
The University of Manchester Research

Presenting the SASWAT interfaces through WAI-ARIA

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Brown, A. (2011). Presenting the SASWAT interfaces through WAI-ARIA. (Transactions of the Web Ergonomics
Lab (ACup series)). University of Manchester, School of Computer Science.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:30. Jun. 2022

https://www.research.manchester.ac.uk/portal/en/publications/presenting-the-saswat-interfaces-through-waiaria(3e425015-5be3-43a0-882e-032048bf128f).html

School
of

Computer
Science

Information
Management

Group

WEL

WEL— Accessibility Catch-Up Technical Report 1, November

2011

Presenting the SASWAT interfaces
through WAI-ARIA

Andy Brown

Web Ergonimics Lab
School of Computer Science
University of Manchester
UK

The SASWAT project used eye-tracking studies to identify effec-

tive ways of presenting dynamic Web content to screen reader

users. These techniques were iteratively tested, then evaluated,

using an implementation based on the FireVox screen reader ex-

tension to the Firefox Web browser. This project aims to extend

and widen that work, allowing improved interaction and presen-

tation techniques to be available sooner to users. Initial work,

reported here, has re-engineered the SASWAT implementation so

that its core functionality is available through code injected into

a Web page. This implementation is described, and the plans for

further work in the project discussed.

Web Ergonomics Lab

2

Accessibility Catch-Up

This Google-funded project is a follow on from the SASWAT project (http://hcw.
cs.manchester.ac.uk/research/saswat/). The aim is to make the findings of
that project immediately beneficial to screen reader users, and to expore ways of
speeding up the dissemination of accessibility research findings.

Accessibility Catch-Up Reports

This report is in the series of WEL Accessibility Catch-Up technical reports. Other
reports in this series may be found in our data repository, at http://hcw-eprints.
cs.man.ac.uk/view/subjects/saswat.html. Reports from other Web Ergonomics
Lab projects are also available at http://wel-eprints.cs.manchester.ac.uk/.

Acknowledgements

This report forms the first technical report for the “Accessibility Catch-Up” project
(although [2] describes related work undertaken as part of this project), which is
funded by a Google research award, and is a continuation of the SASWAT project.

License

This report is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License; see http://creativecommons.org/licenses/

by-nc-sa/3.0/.

Presenting the SASWAT interfaces through WAI-ARIA

Contents

1 Introduction 1
1.1 The SASWAT system . 2
1.2 Disseminating SASWAT . 3

2 Injected Classification 4
2.1 Event Filtering . 4
2.2 Buffering and chunking . 6
2.3 User-action monitoring . 7

2.3.1 Detecting Clicks . 7
2.3.2 Detecting keystrokes . 7

2.4 Classification . 8

3 Injected Presentation 8
3.1 Injected ARIA live region . 9
3.2 Injected sound generation . 10

4 Future Work 10
4.1 Testing . 12
4.2 Providing user control . 12
4.3 Injection of more complex UI components 12
4.4 User-defined UIs: simple descriptions of user interfaces 12
4.5 Translation and injection of user-defined interfaces 13

5 Summary 13

6 Associated Files 15

Web Ergonimics Lab
School of Computer Science
University of Manchester
Kilburn Building
Oxford Road
Manchester
M13 9PL
UK

tel: +44 161 275 7821

http://wel.cs.manchester.ac.uk/

Corresponding author:
Andy Brown
tel: +44 (161) 275 7821
andrew.brown-3@manchester.ac.uk

http://www.cs.man.ac.uk/~browna

Section 1 Introduction 1

1 Introduction

The SASWAT project (see section 1.1, below) identified effective ways for dynamic
content to be presented to people interacting with Web pages via a screen reader.
The techniques used proved more effective and more popular than the approach used
by a typical screen reader/browser. Unfortunately, users often benefit from research
like this after a considerable lag (if, indeed, they ever benefit). There can be several
reasons for this:

• Dissemination of knowledge: where research is undertaken outside the tech-
nology organisations, there is often a considerable time between completion
of experiments and publication. There can then be further delay before those
able to implement changes become aware of the research.

• Implementation priorities: even when developers become aware of improved
techniques, time is constrained and implementing them is not a priority —
bug fixes and planned development will both have higher priority.

• Poor understanding. Research can be poorly communicated, and developers
may spend insufficient time understanding it. In this situation, the nature
of the benefits or the scale of the problem they addressed might be under-
appreciated, so implementation gets a low priority.

• Development takes time. Research is testing ideas, but implementing these in
a fully robust manner, suitable for a widely-used commercial (or free) product
can be time-consuming.

The aim of this project is to make it quicker and easier for accessibility research
findings to benefit users. We aim to develop a framework that enables improvements
in user-interface design (particularly audio user-interfaces for screen reader users) to
be passed on to users without such long delays. The project proposal enumerated
the following research questions:

1. Can JavaScript be injected into a Web page to monitor and classify updates?
Monitoring pages involves identifying and grouping changes to a page, discov-
ering both what has been removed and what has been inserted, and which
changes are related to one another. Classification in the SASWAT system re-
lies on analysis of the content of the changes and monitoring user activity —
can this be translated into a system that runs like AxsJAX?

2. Can WAI-ARIA markup injected into the page after an update modify how a
screen reader (that is ARIA aware) behaves?

3. Can this be done in an efficient way? The prototype Fire Vox-based system
does not have adequate performance on large pages, and is not sufficiently
robust: investigation is required to use techniques that do not suffer these
deficiencies.

A further aim was:

2 Andy Brown

In addition to the specific questions relating to dynamic updates, the
theme of reducing the accessibility lag will run through the project, ask-
ing how the systems can be designed to be most widely usable, and for
what other types of accessibility advances could it be used.

This report describes the first stage of this process — a re-implementation of
the SASWAT system so that the techniques found in that project to be effective
for handling and presenting updates can be used by any users with ARIA-aware
browser/screen reader, not just using our experimental Firefox extension. Here,
a system is described that enables code to be injected into any Web page so that
dynamic updates can be analysed and classified (this report, therefore, does not fully
answer the first research question; to do this an evaluation is required). This report
also describes the first attempts to use WAI-ARIA markup to present updates to
users.

1.1 The SASWAT system

The SASWAT system [1] was an adaptation of the FireVox screen reader extension1

for the Firefox Web browser. It implemented rules for presenting dynamic updates,
which had been derived from eye-tracking studies [6] that examined how sighted users
allocated their attention when interacting with dynamic content. The effectiveness
of this approach was validated by two studies [7, 5].

The way in which the SASWAT implementation operated can be sketched as
follows. On loading a Web page, a map of the Document Object Model (DOM)2

was created, and event listeners were added that reacted to DOMMutationEvents,
which are fired whenever the DOM tree is modified. When events were detected,
a new map of the DOM was created and compared to the old map. This compar-
ison allowed regions that had changed to be detected and, crucially, grouped into
meaningful groups (DOMMutationEvents may be fired for each individual change
so that, for example, removal of a section of page might result in separate events
for each paragraph and each line of whitespace removed). Once the changes had
been resolved into distinct modifications, update objects were created and added
to a queue. (Unfortunately, this process, while relatively effective at grouping, was
relatively slow and demanding on the processor, particularly for larger pages.)

Concurrent to detecting and analysing changes to the page was a process of
monitoring user activity. This involved:

• Tracking the focus of the user: since the screen reader and user-activity mon-
itoring system were closely coupled, the monitoring system was able to use
the information from the screen reader to exactly identify what the user was
reading at any time.

• Tracking the actions of the user: all user input was via the keyboard, so
event listeners were implemented that detected keystrokes and identified the

1http://www.firevox.clcworld.net/
2For an overview of the DOM, events and listeners, see http://www.w3.org/DOM/ and

http://www.w3.org/TR/DOM-Level-2-Events/events.html.

Section 1 Introduction 3

commands issued. Event listeners were also implemented to identify ‘click’
events generated, for example, when users follow a link.

Combining these two pieces of information: the focus of the user and their last
input, it was possible to obtain a reasonably accurate idea of their last activity.
This, in combination with their location can be used to infer whether or not an
update was triggered by the user or happened automatically. For example a user
might have navigated into an input box (which may trigger a pop-up calendar to
appear), or typed into an input field (which may trigger an auto-suggest list), or
clicked a JavaScript link (which may trigger updates). Alternatively, if the user has
simply been reading the page content, an update can be classified as automatic.

Presentation of updates was the key contribution of SASWAT, for which all
the update analysis was performed. Users were notified of all updates by brief
non-speech sounds. Two sounds were used to differentiate between automatic and
manual updates, and users had the option to disable notification for any dynamic
region. For user-initiated updates, in addition to the non-speech notification, the
user’s focus was moved to the new content, and the first item read (the original
location was bookmarked and could be returned to with a simple command). More
sophisticated user-interaction was implemented for two common sub-classes of user-
initiated updates: pop-up calendars and auto-suggest lists.

1.2 Disseminating SASWAT

While the main aim of the SASWAT project was to increase understanding of how
to deal with dynamic content in a non-visual environment (by developing a model
of how sighted users interact with such content and translating the benefits they
receive into an audio interface), application of this understanding (e.g., by screen
readers improving their default handling of updates, or by Web developers using
ARIA to create interfaces that have been demonstrated to be effective) is likely to
take some time. Sadly, this is the case with much research. This project is looking
at how the benefits of improved understanding of user interfaces can be passed on
more quickly. The aim is to develop a framework that will allow improvements in
Web interface design more generally to be disseminated rapidly.

One approach to making novel interaction systems available is to inject them
directly into the Web page. There are several routes for doing this: using a browser
extension or bookmarklet, browsing via a proxy server, or using a system such
as Greasemonkey3. The AxsJAX4 framework [4] behaved in this way, providing a
mechanism for injecting code to change the behaviour of Web pages, e.g., adding hot-
keys to jump between sections, or defining speech output. The plan for this project
is to develop a similar framework to AxsJAX, but with the following enhancements:

• Improve generalisability, so the behaviour of a widget can be defined and
applied to all such widgets, rather than on a page-by-page basis.

3Greasemonkey is a Firefox browser extension that enables user scripts to be run on Web pages
in the browser. http://www.greasespot.net/

4See http://code.google.com/p/google-axsjax/

4 Andy Brown

• Simplify UI description. While easy to apply, AxsJAX required considerable
coding skills to implement. This project aims to simplify the process, describ-
ing the interface at a higher level of abstraction.

The aim of the project is to develop this framework with a focus on the outcomes of
the SASWAT project. Can the framework be used to describe and apply interfaces
for update handling by injecting code into a Web page?

2 Injected Classification

In the SASWAT system, updates were handled according to their classification. This
was done over two axes: how the update affected the page, and how it was initiated.
Before implementing any description of how to handle these updates, it is necessary
to inject code that can classify them. The classification process involves:

1. Detecting updates.

2. Filtering updates to determine which are relevant.

3. Grouping updates into discrete changes to the page.

4. Monitoring user activity.

The process is summarised in Figure 1, and shown with more detail in Figure 2.

2.1 Event Filtering

Changes to the Web page are detected with DOMMutationEvent listeners. These
are added to the document and listen for events fired by changes to the DOM.
Events are detected in the ‘capture’ phase5. However, many DOMMutation events
are generated that we do not wish to present to the user. For example, insertion or
deletion of comment nodes, or nodes containing only whitespace. We may also wish
to inject content into the page (e.g., into an ARIA-enabled live region so that the
user is notified; see section 3). For these cases it is necessary to filter each event to
determine whether or not it needs handling.

The filtering process is as follows:

1. The first pass tests if the update contains user-visible content. Updates are
ignored if the target node (i.e., the node generating the event) fulfils any of
the following criteria:

• Is a comment node (nodeType == COMMENT NODE).

• Is a text node (nodeType == TEXT NODE) that contains only whitespace.

• Has a <script> or <style> tag.

5When a change to an element occurs, events fired by the change have two phases. In the
‘capture’ phase, event handlers on parent elements get the event first, while in the ‘bubble’
phase, event handlers on the changed element get the event before the parent elements. See
http://www.w3.org/TR/DOM-Level-2-Events/events.html, section 1.2.

Section 2 Injected Classification 5

Figure 1: An overview of the processes performed by the injected code.

6 Andy Brown

• Has no text content.

• Is within the <head> element.

This filter is applied as soon as the update event is detected; the events are
immediately and permanently ignored. In addition to the criteria above, tests
were also performed where nodes that were styled to be invisible were filtered
out. However, it was found that, in many cases, a update caused a hidden
element to be changed, then made visible; applying this test in the filter caused
these updates to be lost.

2. The second pass compares position of the node in the DOM to a list of regions
to be ignored. If the node forms all or part of any of these regions it is
ignored. This list allows us to maintain a list of areas that the user does not
want notification about, and to inject our own dynamic region into the page
that can be updated independently from the update handling/presentation
system. This filtering occurs after the update event has been added to the
queue, before chunking takes place (for simplicity, the figures represent the
two phases of filtering as a single process).

2.2 Buffering and chunking

Section 2.1 described how it is necessary to filter out the many events that are
generated for updates which are of no interest to the user, including insertion of
whitespace. It is also the case that multiple events are generated for what the
user would perceive as a single update (section 1.1 described how it was neces-
sary for the SASWAT implementation to group events into meaningful groups). As
with SASWAT, updates must be grouped (or ‘chunked’, to borrow a phrase from
Miller [8]) into units that would have been perceived by the user as coherent, discrete
changes. For example, consider a page where we have almost simultaneous insertion
of a section and updating of a ticker. In this case, the insertion of a section is a
single change, but separate DOMMutationEvents are generated for each insertion
of heading, paragraphs and whitespace, while one (or more) events are generated
by the replacement of ticker text elsewhere on the page. The filtering process has
removed events relating to whitespace, but to classify and present these updates
effectively, it is still necessary to group the remainder into two.

In this implementation, events that pass the filtering process are used to generate
Update objects, which are then placed in a buffer (or queue). Adding an Update to
the buffer triggers a 500ms pause before processing the updates. This allows events
from any remaining updates to be captured, filtered and added to the buffer before
chunking.

Chunking is done by analysing the target elements of the events. Updates from
neighbouring elements are grouped and the smallest element of the page containing
all components of an update group is identified. This is followed by a pairing process,
which matches removals and insertions from the same region and creates an new
replacement update. Finally, another filtering process removes unnecessary updates
(e.g., duplicates), completing classification on the first axis of the taxonomy: update
type.

Section 2 Injected Classification 7

2.3 User-action monitoring

A key part of the system used by SASWAT-FireVox was the monitoring of user
activity. Using a screen-reader integrated into the browser, and processing updates
within this enabled effective tracking of the user’s actions. This information allowed
the system to determine relatively accurately whether the update was likely to have
been initiated by some action by the user or automatically. This distinction is
critical, as the model of sighted user behaviour showed that this was the key predictor
for whether or not an update would be fixated [6]. Replicating this through code
injected directly into the page introduces some limitations, but the system outlined
below uses heuristics that appear to give a reasonably reliable indication of whether
the most recent user action is one that could have triggered an update.

As with the SASWAT implementation, our knowledge of the users actions is
limited to detecting key commands. Unlike the SASWAT implementation, however,
we do not have access to the commands issued to the screen reader, and we do not
have as detailed information about the focus of the user. These limitations make it
more difficult to determine the user’s activity.

Event listeners are added to the document for two types of event: click and
keydown. Both listen for events in the ‘capture’ phase, so they are detected before
any page scripts might destroy them.

2.3.1 Detecting Clicks

The click events are fired whenever a ‘click’ action occurs on a page, so will detect
whenever the user follows a link, whether it is activated by a mouse click, or the
keyboard. Detecting these events is critical, as it is the primary means of triggering
user-initiated updates.

Once a click event has been detected, the event is analysed to determine the
target of the click. The target allows us to differentiate between links to other
pages, links to anchors within the current page, and links that trigger JavaScript.
Other clicks, such as those where the target is an input element, suggest the user
has used the mouse to move focus within the page or may be moving the cursor
within an input field; the former may trigger an update (such as a pop-up calendar),
the latter is unlikely to. Once analysed, the user’s state is set to one of the following:

External link click: The user has clicked a link leading to a new page.

Internal link click: The user has clicked a link that navigates to an anchor on the
current page.

JavaScript link: The user has clicked on a link that activates a JavaScript func-
tion.

2.3.2 Detecting keystrokes

Keystroke analysis is more complex, and relies on detecting not only which key was
pressed, but also where the focus was when it was pressed. The current implemen-
tation is based on some simple heuristics. First, it is determined whether the user

8 Andy Brown

was in a <form> or (more specifically) <input> element, then the key is identified.
This information is combined to give a prediction of user activity. The activity is
currently assigned to one of the following:

Input typing: The user is typing into an input field.

Navigation: The user has typed a command that moves focus around the page.

Escape: The user has pressed the escape button (this can be used to dismiss certain
widgets, such as calendars and auto-suggest lists).

Widget Use: The user is interacting with a widget. This is considered to be the
case when arrow keys have been pressed inside a form.

Form submit: The user has pressed the enter key while in a form.

Pressed hotkey The user has pressed a ‘normal’ (alphanumeric character) key
while not in a form.

Finally, if there has been no key activity for a period of time, the user is consid-
ered to be ‘idle’. This is currently set at 5 seconds, although this value has been set
by trial-and-error, and may need to be modified on the basis of user testing. This
gives a final type of activity:

Idle: The user has not pressed a key or generated a click event in the last 5 seconds.

2.4 Classification

Alone, the information about the user’s last action and the effect of the update
(insertion, replacement or removal) is not quite sufficient to classify the update. To
get a more accurate estimate of the cause of the update, it is necessary not only
to look at what the last action of the user was (and where the focus was when
they did that action), it is also necessary to look at where the focus is at the time
of the update. For example, the tab command suggests the user’s last action was
tabbing around the page, or navigating, which may, or may not, trigger an update:
navigating to a header element is unlikely to cause the page to change; navigating to
an input area might (e.g., to reveal information to help the user complete the form).
It is therefore necessary to take the user’s last action in combination with information
about the focus at the time of update, and use this combined information to classify
the update.

3 Injected Presentation

Update classification is simply the means by which we determine the most effective
way to present the update to the user. Implementation of a presentation system
has begun, but is at an early stage. Testing (using Firefox and NVDA6) showed

6NonVisual Desktop Access, an open-source screen reader for Windows. See http://www.

nvda-project.org/

Section 3 Injected Presentation 9

Figure 2: A more detailed schematic of the current implementation.

that ARIA injected after the update had, unsurprisingly, no effect: regions set
as aria:live=‘assertive’, for example, were not announced. Nevertheless, it
remains important that the information is relayed quickly and effectively to the
user.

3.1 Injected ARIA live region

One solution to this is to inject a region into the page when it is loaded, mark this up
as an ARIA live region, and use it to make announcements. An implementation of
this concept injects the following into the page, appending it to the <body> element
of the DOM:

<div id=‘saswatAriaNotification’ aria-live=‘assertive’>

</div>

10 Andy Brown

JavaScript functions then allow injection of messages and clearing the <div>.
Limited tests with Firefox and NVDA suggest that this is an effective way of re-
questing speech output from the screen reader, and can be used to make announce-
ments. Further experimentation is required to determine how this affects the user’s
focus (and if focus can be manipulated directly) and if it can be used with more
interactive updates, such as calendars and auto-suggest lists.

3.2 Injected sound generation

The SASWAT project not only identified the importance of speaking user-initiated
new content immediately, but also the effectiveness of announcing automatic up-
dates in an unobtrusive manner as possible. In that implementation, brief non-
speech sounds were played when updates occurred, with two sounds differentiating
between automatic and manual updates. As with announcements, one solution for
implementing this within the page/browser is to inject sound into the page, and play
the sounds on demand.

For example, the HTML5 code below can be injected into the page, given the
URL for a sound file.

<div id=‘saswatAutoSoundWrapper’>

<audio src=‘http://path_to_sound/file.wav’

autobuffer

id=‘saswatSoundAuto’

aria-hidden=‘true’>

</audio>

</div>

The sound can be played with the following JavaScript:

var soundRegion = document.getElementById(‘saswatSoundAuto’);

soundRegion.play();

Injecting two such regions, one for automatic updates and one for manual updates
allows the non-speech notification of the SASWAT browser to be replicated in a
normal browser/screen reader combination by injecting some simple code into the
page.

4 Future Work

This implementation forms the basis for answering the first research question of this
project (can updates be classified using injected JavaScript?). In this section, the
plans for completing the project objectives (Section 1) are described. In summary,
technical evaluations will be performed on the implementation, answering research
questions 1 and 3; the use of the ARIA notification area will be completed to answer
question 2. The remaining effort will be directed to the issues of generalisability,
exploring how the classification system can be built into a framework that will allow
rapid prototyping, testing and delivery of new techniques for handling dynamic
Web content. The different strands are described below, and summarised in Figure
3, which shows how the future work extends the current implementation.

Section 4 Future Work 11

Figure 3: An overview of future development. The current implementation is shown
in grey, while black items show planned developments.

12 Andy Brown

4.1 Testing

The implementation described above has only been tested on the pages used for
evaluation of the SASWAT system. Further testing on a range of pages is necessary
to identify any problems. A technical evaluation is planned in which the code will be
injected into a range of pages and the accuracy of update classification determined.

4.2 Providing user control

It will be necessary to provide users with more control over how updates are handled.
For example, users should be able to:

• Choose whether or not to inject and play non-speech sounds.

• Change the sounds.

• Silence non-speech notification for an area.

• Turn off all notification or updates for a page or region of a page.

4.3 Injection of more complex UI components

The current implementation covers the basics: injecting code so that updates can
be presented in a similar way to the SASWAT browser. For this to be extended to
a framework for rapid roll-out of future research outcomes (or, indeed, for imple-
menting novel UIs for testing), it will be necessary to allow more sophisticated user
interaction to be injected. In particular we need:

• Key commands: allowing users to interact with widgets via keys. For example,
using the arrow keys to control a slide-show.

• More interactive interfaces. For example, parsing and reading the first items
in an auto-suggest list, and allowing users to select them.

In Figure 3, this is represented by ‘key input’ into the presentation process, and by
the ‘Focus manipulation’ output.

4.4 User-defined UIs: simple descriptions of user interfaces

If we want people to apply novel user interfaces to widgets, it is necessary for them
to be able to specify them in a simple, yet unambiguous, manner. We plan to inves-
tigate the use of SCXML (State Chart XML). These are represented by the ‘Rules’
in Figure 3, although in reality, the rules are the output of the UI specification
process. Figure 3 also shows another potential requirement for the system: ‘Widget
Identification’. This represents the possible incorporation of a system that analyses
code to detect Web 2.0 widgets[3] into the project. In this case, classification can
potentially be enhanced by being able to classify updates in more detail. For ex-
ample, a slide show might be identified on a page; this knowledge can allow us to
inject more tailored user-interface components (e.g., key commands to move back
and forward through the slides).

Section 5 Summary 13

4.5 Translation and injection of user-defined interfaces

Finally, the components of the project can be brought together in a system that
translates user interface design, as specified using the component in Section 4.4 so
that the necessary interface can be injected into Web pages using the components
from Section 4.3. Such a system should allow researchers to both test novel ideas and
then to pass on the benefits of the successful experiments using a relatively quick and
simple workflow. In Figure 3, this is represented by the ‘Rule Translation’ process,
which feeds into presentation.

5 Summary

This technical report has described how this project aims to extend the SASWAT
research. Much of the implementation from that project has been simplified and
translated into code that can be injected into a Web page, thereby working in any
browser. This has also been done in a way that will allow further extension, so
that novel user interaction techniques can be specified and implemented quickly,
and their benefits passed on to users more rapidly.

References

[1] Andrew J. Brown and Caroline Jay. Hcw-fire vox user manual. http://

hcw-eprints.cs.man.ac.uk/125/, October 2009.

[2] Andy Brown and Simon Harper. AJAX time machine. In Proceedings of the In-
ternational Cross-Disciplinary Conference on Web Accessibility, W4A ’11, pages
28:1–28:4, New York, NY, USA, 2011. ACM.

[3] Alex Q. Chen and Simon Harper. Identifying Web widgets. Technical
Report, University of Manchester, http://hcw-eprints.cs.man.ac.uk/141/,
May 2009.

[4] Charles L. Chen and T. V. Raman. AxsJAX: a talking translation bot using
Google IM: bringing web-2.0 applications to life. In Proceedings of the 2008
international cross-disciplinary conference on Web accessibility (W4A), W4A
’08, pages 54–56, New York, NY, USA, 2008. ACM.

[5] Jenny Craven. Evaluation of the saswat web browser. 2010.

[6] C. Jay and A.J. Brown. User review document: Results of initial sighted and
visually disabled user investigations. Technical Report, University of Manchester,
http://hcw-eprints.cs.man.ac.uk/49/, 2008.

[7] Caroline Jay, Andrew J. Brown, and Simon Harper. Internal evaluation of the
saswat audio browser: method, results and experimental materials. Technical
Report, University of Manchester, http://hcw-eprints.cs.man.ac.uk/125/,
2010.

14 REFERENCES

[8] G.A. Miller. The magical number seven plus or minus two. Psychological Review,
63:81–97, 1956.

Section 6 Associated Files 15

6 Associated Files

The JavaScript filed described in this report are published on the Web Ergonomics
Lab Repository. The url is http://wel-eprints.cs.man.ac.uk/XX/. There is a
single zip file (code.zip) containing:

• readme.txt: A description of the contents of the zip file.

• user interaction.js: The code responsible for detecting user activity.

• notification.js: The code repsonsible for injecting announcements into a page.

• rules.js: Some basic code for describing rules that can be applied according to
update class.

• update handler.js: The main code — responsible for detecting, classifying, and
applying presentation rules to updates.

• auto.wav: A non-speech sound that may be used for notifying users of updates.

• manual.wav: A non-speech sound that may be used for notifying users of
updates.

