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a b s t r a c t

During a Wet End break, the loss of paper feed through the paper machine causes loss of sensory

information and the remaining parts of the process are operated in open-loop. This causes the stock

composition in the Headbox to deviate substantially from the nominal specifications, causing paper

quality (after start up) and paper machine runability issues. In this work, the Base Sheet Ash

measurement of the scanner is estimated using a least absolute value (LAV) model which can then be

used for control of the chalk valve during the breaks to keep the Headbox Ash within specified limits.

The model is computed using a very fast optimization algorithm which is able to compute the LAV

solution using only basic elementary operations. The proposed approach has been developed for a UK

paper mill.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction to the paper making process

Paper making combines energy demanding complex systems
and it is vitally important to the UK economy. These processes use
large amount of resources (pulp, water) and demand huge
amounts of energy. Even a small scale paper mill can use in
excess of 150 GW h of energy, and 100 ktons of water per year. A
reduction in energy usage of just 1% in such a mill is equivalent to
the total energy used by 1200 households in one year. Part of this
huge energy and water demand are intrinsic to the paper making
process. In order to make paper, several stages of processing are
applied to solid wood to convert it into a o1% consistency slurry
which is free-running enough to make a web of material. This web
then needs to be pressed and dried back to o1% moisture. This
cycle is what makes paper making inherently energy and water
consuming. Furthermore there are also procedural factors
contributing to the inefficient operation. Unlike other manufac-
turing processes, paper making is subject to frequent production
interruptions. When these interruptions cause a large disturbance
to the machine, it results in marked increase of waste or unsalable
paper production. One of the key challenges in paper making is
therefore to minimize the effects of these disturbances on the
machine and to minimize the machine downtime. An important
and frequent disturbance which affects the paper making process
ll rights reserved.
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is the phenomena of ‘paper breaks’. When paper tears or breaks in
the machine, production has to be stopped until the problem is
rectified. In a typical paper machine with well trained personnel, a
machine can be ready to resume paper making in under an hour
(if there is a mechanical issue this may grow indefinitely longer).
This papers deals with the effects of these disturbances on the
paper machine and outlines the results of a study which was
carried out at a UK paper mill.

A paper machine is generally divided into three main sections,
‘Stock Preparation’, the ‘Wet End’ and the ‘Dry End’. An average
sized paper machine is around 200 m long and 10 m wide. Paper
can be produced at a rate of over 20 tons/h and at speeds of
around 850 m/min. The major elements of the stock preparation
are shown in Fig. 1. ‘Stock’ is the term used to refer to the slurry
which is dried to make paper. The stock preparation area
comprises of four ‘lines’. The first line is the ‘Virgin Fiber’ line
containing fresh fibers. The Virgin Fiber line starts by pulping; the
process of separating the individual fibers in the Virgin pulp using
water. Subsequently the fibers are further modified to help them
bond. This mechanical process is known as Refinement. Different
pulp types are usually added in varying proportions to form a
‘Furnish’ to make a particular grade of paper. In the virgin fiber
line, stock is gradually reduced in consistency from almost solid,
to 7.5%, then to 5.0% and finally the pulp which enters the refiners
are diluted to 4.3% consistency.

In addition to the Virgin Fiber line, there are also three recycle
lines. A recycle line can carry either recycled paper or material
which did not make it on the web. Since fibers in these lines have
already been refined, they do not need to be refined again.

www.elsevier.com/locate/conengprac
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Nomenclature

np population size
x a vector of real valued parameters
xU a vector upper bounding x
xL a vector lower bounding x
f ðxÞ objective function value of x
bxc floor of x

dxe ceiling of x

r jba a uniformly distributed random number between a

and b

qn jba an n dimensional vector of uniformly distributed
random numbers between a and b

r ‘b
a a uniformly distributed random integer between a

and b
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Depending on where in the machine the material has come from,
they will arrive in one of three lines. Any material which is
collected on or around the ‘Wire’ section will be collected into the
‘Couch’ line. These will include edge spray cutter trims, solids
drained off the Wire, and machine broke at the Wet End. Material
collected from these sections can be used back in the process as
they are. The second recycle feed line is the ‘Recovered Stock’ line.
Recovered Stock refers to the fibers which are recovered from the
water drained on the Wire by using ‘Disk filters’. The final line is
the ‘Coated Broke’ line. ‘Broke’ refers to base or coated paper
which cannot be sold and is recycled. The paper may not be
saleable due to poor quality parameters, or if a paper break has
occurred blocking the path of paper in the machine.

The material from the Virgin Fiber, Coated Broke, Recovered
Stock and Couch line enter the ‘Blend Pipe’ where mixing occurs,
Virgin Fiber 
Hydrapulper

Virgin Fiber dump chest Refined Stock Dum

No 1No 2No 3

Refiners

Coated Broke Hydrapul per

Broke plant 
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Fig. 1. Main elements of the S
and arrive at the ‘Thick Stock’ blend chest. Chemicals, water and
fillers are then added to form the Thick Stock, a 5% consistency
slurry which is subsequently thinned down during several stages
of cleaning and dilution to form the Thin Stock, a o1%
consistency mix. Chemicals which aid the formation of the paper,
improved filler/fiber bonding, improved flocculation and
improved retention of fillers and fibers are then mixed into the
Thin Stock. The Thin Stock then enters the Wet End (Fig. 2)
through the ‘Headbox’ where it is sprayed onto the paper forming
mesh called the ‘Wire’. The purpose of the Wire section is to retain
the solids while the water is drained away. Stock leaves the
Headbox at a consistency of about 0.65% and it leaves the Wire at
a consistency of about 30%. The rate of water drainage on the Wire
can reach as high as 12,000 l/min. The next stage is the press
section where the paper is flattened, consolidated and further
p Chest
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Fig. 2. The Wet End of the paper machine.
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Base Sheet Scanner
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Final Drying Section

Fig. 3. The Dry End of the paper machine.
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dried. Following the press section is the first drying stage where
the paper is dried using steam heated rollers. At the end of the
Wet End, the product is a paper web commonly referred to as
the ‘Base Sheet’. The Base Sheet then enters the Dry End of the
machine (Fig. 3). The main functions of the Dry End are to add
the coating to the Base Sheet, and a final drying section. This is
then succeeded by the calendering stage, where irregularities in
the sheet formation are corrected and its surface smoothness and
gloss is improved. This final paper is referred to as the Reel
End paper.
1.1. The role of Ash in paper making

Fillers are minerals which are added to the Thick Stock to fill
the gap which is formed between wood fibers. Using fillers
instead of fibers help make paper making economical since fillers
are substantially cheaper than wood. They also aid in improving
paper’s printing properties (Smook, 1992). Nevertheless adding a
high proportion of filler leads to paper discoloration, brittleness
and poor opacity. Similarly, the paper machine runability will be
adversely affected: The interlocking between wood fibers helps to
build ‘Tensile Strength’ in the paper web (for more information on
mechanical properties of the paper please see Brodeur, Gerhard-
stein, Lafond, Jong, & Habeger, 1999). Filler are particle shaped
and do not bond well to either themselves or wood fibers. A high
amount of filler will lead to reduced paper Tensile Strength in
both the machine direction (MD) and cross direction (CD) leading
to an increased occurrence of breaks.

Flocculation or aggregation mechanisms are required because
fillers are too small to be retained mechanically on the Wire.
Ideally one wants to limit the flocculation between the fibers
(homoflocculation) and maximize the flocculation of fines and
additives on the fibers (heteroflocculation). Early retention aid
systems were single-component, most often based on acryl-amide
chemistry, alum, starch, polyamines or polyethylene-imines (PEI).
A further development of these systems was a dual-component
system, which is usually based on interactions between a long-
chain charged polyelectrolyte and a second polymer with the
opposite charge. Two popular chemicals used for these purposes
are Percol and Hydrocol (Bentonite). Percol is a cationic polymer
added first and flocculates the anionic fibers and fillers. After the
shear stage where the flocs are redispersed, the anionic polymer is
added and forms new flocs by bridging between the cationic floc
fragments. Hydrocol is an anionic nano or microparticle added to
reflocculate the furnish components after the fan pump. The
chemical reactions are almost instantaneous which can lead to
large disturbances should the flow of chemicals be perturbed.
1.2. Control of Ash during breaks

At any one time there is a 600 m long web of paper of paper
through the machine which can tear for a variety of reasons such
as poor paper formation, low tensile strength, incorrect cylinder
loads, incorrect chemical additions, or poor web position control
(Daly, 1965; Wang, Logghe, & Miskin, 2005; Claveau, Chevrel, &
Knittel, 2008; Ekvall & Hagglund, 2008). Although there have been
some attempts to predict the occurrence of paper breaks (see
Bonissone & Goebel, 2002, and references therein), these are
generally unreliable. A well run paper machine will experience
two or three breaks a day. The average recovery time from a break
is 1 h. This down time is extremely costly, therefore it is desirable
to not have such breaks, and if they occur, to recover as quickly as
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possible. The cost of breaks have been estimated to be around
2–7% of the total production loss. For a medium sized modern
machine with a production of 150 ktons per annum, this
translates to around $1 m (Ahola, 2005). Along the length of the
machine, there are several diversion points where the web can be
fed away from the machine. This allows the sections of the
machine which are located before the break point to keep
operating. Keeping the machine ticking over allows paper making
to resume faster than from a cold start which means it is
ultimately more economical. However, running the machine
during a break poses difficult control challenges, one of which is
the subject of this work.

There are two points of measurement which are vital for the
control of the paper machine; the Base Sheet Scanner and the Reel
End Scanner (See Fig. 3). These are large scanners which sweep
across the paper web in a zig-zag fashion and measure several
paper properties such as Sheet Weight, Sheet Ash (filler), floc size,
floc intensity, caliper, etc (Wang, Dumont, & Davies, 1993). These
measurements are then fed through to the plants DCS systems to
adjust various chemical and product additions. The Base Sheet is
largely used for control of the paper machine (Baki, Wang,
Soylemez, & Munro, 2001). The Reel End scanner is primarily used
to control the paper coating process (Walter, 1993). During a
paper break, depending on where the break has occurred one or
both of these will no longer be providing reliable information. For
example, when a paper break occurs in the Dry End of the paper
machine, paper will still pass through the Base Sheet Scanner, but
not the Reel End scanner. Common practice is to ‘freeze’ all
scanner measurements to their last value measured before the
break occurred. This will stop the DCS system shutting down the
plant.

One of the key measurements obtained from the Base sheet
Scanner is the Base Sheet Ash, which is the percentage of fillers in
the paper. Fig. 4 shows a typical Wet End Break. Notice that when
the break occurs, the Base Sheet Ash reading freezes, which forces
the Chalk Flow to also freeze. The recycle streams also bring back
fillers to the blend pipe. The lowest ratio (o5%) is found in the
Recovered Stock line (due to the operation of the Disk Filter) and
Time seires plot generated by
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Fig. 4. The Wet End Break is shown by the thick blue line. When the break occurs, the

Headbox Ash which is reflected in the bump in the Headbox consistency value after th
the highest ratio (around 40%) is in the Coated Broke line. During
the break the fillers which were supposed to end up in the paper,
find their way back to the Stock Preparation system. As the break
prolongs, this build up of filler increases. At the same time, the
controller cannot respond to this because of the frozen Base Sheet
Ash signal. The effect is that the Ash content in the Machine Chest
and consequently Headbox will climb (e.g. Fig. 4). The most
prominent consequence is that the increased filler levels will lead
to poor formation and low tensile strength when the paper is
formed possibly causing a ‘train’ of successive breaks.
2. Estimation of base sheet ash

The proposal to the concerned mill to deal with this problem
was to use data driven modeling and develop a soft-sensor which
can be used for control of the Chalk Valve during the breaks. This
is a novel approach in the paper industry. A major obstacle is that
it is notoriously difficult to obtain ‘good’ data or models in this
industry. Some of the most pertinent challenges are the wide
range of products being made (over a 100 Basis Weight/Grade of
finish/coating combinations), complex Wet End physical and
chemical interactions which are not modelable, the frequency at
which the parts, components, or systems on the machine are
upgraded or changed, and finally the fact that despite advances in
sensing technology, several important paper properties still
cannot be measured online and require manual lab testing.

By far the largest obstacle in the way of successful modeling
and estimation are operational disturbances. Measurement noise,
interferences, and signal transients are typical disturbances which
corrupt real time measurements. There are also ‘bad data’
associated with known faults. The primary source of such
disturbances are poor operational compliance by the technical
staff. For example during the routine maintenance of duplex-
filters the operator does not prime the system correctly which
will temporarily seize the flow, causing possible large distur-
bances (Fig. 5). There are also none-operator induced disturbances
such as those encountered during scanner startup and warmup
   PMEye 2.0
Wet End Break [0 1]Wet End Break [0 1]
Base Sheet Weight [0  111]
Base Sheet Ash [0  49]
Stock Flow [0  5878]
Chalk Flow [0  120]
HBo x Consistenc y [ 7 -29825]

Base Sheet Ash reading freezes. The DCS system is blind to the rising value of the

e break.
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Fig. 5. A temporary drop in Percol flow leads to a 30% disturbance on Base Sheet Ash.
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(See Fig. 4). The first problem is that when the break has ended,
the scanner takes 5 min to warm up and there are no
measurements during this period even though there is no break.
There is also a ‘jump’ in the Ash reading which occurs around
30 min after scanner’s first live reading. This is caused by the
scanners ‘initializing’ every 30 min. Part of this process is to
calculate an ‘air gap’ temperature correction factor which is used
by the scanner to adjust its reading. When the scanner has been
operating for a while the temperature of the air in the gap
between the sheet and the scanner is relatively steady. However,
when paper is first fed through the scanner, the temperature of
the air will rise rapidly from room temperature to around 703.
Consequently at the first recalibration point after the break, there
is a large jump (correction) in the Base Sheet Ash reading.

It is clear that an analytical approach will not be practical
when faced with these obstacles, making the estimation a suitable
alternative. The dominance and popularity of the least squares
regression can be ascribed, at least partially, to the fact that the
theory is simple, well developed and documented. The least
squares regression is optimal and results in the maximum
likelihood estimators of the unknown parameters of the model
if the errors are independent and follow a normal distribution
with mean zero and a common variance (Narula & Wellington,
1982). Nevertheless, the least squares regression is distinctively
sub-optimal in many non-Gaussian situations, especially when
the errors follow distributions with longer tails (Rice & White,
1964). For the regression problems, Huber (1973) stated that ‘just
a single grossly outlying observation may spoil the least squares
estimate, and, moreover, outliers are much harder to spot in the
regression than in the simple location case’. The outliers occurring
with extreme values of the regressor variables can be especially
disruptive. Least absolute value (LAV) regression on the other
hand overcomes these drawbacks and provides an attractive
alternative. It is less sensitive than least squares regression to
extreme errors, has implicit mechanics to reject bad data and does
not require a normal distribution of data which is unrealistic in
practical situations (Claerbout & Muir, 1973).
2.1. Affect of bad data on the LS and LAV solutions

To see why the LAV approach offers an implicit bad data
rejection property, let xi be an arbitrary number and define g1 as
the value of g which minimizes the sum of the squared differences
(i.e. the least squares solution) between g and x:

g1 :¼ arg min
g

XN

i ¼ 1

ðg�xiÞ
2; ð1Þ

where N is the total number of data points. It is straightforward to
find the minimum by setting the partial derivative of the sum
with respect to g equal to zero:

0¼
XN

i ¼ 1

2ðg1�xiÞ; ) g1 ¼
1

N

XN

i ¼ 1

xi: ð2Þ

Notice that the solution is the mean of the data observation
values. In this case if any of the xi are very large (say due to a
measurement error) it will directly effect the solution. To see the
effect of the same change in the LAV case, define now g2 to be the
solution obtained by minimizing the least absolute value as

g2 :¼ arg min
g

XN

i ¼ 1

jg�xij: ð3Þ
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LS
LAV

Fig. 6. Picking the maximum of a trace when the choice is ambiguous.
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To find the minimum, the partial derivative with respect to g is set
equal to zero:

0¼
XN

i ¼ 1

sgnðg2�xiÞ; ð4Þ

where

sgnðxÞ ¼

þ1; x40;

�1; xo0;

0; x¼ 0;

8><
>: ð5Þ

The solution defines g2 as the median. Relating the mean and the
median to the LS and LAV problems helps to easily see why the
LAV approach is inherently much more robust. For example
suppose that there are three observations from an experiment
f1;1:1;0:9g. The LAV solution in this case is 1 and the LS solution is
also 1. However, if due to experimental error, or a measurement
anomaly, the observations became f1;100;0:9g, then the LAV
solution is still 1, but the LS solution will change to � 30. This is
because in the LAV case, as long as the bad data remains on the
same side of the median, it has zero effect on the solution. In the
general case, the solution of the LAV problem will ‘exactly’ satisfy
as many equations out of the number proposed, as there are
unknown quantities, and the remaining equations simply help to
‘determine’ the choice. The set of equations used to determine the
LAV solution are referred to as the ‘optimal-basis’. This difference
in treating inconsistent data may have important physical
implications. Suppose that one is trying to find the maximum of
a cross-correlation function. As illustrated in Fig. 6, it is quite
common to discover that the maximum of the function cannot be
unambiguously picked. When neither maximum is consistent
with the rest of the data, the LAV solution will choose a line which
picks either one or the other. The LS solution on the other hand
regards the two data values as one of double weight placed at the
midpoint between the two. For the example, at hand this is
inappropriate because the midpoint is clearly not a maximum.
The median also has the property of stretch invariance, meaning
any monotonic transformation preserves order and leaves the
median pointer unchanged. This property can be useful when it is
not clear what should be the correct scaling or averaging
performed on the data.
2.2. The LAV regression problem

Consider the value of an experiment which, when taking into
account the error may be represented as follows:

yi ¼
Xm

j ¼ 1

xijbjþei; i¼ 1;2; . . . ;n; j¼ 1;2; . . . ;m: ð6Þ
Let ðxi1; xi2; . . . ; xim; yiÞ be the i th observation (n observations in
total) and let b0; b1; . . . ; bm be the estimates of b0;b1; . . . ;bm

estimated by minimizing the sum of absolute values of the
differences between the values of ŷ and y. So the LAV problem is
therefore,

min
Xn

i ¼ 1

jyi�ŷij

 !
: ð7Þ

The LAV regression problem actually predates the least squares
approach. Its use, however, was not popular for many years
because unlike least squares, the solution is difficult and not
straightforward. It was not until the implementation of LP
algorithms on the digital computer that LAV estimates could be
obtained for problems of reasonable size (Armstrong & Kung,
1982). Charnes, Henderson, and Cooper (1953) appear to be the
first to point out that (7) could be rewritten as a LP problem.
Subsequently several other LP versions of the LAV problem were
developed by Charnes, Ferguson, and Cooper (1955), Gonin and
Money (1989), Li (1998), and Gentle, Narula, and Sposito (1987).
The best known model for the linear regression model is the
primary linear regression model developed by Charnes et al.
(1955) and Ignizo (1995). In this model, the aim is to minimize
the overall absolute difference between observations and estima-
tion values, in other words, minimizing the overall error terms. In
this respect, goal programming is used to develop the LP model
which will be used to minimize the overall total positive and
negative deviations (Cerezci & Gokpinar, 2005).

Evidently, the computation of the LAV solution is non-trivial.
In particular it is often the case that modeling and estimation
needs to be implemented on older legacy systems or within a
limited programming environment. Under these circumstances it
is difficult to solve the LP either using the simplex method or
using some sort of interior point algorithm. There are also speed
of computation concerns which become important in online
estimation applications. Indeed, in case of the mill concerned, the
modeling and estimation programme need to be implemented on
a legacy Honeywell DCS system from the 1980s using the
Measurex Programming Language (MPL). It was therefore neces-
sary to find an alternative and efficient means of solving the
LAV problem.

In light of this, Differential Evolution represents a suitable
algorithm for the computation of the LAV solutions. Being a direct
search method means that only elementary operations (addition
and multiplication) are required to find the solutions, and at the
same time since they are variants of Evolutionary algorithms, the
implicit parallel processing makes them much faster than
single point direct search methods such as bisection or Golden
Section search.

2.3. Differential evolution

Differential Evolution was recently proposed by Storn and
Price (1997) as a powerful direct search evolutionary algorithm.
Amongst the DE’s advantages are its simple structure, ease of use
and speed of convergence. DE has consistently been ranked as the
best search algorithm in several case studies. In Storn and Price
(1997), DE is compared with the annealed version of the Nelder
and Mead Simplex algorithm and the Adaptive Simulated
Annealing. The DE outperformed both of these algorithms and it
was the only one to converge for all of the test problems. In Babu
and Angira (2002), the DE was compared with the simulated
annealing M-SIMPSA algorithm (Cardoso, Salcedo, Azevedo, &
Barbosa, 1997) and Genetic Algorithms, and was again found to be
the only one converging on all problems and providing a better
solution when other converged as well. Lin, Hwang, and Wang
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Fig. 7. The crossover operation in case of convex cost function. The parent vectors

are shown in gray and the trial vectors are shown in black. Note that among the

four crossover operations, only one leads to an improvement in this case.
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(2001) applied several MINLP case problems and compared the DE
with powerful MINLP solvers. They found that the DE was the
only one able to simultaneously solve all the problems to
optimality and satisfy the constraints. In Lampinen and Zelinka
(1999) report that the DE outperformed several algorithms,
including the Branch and Bound, Sequential Programming,
Sequential Linearization Algorithm, Simulated Annealing, GAs,
Evolution Programming and ESs, when tested on Sandgren’s
problem set.

The population of a DE is subject to three operators of
mutation, crossover and selection. Price and Storn proposed
several variants of the basic DE which are denoted using the
notation DE=vec=num=mode. vec is the vector to be mutated,
which is either a randomly chosen vector,‘rand’, or ‘ best’ ¼ x�k;
the best vector of the current generation. num is the number of
difference vectors used in the mutation, which is either 1 or 2 and
mode is the method of crossover used. For independent binomial
experiments of the genes, this is set to ‘bin’. The initial population
of the DE is generated uniformly to span the initial domain of x,

Pð0Þi ’xð0Þi ¼ xLþqn j10 ðx
U�xLÞ; i¼ f1; . . . ;npg: ð8Þ

Subject to,

xL
!xU ARn; ð9Þ

where x!y iff 8xi; yi : xioyi.
Mutation: Unlike EAs, in DE the mutation amount is derived

from a difference vector which is calculated using members of the
current populations. For the standard DE=rand=1= . . . strategy, this
is as follows:

trkþ1
i ¼ xk

bestþFðxk
s�xk

t Þ; ð10Þ

where F is the weighting factor and s¼ r ‘np

0 and t¼ r ‘np

0 are
randomly generated integers such that sata i (i.e. the i th trial
vector cannot self-mutate). Since the DE operates an elitist
selection scheme, xk

best also equals the best ever solution from
the start of the search to the current iteration. The inherent ‘self-
adaptation’ of the DE is seen. As the population converges to an
optimum, any randomly chosen difference vector will become
smaller in magnitude. Eventually when all members converge to a
single solution, the difference vector will be zero and the
mutation operator will be disabled all together. Therefore, the
actual amount of mutation at iteration k is not only determined by
F but also by the population diversity.

Crossover: For each gene of the trial vector a random number is
generated, if this is lower than the crossover rate Cr set by the
user, then the gene of the new trial vector is used, if not the gene
of the original trial vector xk

i ¼ ðx
k
i1; . . . ; x

k
inÞ is kept,

trkþ1
ij ¼

xk
ij if r j10ij

oCr ;

trkþ1
ij else;

8<
: j¼ f1; . . . ;ng: ð11Þ

Selection: The selection in DE is deterministic and simple: The
resulting trial vector will only replace the original parent if it has a
lower objective function value,

xkþ1
i ¼

xk
i if f ðtrkþ1

i Þ4 f ðxk
i Þ;

trkþ1
i else:

8<
: ð12Þ

Although the selection pressure is only one, the best individual of
the next generation will be at least as fit as the best individual of
the current generation. Similar to a ðb;bÞ�ES, the spread is one,
but the best individual can get better whilst the worst remain the
same. Therefore, there is less loss of diversity than in truncation
selection used in ES and this insures a relatively large selection
variance.
2.4. Adaptive DE algorithms

DE has three control parameters; np, the population number,
F the mutation weighting factor and Cr the crossover rate. The
difficulty with the use of DE is that their choice is mainly based on
empirical evidence. Although the standard DE is inherently adaptive,
its sensitivity to the control parameters is well known (see
Gamperle, Muller, & Koumoutsakos, 2002 for a general treatment
and Lampinen & Zelinka, 2000 for the stagnation problem).

There have been a handful of generic adaptive DEs developed
in the past. Some algorithms such as Lampinen (2002) or Zaharie
(2003) rely heavily on human intervention. For example, Zaharie
(2003) proposes a feedback update rule for F that is designed to
maintain the diversity of the population at a given level (and thus
stop the search converging prematurely). However, the method
requires the user to tune a g parameter which determines the
update law for F. Therefore, as the author points out himself,
although the algorithm seems to perform better than the self-
adaptive DE proposed in Abbass (2002), in actual fact the problem
merely changes from choosing F to choosing g. Recently a self-
adaptive algorithm was developed (Nobakhti & Wang, 2007)
which takes into account these inadequacies and involves no
feedback law. This removes the need to determine a generic rule,
or replace tuning of F with tuning some other parameters (for
example the mean and variance of a distribution). Unlike the
standard DE, in the proposed algorithm each xi has its own unique
value of Fk

i which is subject to change during the evolution. The
algorithm referred to as Random Adaptive Differential Evolution
(RADE) is a generic optimization algorithm which is applicable for
the generic class of nonlinear and discontinuous problems.
However, in this work, some of the special features of the LAV
problem are taken into consideration to develop a faster
algorithm based on RADE which will be referred to as fADE.

2.5. A fast adaptive DE for LAV computation: fADE

Although the LAV problem is not a smooth function, one of its
key geometric features is that when a linear regression model is
used, it is always convex. The convexity of the cost function
greatly reduces the effectiveness of the crossover operator. In this
case, the crossover operator will only yield a better result if the
two parent vectors form a difference vector which is not
orthogonal with the main function axis (See Fig. 7). Clearly this
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Table 1
Benchmark results for varying problem dimension.

n¼ 1000 fADE LP (Interior point)

m¼ 2 CPU¼ 0:0344, Mem¼ 24 CPU¼ 0:2641, Mem¼ 16;040

m¼ 3 CPU¼ 0:0688, Mem¼ 32 CPU¼ 0:2672, Mem¼ 16;048

m¼ 4 CPU¼ 0:1266, Mem¼ 40 CPU¼ 0:2813, Mem¼ 16;056

m¼ 5 CPU¼ 0:1812, Mem¼ 48 CPU¼ 0:2875, Mem¼ 16;064

m¼ 6 CPU¼ 0:2953, Mem¼ 56 CPU¼ 0:3016, Mem¼ 16;072

m¼ 7 CPU¼ 0:5078, Mem¼ 64 CPU¼ 0:3172, Mem¼ 16;080

m¼ 8 CPU¼ 0:6656, Mem¼ 72 CPU¼ 0:3234, Mem¼ 16;088

m¼ 9 CPU¼ 0:8250, Mem¼ 80 CPU¼ 0:3359, Mem¼ 16;096

m¼ 10 CPU¼ 1:1516, Mem¼ 88 CPU¼ 0:3516, Mem¼ 16;104

CPU refers to the CPU time in seconds (s) and Mem refers to the allocated memory

size in kilobytes (kb).

Table 2
Benchmark results for varying number of observations.

m¼ 5 Proposed algorithm LP (Interior point)

n¼ 500 CPU¼ 0:0859, Mem¼ 24 CPU¼ 0:1922, Mem¼ 7884

n¼ 800 CPU¼ 0:1266, Mem¼ 38:4 CPU¼ 0:2266, Mem¼ 10;291

n¼ 1100 CPU¼ 0:1047, Mem¼ 52:8 CPU¼ 0:3172, Mem¼ 19;430

n¼ 1400 CPU¼ 0:2047, Mem¼ 67:2 CPU¼ 0:4359, Mem¼ 31;450
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is a special case and the computational cost of performing the
crossover operation outweighs the potential benefits arising from
the above geometry. Therefore, in the fADE algorithm, the
crossover operator is removed completely.

Recall that in the general case of multi-modal function, an EA
needs to maintain a large population to avoid entrapment in the
function’s local minima. This emanates from the assumption that
each member of the population might possess a set of ‘good’ genes
which in later generations and through recombination with other
members will lead to an overall better solution. Since the LAV
problem is convex, the need to maintain a large population is
evidently reduced. Yet, if a small population is used at the start of
the search, there is a chance that there will not be sufficient
distribution of initial choices around the global minima, causing the
search to stagnate. In light of this, the second modification is to
dynamically reduce the size of the population. This is quite safe to do
since in the LAV case the worst member has no useful genetic
information and can be safely discarded at each iteration. For an m

dimensional problem, a lower bound of m members has been
defined so that the size of the population will never drop below the
dimension of the problem. The benefits of this dynamic reduction
are that it ensures good initial coverage of the surface, but then
reduces the size of the population to avoid unnecessary computation
at the later stages. A complete pseudo-code for fADe is given in the
appendix.
n¼ 1700 CPU¼ 0:2266, Mem¼ 81:6 CPU¼ 0:5703, Mem¼ 46;349

n¼ 2000 CPU¼ 0:2594, Mem¼ 96 CPU¼ 0:7328, Mem¼ 64;128

n¼ 2300 CPU¼ 0:2375, Mem¼ 110:4 CPU¼ 0:9125, Mem¼ 84;787

n¼ 2600 CPU¼ 0:2484, Mem¼ 124:8 CPU¼ 1:1000, Mem¼ 108;330

n¼ 2900 CPU¼ 0:3406, Mem¼ 139:2 CPU¼ 1:3250, Mem¼ 134;750

n¼ 3200 CPU¼ 0:3681, Mem¼ 153:6 CPU¼ 1:5703, Mem¼ 164;040

CPU refers to the CPU time in seconds (s) and Mem refers to the allocated memory

size in kilobytes (kb).
3. Benchmark and results

3.1. Comparison of f ADE and interior point algorithms

First, the regression coefficients of the LP and fADE algorithms
are estimated for benchmarking purposes. Each experiment is
repeated 10 times and the results given here are the average of
those 10 runs. The experiments were performed on an Intel
Pentium Core 2 Due 1.83 GHz system with 2 Gb of RAM. The CPU
times (in seconds) and total memory allocation in kb (in MATLAB)
are recorded. In case of the LP problem, MATLAB standard
function linprog was used (fixed to LargeScale option to
always use the interior point algorithm) which uses Mehrotra’s
(1992) predictor–corrector infeasible interior point method. In all
cases, n is the number of observation data points, and m is the
dimension of the problem. In case of the LP problem, an interior
point (IP) algorithm was used to solve the problem. For the scale
of problems considered here, the IP algorithm was faster than the
Simplex method which is the other common approach to solve
the LP. For fADE, the initial population was always fixed at 10 m
and the algorithm had a 100% convergence rate for all the
experiments; then again this is a convex problem. For both
algorithms the same function tolerance was used. The results are
given in Tables 1 and 2 and are shown graphically in Fig. 8.

Note that fADE has strikingly different properties from the LP
algorithm. The LP is much less sensitive to the dimension of the
problem, than fADE. However, the situation is completely
reversed when the number of observations are increased. In this
case, fADE is much less sensitive and the complexity rises notably
slower. It is also noteworthy to underline the huge difference in
memory requirements which is approximately three orders of
magnitude. This stems mainly from the fact that to solve the LP,
large data matrices need to be created, where as with DE direct
evaluation is performed.

For example, in case of five regression coefficients and 2000
observations, the proposed algorithm uses 96 kb of memory,
versus 64 Mb required for the data matrices of the LP
formulation (This is simply the allocation space required for the
input data, and does not include the temporary memory required
during computation).

Clearly fADE has an overall advantage in terms of memory
usage. It can also be argued that for the application it was
developed, it is also superior in terms of computational efficiency.
Namely, when estimating in real life industrial applications, one is
generally dealing with a few of coefficients, but many observa-
tions. For example, the paper machine’s DCS system will log
plantwide data every 5 s. This results in over 17,280 observations
per 24 h. For a four dimensional problem, this will take the LP
approach an estimated 2 min to compute the LAV model, but only
1.3 s using fADE. This is a very significant speed advantage,
especially when noting that the Interior Point solver used for the
LP problem is already one order of magnitude faster than the
Simplex method which itself is reputed to be a fast algorithm. The
speed of the proposed algorithm will make it possible to
implement LAV problems online, in the same way that been
traditionally done for many years with LS models. Moreover, the
algorithm is very light on memory usage and is able to compute
the LAV solution using only elementary operations of addition and
multiplication.
3.2. Base sheet estimation

In the case of the paper machine considered there are around
200 variables in the Wet End process line that continue to be
logged during the break as long as Stock still flows onto the Wire.
Although it might seem that using as much of the data as possible
will lead to an improved model, this is not the case for several
reasons. First, not all data is logged by the same logging system
and not all will be in real time. Consequently data corresponding
to the same event, will be scattered in several databases with a
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different time stamp in each database. Considering too many
variables will therefore necessitate a tedious synchronization
process.
Hbox Ash

Base Sheet Ash

Whitewater Ash

Fig. 9. The four variables used fo
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Fig. 8. CPU time versus LAV dimension ðn¼ 1000Þ shown on the left, and CPU time

versus the number of observations ðm¼ 5Þ shown on the right.
Secondly, each of these variables will have many perturbations
and data anomalies associated with them. Using too may of these
will lead to an unnecessary amount of large quantity of bad data.
Moreover, and most importantly machine operators will not be
able to effectively use a complex model which requires 100 s of
variables to estimate the Base Sheet Ash.

Consequently the aim was to develop the model using as few
variables as possible. The results of the variable selection process
are omitted here. However, following a process of correlation,
PCA, Frequency Power spectrum analysis and physical system
considerations, four variables were selected for the modeling
purposes, Headbox Total Consistency, Headbox Ash, Whitewater
Total Consistency and Whitewater Ash. Fig. 9 shows the relevance
of these variables at the Wet End and particularly the Wire. The
aim is to arrive at an estimate of the Base Sheet Ash, which is
measured using the Base Sheet scanner situated at the end of the
Wet End after the first set of dryers. A key consideration is that
the Wire is the only section of the Wet End at which solids (fines
or fibers) can be removed from the web. Thereafter, the only
substance which is removed from the web is water. Thus, the Ash
content of the web which is leaving the Wire, is directly
correlated to the Base Sheet Ash measured at the scanner. Any
Ash which leaves the Headbox, will either stay on the Wire, or be
drained away with whitewater. This suggests a possible easy
route to determine the Base Sheet Ash: perform a simple mass
balance at the Wire. Unfortunately the mass balance is not
possible since although the total flow of stock onto the Wire is
accurately measured, the amount of drained whitewater is not
measured and therefore knowing its consistency will not help to
determine the total amount of fillers which have drained away
from the Wire.

The two Headbox measurements are made using spectroscopy
techniques and whilst the Total consistency measurement is
generally accurate, the filler reading is not very accurate as it is
not measured directly. Instead, a particle size threshold is defined,
smaller than which all solid particles are considered to be
minerals. Whitewater is the water which is drained on the Wire
and is collected to be used as ‘sweetener’ back in the pulping
process mainly for dilution. The Whitewater is so-called as the
water that drains is cloudy due to the fine mineral particles which
are not stopped on the wire mesh and drain away. Any filler
particle which has not flocculated or bounded with filler particles
will be drained away because the Wire mesh size is not
sufficiently small to retain these fine particles.

The LAV model is updated online, therefore it is able to track
the operating point changes of the paper machine. This means no
change to the model is made when a change of grade occurs.
During normal operation, data from the four variables are
HboxtConsistency

Whitewater consistency

r Base Sheet Ash estimation.
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collected and logged and the output of the LAV model is forced to
follow the actual sensor measurement. Once a break occurs, a new
LAV model is generated. Using the proposed fADE algorithm, the
time is takes to generate a new model is less than the sampling
time of the DCS controller (5 s). Therefore, the Base Sheet Ash
estimate is available to the controller in the next sample time
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(in the break) and the controller will see no interruptions in its
signal feed. Once the break has ended, the model estimate
continues to be used until the sensor has completed its first
standardization after the break, at which point control is handed
back to the scanner. This procedure will be repeated at the time
necessary. The results of the application of the proposed
methodology are illustrated in Figs. 10–15. Numerous different
studies of the model have been made relating to different
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operating points and product grades, to assess the stability and
robustness of the model. The Ash estimates values were also
validated with manual lab readings.

Fig. 10 is taken during a run of 90 gsm coated fine paper. The
machine was running steadily for around 3 1

2 h when a Wet End
break occurs. The break itself lasts for just over 20 min and stock
flow is maintained during the break. It is never possible to state
precisely why a break has occurred but in this case it might be
related to the rise in Headbox Ash levels just prior the break.
As described previously, during the break, the Base Sheet Ash
measurement is frozen. Five minutes after the machine has
recovered from the break, the Base Sheet scanner is online again,
but due to the cold air gap temperature, the reading is false. This
is corrected when the scanner has warmed up with the resulting
jump in the Base Sheet Ash reading. Meanwhile when the break
occurred, a new model was generated at the time indicated by the
sun symbol. The model takes o1 s to compute which means that
the next estimate of the Base Sheet Ash is available before the
next controller sample time. The model is used to estimate the
Base Sheet for around 1 h. Once the scanner has recalibrated,
control is handed back to the scanner. Notice that when
the scanner has recalibrated, the reading jumps to almost exactly
the same value as the estimate which shows the high precision of
the estimate. Fig. 11 shows a similar situation from a run of
85 gsm fine paper.

Fig. 12 shows another run of 90 gsm fine coated paper. In
this figure, the machine was running fine for around 3 h when
the break occurs. The difference between this instance and the
previous two examples is that the break is quite severe and
the operators have stopped the stock flow onto the Wire.
Consequently, even though a new Ash model is generated, there
are no estimates during the first 20 min of the break. In this
instance it takes 20 min for the main fault to be repaired, and
reestablish stock flow, although the machine is still in a break
(i.e. paper is not being made). As soon as stock flow has
reestablished, the model is able to provide Base Sheet Ash
estimates which as before continues to be made for around 1 h
before the scanner has come back online and has recalibrated.
Once the scanner has recalibrated, its reading is almost
identical to the estimate given from the model. Fig. 13 is a
similar example which also illustrates the typical ‘train’ of
breaks behavior referred to earlier, where a first minor break
can cause subsequent major breaks due to the disturbances
propagating through the Wet End. When there is not at least 1 h
of data since the last break a new model is not generated as in
this case. Instead, the model which is used to estimate the Base
Sheet Ash after the third break, is the model generated before
the first break.

The main reason given for the use of the LAV model as opposed
to the LS model was the inherent robustness and bad data
rejection properties of the LAV model. Fig. 14 gives an explicit
example of the performance of the LAV model in the presence of
bad data. This Figure captures a run of 100 gsm fine coated paper.
Here, around 2 h prior to the break, the machine suffers two major
disturbances lasting for a few minutes each. A lesser (but still
large) disturbance is also seen an hour later. This particular case is
caused by retention aid chemical disturbances which is obvious
from the reverse spikes in the Headbox and Base Sheet Ash trends.
The disturbances eventually cause a major break to occur during
which stock flow is stopped and the break itself lasts for around
an hour. In spite of this, it is clearly evident that the Base Sheet
estimate which is generated using the model computed from the
disturbed data is still very accurate. A consequence of the
inherent robustness of the LAV approach is that the model does
not need a lot of data to be relatively accurate. Fig. 15 shows a run
of two breaks, which are both grade change induced. A grade
change break is common and it occurs when the paper machine is
changing from one grade of paper to another grade. In this
instance, the machine was making 90 gsm paper and it was
scheduled to shift production to 100 gsm paper. The paper
breaks at the first attempt to change grade which causes a large
disturbance to the machine. Upon resumption of paper making,
the operators first switch back to the previous grade and less than
an hour later make a second attempt at changing grade. The
machine is not able to recover fully and a secondary break occurs
an hour and half later. Note that in this case, the second model is
generated with little data, which itself was split between two
different operating points. Nonetheless it is still relatively
accurate although by the end of the second break the model
was slightly over estimating.
4. Conclusions

As described previously, paper making is a complex process.
This is further complicated by the occurrence of paper breaks.
A paper break will lead to parts of the paper machine being
controlled in open loop. Open loop control of the paper machine,
especially the Wet End will lead to large disturbances to the
nominal machine operating conditions. These deviations will
cause poor paper to be produced once paper making is resumed
after the break and may lead to problems in starting the machine
due to a significant drop of the paper formation quality and
tensile strength.

There is therefore a pressing need to reduce the disturbing
effects of the breaks on the paper machine as a whole and the Wet
End specifically. The majority of paper machines employ no
measures to tackle this and in some cases there are manual
changes made by the operator during the breaks, only if they
observe that the furnish is greatly deviating from its nominal
value. The approach proposed in this paper, namely, estimation of
the Base Sheet Ash during breaks is novel in the paper industry
and represents a large step towards reducing the effects of the
disturbance. To make the models robust against bad data and
disturbances in the measurements, the LAV minimization was
used as opposed the commonly used Least Squares. A very fast
optimization algorithm was proposed to overcome the problem of
solving the LAV problem online since no efficient solution exists
as in the case of LS.
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Appendix A. fADE pseudo code

begin

k;Gadapt’0
a;au’5
g�’1
for (i¼ 1; . . . ;np)

% Initialize the initial population

Pð0Þ’xð0Þi ¼ xLþq j10 ðx
U�xLÞ

% Evaluate initial members

gð0Þi ’f ðxð0Þi Þ
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if (g0
i og�) do begin

g�’g0
i

xbest’x0
i

end
% Assign random F to each member

Fð0Þi ’r j10
end
% repeat until reached$k_max$ or$f_tol$
while (not termination condition) do begin

for (i¼ 1; . . . ;np) do begin

ukþ1
i ’xbestþFiðx

k
s�xk

t þxk
u�xk

vÞ

(s¼ r ‘np

0 ; t¼ r ‘
np

0 ; v¼ r ‘
np

0 ;u¼ r ‘
np

0

and 8k; l;dkadl; where d¼ fs; t;u; vgÞ
% Select if fitter than parent

if (f ðukþ1
i Þogk

i Þ do begin

xkþ1
i ’ukþ1

i

% Update cost vector

gkþ1
i ’f ðukþ1

i Þ

else do begin

xkþ1
i ’xk

i

gkþ1
i ’gk

i

end
% Update best vector and least cost

if (gkþ1
i og�) do begin

g�’gkþ1
i

xbest’xkþ1
i

end
end
% Update accumulative adaption vector

Gadapt’ðGadapt
þGk
�Gkþ1)

% Adaptation loop

if k¼ auþa do begin
% Sort vector in decreasing order

Gstr
¼ sortðGadapt

Þ

% Calculate new performance threshold

Tr ¼ gstr
bnp=2c

% new F for below threshold performance

for (i¼ 1; . . . ;np) do begin

if gadapt
i oTr do begin

Fi ¼ r jF
U

FL

end
end

Gadapt’0
au’auþa
end

% Remove worst performing member, reduce pop

if ðgk
i�g

�Þ=gk
i Zk&&np4mdo begin

for (i¼ 1; . . . ;np) do begin

if gi ¼maxðGÞ&&np4m do begin

xkþ1
i ¼ empty

np ¼ np�1

end
end

end
k’kþ1
end

Remark 1. a is the adaptation update interval for the mutation
weighting factor. In Nobakhti and Wang (2007) a recommended
value of a¼ 5 was determined. FL and FU define the range within
which F varies. Although this may be changed for each problem,
the values of FL ¼ 0:1 and FU ¼ 0:9 has been found to be suitable
for most problems. These settings are fixed and are not required
to change for different experiments.
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