
per second are used per digit, a SpiNNaker chip dissipates
0.3 W, and that accounts for simulating 1794 LIF neurons
with an activity of 1,569,000 synaptic events per second. For
the identical spiking DBN implemented on Minitaur which is
clocked at 75 Mhz, a power dissipation of 1.5 W is reported
when 1000 spikes per image were used [9].

A final experiment is carried out in order to investigate
the power requirements of larger spiking DBNs running on a
SpiNNaker board with 48 chips, Fig. 1. The power estimation
equation, Eq. 3, is used to estimate the dependence of the
power dissipation on the total number of hidden layers and
neurons per hidden layer. Three different firing rates are
assumed for the neurons in the hidden layer, 10 Hz, 15 Hz
and 20 Hz. The results are summarised in Fig. 10. The power
estimation model is used to estimate the power under two
different criteria: The minimum number of chips required to
simulate the total number of neurons based on the number of
hidden layers and neurons per layer of the spiking DBN (2,400
neurons per SpiNNaker chip), and the minimum amount of
chips required to support the total number of synaptic events
per second (16,560,000 per SpiNNaker chip). The white area
in Fig. 10 signifies the parameter regimes where real-time
simulation is not feasible because the total synaptic events per
second require more than 48 SpiNNaker chips. Results show
that for different topologies of spiking DBNs, the limiting
factor is the number of synaptic events as the number of
hidden layers goes up, while the estimated power dissipation
of spiking DBNs utilising a full 48 chip board is less than
22 W.

V. COMPARISON WITH RELATED WORK

Investigations of spike-based DBNs are still rare with most
of the reported studies carried out on a two-layered RBM.
Exceptions so far are the software DBN model in [8], and the
hardware implementation in [9]. The MNIST database was
frequently used to determine the classification accuracy of the
network. The software DBN of size 728-1000-500-300-50 by
Eliasmith et al. [19] achieved 94% classification accuracy. The
network used rate-based neurons except for the final output
layer which was implemented with spiking neurons due to
limitations on the available computing resources.

Neftci et al. [20] recently proposed an event-based variation
of an online CD rule to train spiking RBMs. The trained
two-layer software spike-based RBM with 824 visible neurons
and 500 hidden neurons achieved a classification accuracy of
91.9%. Petrovici et al. [21] implemented spike-based RBMs



Fig. 9. Real and estimated power dissipation of a spike-based DBN running
on a single SpiNNaker chip as a function of the number of input spikes
generated for the same MNIST digit. The right axis shows the number of
output spikes as a function of the number of input spikes. The left bars (0
input spikes) shows power dissipation when the network is idle.

consisting of LIF neurons, following the theoretical framework
of neural sampling [22]. However, no results for the MNIST
dataset are available for this approach.

Arthur et al. [23] trained a two-layer RBM consisting of
484 visible and 256 hidden units, and 10 linear classifiers in
the output layer to classify the MNIST digits. The RBM was
then mapped to spiking neurons by utilising a global inhibitory
rhythm over fixed time windows [24]. A hardware implemen-
tation of their digital neurosynaptic core, which contains 256
LIF neurons simulated at discrete time-steps of 1 ms, led to
a classification accuracy of 89% at an energy consumption
of 45 pJ. The current TrueNorth chip [25] consists of 4,096
such cores and has a maximum capacity of 1 million neurons,
which can be simulated in real time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we present the most efficient implementation
of spike-based DBNs to date, running on the biologically-
inspired massively-parallel fixed-point SpiNNaker platform.
Its architecture is optimized for simulations with massive
parallelism, asynchronous updates, and event-based chip-to-
chip communication. It is an excellent fit for simulating
the stereotypical neural updates and relatively sparse con-
nections of deep networks in real-time and with minimal
power consumption. Combining spiking neural networks and
this hardware platform is thus an ideal fit for mobile or
robotics applications [26], which require fast responses while
interacting with the environment, and have only a limited
power budget compared to currently popular GPU- or cloud-
based solutions.

Our simulations verify that the advantages in energy effi-
ciency come at only small, tolerable inaccuracies. The loss
in performance due to the limitation of fixed-point arithmetic

Fig. 10. Estimating the power requirements of larger spiking DBNs running
on a 48 chip SpiNNaker board, as a function of the number of hidden layers
and neurons per layer, for three different firing rates for the neurons in the
hidden layers. The white area denotes regimes where real-time simulation is
impossible due to excessive synaptic events per second.

on SpiNNaker when compared to a double precision floating-
point MATLAB implementation, is only around 1% on the
MNIST dataset of handwritten digits, which is in agreement
with previous studies [8]. The difference is almost negligible
(0.06%) compared to a similar implementation in the Brian
spiking neuron simulator.

The classification latencies of the implemented spiking
DBNs on SpiNNaker are in the order of tens of milliseconds,
which is fast enough for interactive real-time classification.
Additionally, we have demonstrated that as the number of
input spikes increase, the classification accuracy improves
while latency decreases.

The power consumption for the spiking DBN under test



running on a single SpiNNaker chip is less than 0.3 W for a
digit encoded with a rate of 2000 spikes per second, while it
is estimated that larger DBNs running on a larger prototype
SpiNNaker board will dissipate less than 22 W.

Another very promising feature of our architecture is its
scalability: it is well known that adding more layers to DBNs
can improve performance [2]. With the SpiNNaker architecture
it becomes possible to create very large DBNs by adding
additional layers, running on different cores or chips, without
significantly increasing the latency of the system, and at
reasonable power dissipation. Future work will thus explore
implementations on larger hardware platforms, such as the
currently largest prototype comprised of 48 SpiNNaker chips.

While the SpiNNaker hardware might not achieve the en-
ergy performance of dedicated neuromorphic hardware, the
programmability of its architecture makes it an excellent
exploration platform for event-based computing. Future work
will aim at interfacing neuromorphic sensors [27], [28], [29] as
the input layer of spiking DBNs, or experiment with possible
plasticity rules [30] which can be implemented in real-time
for on-line unsupervised learning of RBMs [20].
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