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Abstract—In this paper, a new method for adaptive control of
general nonlinear and non-Gaussian unknown stochastic systems
has been proposed. The method applies the minimum entropy
control scheme to decrease the closed-loop randomness of the
output under an iterative learning control (ILC) basis. Both mod-
eling and control of the plant are performed using dynamic neural
networks. For this purpose, the whole control horizon is divided
into a certain number of time domain subintervals called batches
and a pseudo-D-type ILC law is employed to train the plant model
and controller parameters so that the entropy of the closed-loop
tracking error is made to decrease batch by batch. The method
has the advantage of decreasing the output uncertainty versus
the advances of batches along the time horizon. The analysis on
the proposed ILC convergence is made and a set of demonstrable
experiment results is also provided to show the effectiveness of the
obtained control algorithm, where encouraging results have been
obtained.

Index Terms—Adaptive controller, entropy, iterative learning
control (ILC), neural networks, stochastic systems and optimiza-
tion.

1. INTRODUCTION

ESEARCH on stochastic control has been of a great im-
R portance in the past decades. This is due to the fact that
most of the practical industrial systems are subjected to random
noises and uncertainties. Among various existing approaches of
the stochastic control, the minimum variance control introduced
in [1] is still one of the key methods in this research field, where
the key issue is to minimize the uncertainties of the closed-loop
stochastic systems. Other works proposed have considered a va-
riety of methods ranging from linear quadratic martingale con-
trol [2] and predictive stochastic control [3] to sliding mode
control for jump stochastic systems [4], adaptive nonlinear sto-
chastic control [5], and robust fuzzy control for uncertain Mar-
kovian stochastic systems [6]. In most of the methods mentioned
above, the tracking error has played a vital role for the assess-
ment of the closed-loop performance.
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Most of the existing works have assumed that the random sig-
nals interfering with the system are Gaussian. However, for sys-
tems subjected to nonsymmetrically distributed random noises,
the spread area of the noise distribution cannot be described pre-
cisely by only using its variance. In this context, second-order
moments of the tracking error signals cannot fully characterize
the performance of the closed-loop control system in terms of
the randomness measure. As such, a new measure of uncer-
tainty, namely, the entropy of the tracking error of the closed-
loop system, should be employed for the closed-loop control
design of the non-Gaussian stochastic systems. In fact, it can be
shown that when the noise is Gaussian, the minimum entropy
control is equivalent to minimum variance control [7], [8].

Entropy originated in the information theory and the econom-
ical studies. There are different interpretations of the entropy.
However, it was first introduced by Shannon [9] as a measure of
uncertainty, and later on, as the average information content on
randomness for a given probability density function [10], [11].
The main advantage of this definition is that it provides a gener-
alized randomness measure of a random variable by measuring
its dispersion rather than its mean or variance. With a simple in-
spiration from the information theory, it can be said that a con-
trol system is similar to a classical information learning system,
which is a scheme based on interaction between pairs of infor-
mation particles. The goal in such a system is to maximize the
mutual information between the actual input, i.e., the process
measured value in a control system, and the desired output,
which is equivalent to the set point in control systems. Such
a definition is literally equivalent to the minimization of the
tracking error entropy for closed-loop stochastic systems.

Among different entropy measure definitions, Shannon’s and
Renyi’s entropy measures have the same minima. However,
the «-order Renyi’s quadratic entropy, which will be used
throughout this paper, has an advantage of computational effi-
ciency over Shannon’s entropy definition. It can also be shown
that the well-known mean square error criterion widely used
in system identification is a special case of the Renyi’s mutual
information maximization criterion. Renyi’s entropy measure
for a random variable x can be expressed as follows:

1 _1 - log (/ va(w)dw) )

where -y stands for the probability density function (pdf) of the
random variable z. The integration is performed over the defi-
nition range of x, wherever the pdf in nonzero.

As mentioned above, the entropy links the control and esti-
mation to the information theory. Indeed, entropy measure has

H(z) =
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been applied to some of the control and estimation problems be-
fore. In earlier works, the entropy formulation provides an in-
formation-theoretic interpretation of the feedback process [12].
Later on, a unified framework was presented for approximation,
optimization, and adaptive control using the entropy associated
with the uncertainty for controller design [13]. Moreover, the
entropy minimization has been used as an optimization index
to estimate the states of dynamic systems and several feedback
control strategies have been established using the entropy mea-
sure [14]. In stochastic systems control, a robust optimal con-
troller has been designed for uncertain stochastic systems with
partial information, where the uncertainty has been described
as a constraint on the relative entropy between the nominal and
perturbed noise distributions [15]. More recently, the minimum
entropy control for stochastic systems has been developed as re-
ported in [7], [16], and [17], which are basically different from
the minimum-entropy-based H ., control [18]. As mentioned in
[8], the original definition of the entropy used in H, control for
linear time invariant systems at s = oo is defined in terms of the
closed-loop transfer function as follows:

—+oo
2
I4(G;l;00) = _zl_w / In[det (7 = I72G" (jw) G(jw)) | dw-

2

In the above definition, the transfer function G is supposed to
be strictly proper satisfying ||G||- < [, G* denotes that the ad-
joint of G, and 1 is finite. By the entropy measure definition in
this work, the mutual information maximization idea is replaced
in the probabilistic point of view, which is used to quantify the
uncertainty of a general stochastic control system. However, in
almost all previous works, the plant model and also the noise
distribution functions have been assumed known.

The entropy control problem is in fact an application of sto-
chastic distribution control, known as pdf control [19]. In the
output pdf control methodologies, the task of control is to find
a deterministic control input so that the output pdf follows a
prespecified desired pdf. In a similar way, the task of entropy
control is to find a deterministic control signal such that the
closed-loop tracking error pdf gets as close to a narrowly shaped
normal distribution as possible. Having said that, no matter what
application of pdf control is dealt with, the pdf signal needs to
be estimated. As mentioned in [20], existing methods applied to
decouple the pdf output and control input will lead to a high-di-
mensional time span requiring a large number of basis func-
tions to ensure the accuracy of the pdf estimation. In addition,
pdf signal will be available only after a certain number of time
samples are passed. As a solution, the idea of iterative learning
control (ILC)-based design has been applied to overcome the
dimensionality problem and also to improve the closed-loop
output pdf tracking (or closed-loop output entropy) performance
periodically. Such a solution can be considerably useful for in-
dustrial applications where the feedback signal cannot be mea-
sured online, due to instrumentation restrictions, such a molec-
ular weight distribution (MWD) control in polymerization reac-
tion control problem [21].
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In this paper, an adaptive method based on ILC theory has
been proposed for the non-Gaussian systems with unknown
nonlinear dynamics and noise distribution. The key idea is to
divide the control horizon into certain number of time-domain
intervals hereinafter called batches and separate the design
procedure into two main categories, within each batch and
between any two adjacent batches. Based on the definitions
made, the following design stages are used in this paper:

1) approximating the unknown plant Jacobian using the iden-

tified neural network model of the plant;

2) calculating the control input;

3) updating the controller parameters using an ILC idea and

returning to 1)

The second stage above will be carried out within each batch
and the other stages are performed between any two adjacent
batches.

To realize such a design, the control horizon is divided to K
identical batches specified as [(k — 1)(N + AN), k(N + AN)]
(k = 1,2,--- K) where N is considered as the batch length,
during which the parameters are fixed and AN as the time pe-
riod known as between adjacent batches. Within each batch, i.e.,
[(k—1)(N+ AN),kN + (k — 1)AN], fixed basis functions
are used to generate the required control. Then, between ad-
jacent batches, i.e., during the time specified by [kN + (k —
1)AN, k(N + AN)], the model and controller parameters are
updated by minimum entropy criteria. During AN period of
time the control law stays the same as that of [0, N]. This en-
ables the tuning to be focused on the basis functions and the pa-
rameters of the weights dynamics. The above design approach
is illustrated below as in Fig. 1.

This paper is organized as follows. In Section II, the problem
of the ILC-based minimum entropy control is introduced.
Section III consists of the details of controller design and the
nonlinear system identification using neural networks. The
ILC convergence analysis is described in Section IV, while
the application of proposed method to a test rig together with
experimental results are described in Section V. Finally, con-
cluding remarks are made in Section VI.

II. PROBLEM FORMULATION

It is assumed that the stochastic plant to be controlled can be
expressed as the following nonlinear ARMAX model:

yr(1) = fp (ye(i — 1), k(i — 2), ...,y (i — 10 ), ur(i — na),
—na+ 1), wi(i))
(3)

uk(t — Ng — 1), . ,uk(i — Ny

where f, is the unknown nonlinear plant equation, which is as-
sumed continuous, bounded, and first-order differentiable with
respect to all of its variables. As indicated in Fig. 2, y,(7) and
ug (i) are the ith samples of the measured output and the con-
trol signal within the kth batch, respectively. Also, 14, 14, and
nq are the structural orders of the system, respectively. Further-
more, wy, 1S the bounded non-Gaussian random noise with an un-
known pdf v,, (), where z is assumed to be defined on a known
interval [a, b].
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Fig. 1. ILC-based control design scheme.
Batch #1 Batch #2 Batch #k
A A A
h (
Nt sample ' Nt sample
VoD e (0) ey, (N)
I ithsample U uy (D) uy(i) -uy(N) it sample | Control Horizon
! ! (time)
‘ ’ g
Fig. 2. Control horizon is divided to k batches with N samples within each.

The assumption on boundness of non-Gaussian noise is | Tanncsesson o —— 1
made because most practical engineering systems are subjected | Memory |
to noises that are both bounded and of non-Gaussian nature. | 7 |
Examples are seen in most robust controller design where | Tuning |

I I

are bounded with a known upper bound. The noise of the
experimental system in this paper is upper bounded by the
maximum output flow rate. The key issue here is to obtain a
good estimate of interval [a, b] from system (3). Indeed, this can
be achieved once the model dynamics f,(...) is available. For
unknown f,(...), an initial training of f,(...) under zero noise
should be carried out using a neural network. In the case that
the trained f,(...) is monotonic with respect to the noise term,
such a boundness of the noise can be directly estimated from
the measured inputs and outputs via the inverse of the initially
trained f,(...) in (3). If the initial model of f,(...) cannot be
obtained because the noise cannot be set to zero, then one has
to use the knowledge of practical systems to locate the noise of
the system and directly estimate interval [a, b].

Although this assumption might seem strong, it does not
really affect the pdf modeling. This assumption is made only to
obtain strict bounded-input-bounded-output (BIBO) stability
and it can be relaxed if the performance can be achieved with
a probability sense.

To make the design procedure easier to follow, define

pi(i) = {ye(i = 1), yr(i = na),

uk(i—nd—1),...,uk(i—nb—nd+l)}T.

“

/ Mechanism

Plant

€nili)

dy (i)
duy (i)

Integral
Term

Fig. 3. Proposed scheme of ILC-based minimum entropy control.

Denoting the set point as (i), the output tracking error can be
expressed as

er(i) = ri(2) =y (i) = re(2) — fp (pr(d), ur (i — na), wi)

(&)
which is also a non-Gaussian random process. The aim of the
controller design here is to determine a control signal uy, so that
the entropy of the tracking error is decreased batch by batch. As
discussed in the introduction section, this can realize a decrease
of randomness for the closed-loop system. Fig. 3 illustrates the
general scheme of the method proposed.
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To design such a controller, the objective function to be min-
imized is expressed as follows:

J(G) = Hy, (’rk(i) - f;D (pk(i)7 fc(®7’r7 y)“’ku))) : (6)

In (6), Hy(.) is the entropy operation defined in (1). The con-
troller £, is a three-layer neural network and © = [6,---,6p]T
is the parameter vector containing p weight and bias elements
in f.. These parameters are trained by an ILC tuning mecha-
nism, which takes place between any two adjacent batches. For
the entropy optimization purpose, the following Kernel density
estimation method is used to estimate the tracking error pdf [11]
within each batch using the sampled tracking error data:

1 N
Ye(e) = Ar(e) = NZKa(e—ei). ©)
=1

Using {ey, - - -, en } within each batch, the above pdf can be ob-
tained where K, (.) is a real, symmetrical Kernel function with
the specifications stated in [11] and ¢ > 0 can be considered
as a bandwidth. The chosen Kernel function in this paper is ex-
pressed below

1 —z?
Ka(.’I}) = ﬁexp (ﬁ) . (8)

The choice of the Kernel function is actually dependent on the
level of smoothness the designer expects from the pdf estima-
tion. Therefore, the discrete ILC-based controller tuning objec-
tive function can be rewritten as follows:

J(©) = Hy(e) = 1= log (Vauler)) O

-

where Vg, (e) is often called the information potential (IP),
which is expressed as

@
N N

Via(e) = 2 2 | 30 Ko (ex(i) - ex(s))

=1

(10)

J=1

The solution to this problem is studied in Section III. Since the
selected kernel function satisfies K (0) = 1, the minimization
of J would also mean that the tracking error magnitude is min-
imized. This ensures that the system output should be made as
close as possible to the set point.

III. ILC-BASED SOLUTION TO THE PROBLEM

ILC was first introduced for systems with similar operation
during certain time intervals, i.e., batches [22]. Examples are
line manufacturing robots or chemical batch process controls
[23]. In ILC, the control signal in the kth batch is based on the
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Fig. 4. Dynamic neural network controller structure.

control signal in the (k — 1)th batch and a correcting function,
which is basically dependent on the closed-loop system perfor-
mance in the (k — 1)th batch. A typical P-type ILC law can be
written as follows:

uk(z) = ’U,kfl(i) +/\Jk,1(i) (11)
where Jj,_1 (7) represents a function expressing the tracking per-
formance index, e.g., difference between the desired output and
the system output, and A is the learning rate, chosen so that the
iterative control law is convergent [24], [25]. In this paper, a
modified ILC framework based on the three-layer dynamic feed-
forward neural network is considered. In this regards, the pa-
rameters of the neural network model and controller are tuned
based on ILC scheme between the batches.

A. Neural Network Controller Design

A three-layer dynamic neural network is considered as the
adaptive controller with structure shown in Fig. 4.

In Fig. 4, n4e, npe, and ng.. stand for dynamic structural or-
ders of the controller and nh shows the number of hidden units.
Input-to-hidden and hidden-to-output layer weight matrices are
denoted by Wi and Ws,.. Thus, the controller parameter vector
O is composed of Wy, and Ws,. together with the biases of each
layer.

The solution to tune the control parameters between adjacent
batches involves a nonlinear programming algorithm where the
objective function is not necessarily convex. Thus, the following
pseudo-D-type ILC parameter updating law can only guarantee
the local optimality:

c0H(©)

00, (12)

Ory1 = 0 — AIF
where AILC is the ILC learning rate and ©, is the controller
parameter vector within the kth batch. Using the well-known

chain rule, the gradient part of (12) can be further expressed as
follows:

Vi (e(1))
aek(L)

8ek(i)
0 (p)

OHy (e(i)) _ OH), (e())
905.(p) IV (e(i))

(13)
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This leads to the following calculation:
OHp(e) « 1

@)~ (1=0) 2N T5N K, (enli) - enli))]

N N o=l
X Z ZKU (er(i) — ex(s))
N
X ZKU i) —ex(4))
" <aak<p> “gai) | 0

where p = 1,2,---, P and V stands for the IP.
The derivative of the tracking error with respect to the param-
eters can be written as

du(i) = Oer(i) _  Oyn() _  Oyk(d)  Ouk(d)
¥ 39k(]’) 39k(]’) dug (i) 00k (p)
D, (i) x D.(4) (15)

where ®,,(7) and ®.(¢) are the plant Jacobian and the controller
gradient with respect to its parameters, respectively. However,
the plant Jacobian is not available because the plant is unknown.
A solution to this is to substitute the plant Jacobian with its
approximation d » made by an identification procedure that uses
another neural network to model the unknown plant. This means
that

dy.(i) = di (i) = =D, (3) x D(i) (16)
where @p(i) is the estimated plant Jacobian using the neural
network model of the plant. Thus, the ILC parameters tuning
law can be summarized as (12) together with (13)—(16). In
Section III-B, the neural-network-based identification of the

plant will be described.

B. Nonlinear Plant Identification

Similar to the controller neural network, a neural network is
employed to model the plant, leading to an approximation of
the plant Jacobian, i.e., <i>p. Denoting ngm, Npm, and ng,, as
dynamic structural orders of the model and hm as the number
of hidden units, the neural network model is shown in Fig. 5
with the following model output:

Ik (2) = fon() a7
where the regression vector ¢ is expressed as
¢ =A{y(i —1),-+, y(i — nam);
w(t = Nm)y - -+ s W(E — Mo — Ndm + 1)}T (18)
Then the modeling error can be written as
em k(1) = Jr(i) — yr(i) = fin(®) — yx(4) 19)

which is also a non-Gaussian random process, where ¢ in-
dicates the time samples within each batch. Since e, 1 (%)

is non-Gaussian, the use of the mean squared error for the
modeling phase is not generally suited for the same reasons per
discussed in the introduction section. As such, similar to the
control tuning, the modeling should also be performed by the
minimization of the modeling error entropy. This leads to the
following objective function for the plant modeling phase:

T(©0) = Hilem) = - 1 20)

10g (Vin, R (€m, 1))

where the pdfs of the modeling error within each batches are
calculated in the same way as in the controller design phase.
As such, the same parameter update rule as the controller,
i.e., pseudo-D-type ILC, is applied to the model parameters as
follows:

\LC OHy(em)

b1 (P) = O () =A™ 555 =08

2n

together with
OHy(en)  « 1
rm 1 (p) (1—a)2 [Z K, (e (z’)—em@'))]a

a—1

9Y(j)
m<p>> 22

where p = 1,2, ---, P, and AIL€ is the modeling learning rate.
Again, since the selected kernel function K (0) = 1, the mini-
mization of .J,,, would also mean that the modeling error mag-
nitude is also minimized. This ensures that the model output is
made as close as possible to the system output. Therefore, the
design procedure is summarized as follows.
1) Use a sequence of measured output and control signals
from the (k — 1)th batch to form the modeling error vector
as stated in (19).
2) Update ©,,, applying (20)—(22) and extract W1,,, and Woa,,,.
3) Use Wi, and W5, to calculate <i>p.
4) Update © using (12)—(16) and extract W7, and W...
5) Calculate and apply the resulting control signal to the plant
and return to stage 1).
Since the ILC algorithms involve the learning parameters, it
is important to make sure that the learning rates are properly
chosen to guarantee the convergence of the above proposed
algorithm.

99(i)
* (aem<p>

IV. ILC CONVERGENCE ANALYSIS

For simplicity, we only discuss the sufficient convergence
conditions of the controller ILC algorithm because similar con-
clusions can also be formulated for the neural network modeling
algorithm for the plant. The key issue is that the learning rate
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Fig. 5. Dynamic neural network model structure.

should cause the batch-by-batch decrease of (6). Therefore, the
conditions are summarized in the following theorem.

Theorem 1: The entropy of closed-loop tracking error will
be strictly decreasing with respect to batches (batch-by-batch
decrement), if for all i, j, the chosen learning rate A\I*© can
justify the following nonlinear inequality:

A~ A

Ko (exi) = ex()) x (de(i) = du()) AiLcal;;T__lfe) -0
(23)

Proof: Assuming that the current batch number is k, the
convergence definition mentioned above would mean that the
tracking error entropy is a decreasing function along with the
batches k. This is equivalent to

Hy (e(i)) < Hi—1 (e(4)) - (24
Since o > 0, then inequality (24) can be rewritten as
log (Vra (er—1(7))) — log (Vra (ex(3))) < 0 (25)
which means that
Vha(ek_lﬁ)))
log| ————= ] <0 26
(Ve 2
which is equivalent to the following conditions:
VRa (€x-1(i))
— - <L 27
VRa (ex(i))
Since the IP is nonnegative, condition (26) would mean
AVRak = Vraler) — Vral(ex—1) > 0. (28)

This implies that the function Vg, should be an increasing func-
tion with respect to k. Such an implication will result in the fol-
lowing condition for ILC convergence:

OVRa i

ok > 0. (29)
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Fig. 6. Overall view of bytronic PCU test rig system.

Using the same principles as (14)—(16), it can be verified that
condition (29) will result in the following inequality:

Z ZK” (er(i) — ex (7))
N . ~ ~
X ZKa(ek(z')—ek(j))(dk(i)—dk(j)>At9k >0
7j=1
(30)

where A6y, = 6, — 0_1.

As the term Zjvzl K, (ex(i) — er(j)) specifies a probability
density estimation, it will be always nonnegative. Therefore, the
convergence condition can be summarized to give
N A A
S [ (erli) = exd)) (dei)—da(i)) 20| >0. GD)

=1 j=1

Replacing the term A#y, by its equivalent from (12), the conver-
gence condition can be summarized to give (23).
This means that the iterative tuning rule (12) should be ap-
plied with the learning rate satisfying (23). ]
The example in the following section shows the effectiveness
of the method proposed.

V. APPLICATION TO A PRACTICAL CONTROL SYSTEM

The proposed method has been successfully evaluated by a
bytronic laboratory-based process control unit (PCU). The PCU
provides both hardware and software to implement different
control algorithms based on microcomputer technology. How-
ever, some major changes were made on both original hardware
and software, which will be introduced in upcoming sections.
The general scheme of the test rig is shown in Fig. 6.
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Fig. 7. One-step-ahead prediction capability of model.

A. Process Description

The PCU test rig is based around a fluid flow process, where
either or both flow and temperature of the fluid might be con-
trolled. This reflects a typical process control problem com-
monly seen in process industries. The process fluid chosen is
mainly water, however, based on equipments mechanical char-
acteristics, different fluids might be chosen. The flow diagram of
the testrig is shown in Fig. 7, based on ISA-5.1 and 5.2 standards
[26]. The process comprises a sump, a pump, computer-con-
trolled three-way solenoidal diverting valve, cooler fan, process
tank, and a computer-controlled solenoidal drain valve.

The water is pumped out of the reservoir, i.e., sump, by a 12-V
direct current (dc) centrifugal pump. The pump is able to create
a variable flow rate from O to 2.0 /min controlled by FC-001
computerized controller. Based on process requirements, the
flow in P-2 pipeline can be diverted to either P-3 through the
air-based cooling system or P-5 line. In both cases, the fluid
passes through a six-blade impeller type flow meter FIT-001
on pipeline P-6 before it is directed to the main process tank.
The process temperature inside the tank can be controlled by a
2.4-kW 220-V alternating current (ac) heating element. In order
to have a homogenously heated product, a 12-V dc, 300-r/min
dc motor has been foreseen on the top of the process tank to ag-
itate the fluid inside. As such, the process tank can be referred
to as a continuously stirred tank reactor (CSTR).

From thermodynamics, the flow variations affect the tempera-
ture, however process tank temperature does not have any effect
on flow. As a result, the cooling fan can be regarded as a temper-
ature compensation, whenever the flow affects the temperature.
It should be noted that the sump temperature and flow tempera-
ture are measured and displayed on the PCU panel by TI-03 and

TABLE 1
PVs AND MVs OF PCU
[ Loop | PV | MV |
001 Process Flow Rate Pump Speed

002 Tank Temperature | Heater Power

TI-04, respectively. Latter signals are not used in control algo-
rithms and can be used for monitoring purposes. Table I summa-
rizes the information about the control loops, process variables
(PV), and manipulated variables (MV) in the PCU test rig. [27].

It must be noted that for the purpose of minimum entropy
control, only the flow control loop, i.e., loop 001 has been con-
sidered and all the upcoming simulation results refer to the cor-
responding loop as mentioned.

B. Signal Conditioning and Modifications to Original System

All the temperature and flow signals are first converted to
0-5-V dc signals and then to 8-b digital signals where they are
sent through the input/output (I/O) bus to the PC-based con-
trol system. For instance, the flow meter output is a 0-570-Hz
pulse proportional to the flow rate. This signal is put through a
frequency to voltage and then an analog-to-digital (A/D) con-
verter to produce the 8-b digital signal. All the required signal
conditioning and conversions are conducted in a Bytronic sub-
system named as computer control module (CCM). The orig-
inal I/O interface PC card is a SI-8255 IBM PC/XT/AT compat-
ible card, which restricts the programming and control coding to
QBasic. For ability to work under other programming environ-
ments such as MATLAB, the existing SI-8255 module was re-
placed by a National Instruments (NI) PCI-DIO-96, 96 channel
5V TTL/CMOS digital I/O module. As such, the existing wiring
system had to be modified. The modified wiring system is shown
in Fig. 8 [28].

There are two 40-pin data ports named CN1 and CN2 located
on CCM that are used to transfer the data from the plant to the
PC card. As such, two multicore cables (1) and (2) were used
to physically split CN port pins and connect them to UMK-SE
screw-type terminal blocks. UMK-SE terminal blocks provide
screw-type terminals at the input side and 50-pin ribbon cable
connection at the output side. It should be noted that before con-
necting 40-pin ports to UMK-SE terminal blocks, each pin on
CN ports had to be tested in order to identify the pins corre-
sponding to plant-side quantities. A special 2-to-1 ribbon cable
CB-100 is then used to connect the UMK-SE to the PCI-DIO-96
I/O module. After identification of each port/channel of the I/O
module, MATLAB Data Acquisition (DAQ) toolbox is used to
communicate with the plant digitally [29].

After these modifications, several initial tests and analysis
such as step response and frequency analysis were conducted
before being able to implement minimum entropy algo-
rithm. Having the system sampling time and cutoff frequency
known, the main ILC-based minimum entropy mechanism was
launched.

C. Experimental Results

In order to evaluate the ILC-based minimum entropy, con-
trol loop 001 in Table I is considered as system under control
and step input experiment is applied. The sampling time of the
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TABLE II
DYNAMIC ORDERS OF MODEL AND CONTROLLER
[ Model [ Controller |
Nagm = 6 Nge = D
Npm = 3 Npe = 3
Ndm = 1 Nde = 1

system is set to 100 ms, i.e., Ts = 100 ms. In order to avoid ap-
plying excessive control effort to the pump, the control is limited
to 0 < ug (i) < 10 V dc and the set point is yx(7) = 1.0 I/min.
All the initial values are set to zero except ©1, which is consid-
ered random. The number of hidden neurons in model and con-
troller are set to h,, = 5 and nj, = 6, respectively. In addition,
the dynamic orders of model and controller neural networks are
listed in Table II.

The hyperbolic tangent and linear activation functions form
all hidden and output neurons. The system runs under 20 batches
each composed of 50 time samples, i.e., 5 s. The Kernel function
is considered as

K ( ) 1 — g2
5 = e .
0.2548) = = P\ 97570252

Finally, third-order Renyi’s entropy measure is chosen, i.e.,
« = 3 and initial learning rates are set to

AMLC — 0.2, \[F€ = 10.

The plant behavior and dynamical orders n,, ny, and ng are
unknown. In practice, the model NN is pretrained by minimum
squared error criterion using offline data to give the ILC-based
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Fig. 9. One-step-ahead prediction capability of model.

online training routine “a good guess” of the initial network pa-
rameters. The training error associated with the pretrained NN
model affects the robustness of parameter update laws as the
first-order derivatives of the modeling error with respect to con-
trol signal appear in (13). Also, the training error affects the ILC
convergence, as both first- and second-order derivatives of mod-
eling error with respect to control signal are involved in (23).
Therefore, the learning rate should be carefully chosen to sat-
isfy (23) within the first batches of operation. Such effects were
observed within the first batches of operation and then deterio-
rated as the ILC-based tuning as well as neural network model
training were continued batch by batch. This confirms that pro-
posed ILC-based solution can also reduce the effect of training
error on control performance batch by batch. The model weights
are initially chosen as random 5 x 10 and 1 X 6 matrices corre-
sponding to Wy,,, and W5,,. From the second batch forwards,
the tuning algorithms are applied. There are various methods to
check the model validity among which the one-step-ahead pre-
diction test and the error correlation methods are used in this
paper. The one-step-ahead prediction check is performed by a
fresh set of input data. The model is expected to track the output
produced by the plant as close as possible. The result is shown
in Fig. 9.

Also the tracking error autocorrelation and the cross correla-
tion with the control signal can be evaluated to assess the va-
lidity of the model. With the residuals remaining within the
bounds, model validity can be verified. Fig. 10 illustrates the
results obtained from the tracking error autocorrelation (upper)
and the cross correlation of the tracking error with the control
signal (lower).

As mentioned, ILC trains the model parameters, i.e., model
neural network weights, so that the entropy of modeling error
is decreased along with the progress of the batches. Ideally, the
entropy value in a typical batch &k should be less than the en-
tropy value in previous batch, i.e., K — 1. However, in practice,
some variations can be observed due to unmodeled dynamics
or slight parameter changes caused by mechanical or environ-
mental effects. Although some small variations can be recorded,
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the adaptive tuning mechanism maintains the overall decreasing
changes in entropy. This trend in the modeling error entropy is
shown in Fig. 11.

Minimizing the error entropy measure should make the
closed-loop modeling error pdf to approach a Gaussian alike
and narrowly shaped pdf batch by batch, meaning that the
randomness of the modeling mechanism within the closed-loop
control system is minimized. This can be examined through a
comparison between the modeling error pdf (7, x(e.,)) at the
first batch, i.e., & = 1 and the final batch when k£ = 20, Fig. 12
confirms such a change.

In addition to Fig. 12, the 3-D mesh of the modeling error
pdf reconfirms that the model tracking error tends to take a
Gaussian-alike shape with respect to the progress of the closed-
loop operation. The results are illustrated in Fig. 13.

It must be noted that the model parameters are updated be-
tween any two adjacent batches but convergence does not take
place until a certain number of batches have passed through.
Although the convergence is guaranteed by a proper selection
of learning rates described in Section IV, those learning rates
excite different parameters by different rates, which may result
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Fig. 12. Modeling error pdf in first and last batch of the ILC.
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Fig. 13. The 3-D mesh of the modeling error pdf.

in parameter fluctuations in initial batches. However, as long
as the learning rates satisfy the convergence conditions, this
will not affect the ILC convergence or the closed-loop stability.
With the mentioned structural dynamic order and the number
of model hidden units mentioned before, the total number of
the model parameters will be 56. Among those, the conver-
gence, a selected number of parameters in each weight matrices
Wim and Wy,,,, namely, Wy,,, (1, 3) W1,,,(4,5), Wa,,(1,1), and
Wam(1,2) along with the ILC closed-loop operation has been
shown in Fig. 14.

As described before, the updated model parameters are used
as a part of control design procedure immediately. Then, the
ILC-based parameter tuning algorithm is applied to update the
controller neural network parameters using the plant Jacobian
data given by the model. After the controller parameters are up-
dated, they will be kept constant to measure the control input
within the upcoming batch. To evaluate the controller perfor-
mance, one should note that the ILC algorithm is supposed to
decrease the value of the tracking error entropy batch by batch.
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However, at the same time, the ILC should realize an improving
set point tracking.

Fig. 15 illustrates how the tracking performance improves
during selected batches, k = 2,4, 10,15, 20. As the batches of
process control continue to run under the introduced the closed-
loop ILC, a closer set point tracking can be achieved.

The ILC-based control signal thus calculated should result in
the tracking error pdf to tend to a narrowly distributed shape
along with the ILC closed-loop operation. The corresponding
trend is shown as follows in Fig. 16.

Similar to the modeling error pdf, the pdf of the tracking error
should dynamically change along with the batches and move to-
wards a Gaussian-like pdf shape after 20 batches. Fig. 17 com-
pares the probability density functions of the tracking error after
the end of first batch (k = 1) and the final batch (k = 20).

Finally, the dynamic variations in 3-D mesh representation of
the closed-loop tracking error distribution can be further studied
to observe the dynamic transitional changes of the tracking error
pdf along with the batches. Fig. 18 shows such a batch-by-
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batch dynamic response in the tracking error pdf, ending with a
Gaussian-like pdf shape for the tracking error.

VI. CONCLUSION

An ILC-based adaptive minimum entropy control method
has been proposed for unknown nonlinear and non-Gaussian
stochastic systems. The key idea is to divide the control horizon
into a certain number of batches within which the control
signal is applied to the plant, and between adjacent batches, the
ILC-based minimum entropy tuning law is employed to update
both model and controller parameters. Since the modeling and
tracking error signals are non-Gaussian stochastic processes,
the mean square of error minimization are not suited to char-
acterize the randomness in the modeling and control phases.
Thus, the goal of the optimization technique is to update model
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and controller parameters (which are dynamic feedforward
neural networks) in such a way that the entropy of modeling
and tracing errors are minimized along with the progress of
batches. In this regard, the neural network model plays a vital
role because it provides the neural network controller with the
approximated plant Jacobian. In fact, the proposed approach
attempts to reduce the process plant randomness (i.e., make the
probability density function of modeling and tracking errors
as narrow as possible in a batch-by-batch manner). However,
unlike in the previous papers by authors [20], [30], the proposed
method does not rely on measurable pdf and can therefore be
applied to any processes with nonlinearities and non-Gaussian
noise distributions.

In addition, it provides a probabilistic view point to the en-
tropy definition and quantifies the uncertainty definition, which
is totally different from the information theoretic interpreta-
tion of entropy in H, control methodologies. Furthermore, the
proposed method makes considerable simplifications to the ex-
isting probabilistic minimum entropy control methods in terms
of computational efficiency and ease of use in practical applica-
tions. First, thanks to Renyi’s entropy definition, the tuning laws
have been made simpler than those based on Shannon’s entropy
measure. Second, the mean value minimization is guaranteed
without need to introduce an additional constraint to ILC perfor-
mance function or conducting multiobjective optimization. This
was possible with using a zero mean Kernel function to estimate
the pdf and also adding an integral term to the neural network
controller. Application of the proposed method to a functional
laboratory test rig confirms the effectiveness of the proposed
method.
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