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Abstract. Dissipativity and feedback passivity properties in nonlinear multiple-input

multiple-output (MIMO) discrete-time systems are examined. Three main results are pre-

sented. First, necessary and sufficient conditions for the characterization of a class of

dissipative nonlinear MIMO discrete-time systems in general form are proposed. The class

of dissipativity treated is referred to as Quadratic Storage Supply-dissipativity. The condi-

tions existing in the literature, addressed as Kalman-Yakubovich-Popov conditions, for the

dissipative, passive or lossless cases, are derived from the proposed dissipativity charac-

terization. Second, some relative degree-related properties of nonlinear MIMO Quadratic

Storage-passive systems which are affine in the input are stated. Third, the problem of ren-

dering a nonlinear affine-in-input MIMO discrete-time system passive using the properties

of the relative degree and zero dynamics is analyzed. Quadratic Storage-passive systems

are considered. The feedback passivity methodology is illustrated by means of a class of

systems modelling different discrete dynamics with physical interpretation.
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1 Introduction

Two main problems will be considered in this paper. On the one hand, the
proposal for a class of nonlinear discrete-time systems of what is referred
to as Kalman-Yakubovich-Popov (KYP) conditions, that is, necessary and
sufficient conditions for a system to meet in order to be dissipative or passive.
On the other hand, the problem of rendering a system passive by means of a
static state feedback control law. The dissipativity approach followed in this
paper is the one based on the state-space dymamical representation and the
use of storage and supply functions.

Dissipative (passive) systems present highly desirable properties which
may simplify systems analysis and control design [7]. The concepts of dis-
sipativity and passivity have been widely used for the stability analysis of
continuous-time nonlinear systems and successfully applied in order to study
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a great variety of electronic-type and electromechanical systems, see, for ex-
ample [12,19]. These facts impel to translate well-known dissipativity prop-
erties in the continuous-time setting into the discrete-time framework.

Although the physicists almost always use differential equations for de-
scribing natural processes, many systems studied in different disciplines in-
herently operate in discrete time. For instance, systems involved in sig-
nal processing and data acquisition, some bank situations (i.e., a bank ac-
count behaviour), econometric models or electronic network systems, such as,
threshold networks [21]. Furthermore, in the last few years, there has been
an increasing interest in discrete representations and approximations of real
continuous systems, for example, the control of continuous-time processes by
means of discrete-time controllers or the use of new hybrid representations
to describe more complex dynamical systems [20] in which discrete-time sub-
systems are present. Most of these examples may be described by the class
of systems analyzed in this paper.

One of the most important formalizations of the characteristics of a dissi-
pative or passive system is the KYP conditions or the KYP lemma. Although
originally the KYP lemma established the connection between passivity and
positive real transfer functions, the denomination of KYP conditions has
been adopted in the nonlinear setting to address the set of necessary and
sufficient conditions that a passive system satisfies. In the sequel, the KYP
denomination is used in this sense.

The characterization of passive discrete-time systems is given for linear
systems in [8] as the Positive Discrete Real Lemma, which is later extended
by [6] to the (Q,S, R)-dissipativity case, i.e. dissipative systems with a supply
function of the form s(y, u) = yT Qy+2yT Su+uT Ru. Necessary and sufficient
conditions for affine-in-control discrete-time nonlinear systems to be lossless
and passive are given in [2,3], respectively. Necessary conditions for a system
to be passive are proposed in a different line in [11] which are generalized
for the non-affine case in [10]. An interesting approach treating dissipativity-
related properties in the nonlinear discrete-time setting is the one given in
[21] where a generalized KYP lemma for (Q, S,R)-dissipativity and (Q,S, R)-
losslessness is provided for nonlinear discrete-time affine-in-control systems.
In this work, the definitions for lossless and dissipative systems are given
in the framework of abstract dynamical energy systems. Another approach
to passivity in the nonlinear discrete-time case is presented by Monaco and
Normand-Cyrot’s work [13,14]. They obtain KYP conditions for single-input
multiple-output general non-affine-in-input and states discrete-time systems
which can be expanded by exponential Lie series.

The present paper establishes the KYP conditions in the nonlinear set-
ting for a class of dissipative discrete-time systems. These systems will be
addressed as Quadratic Storage Supply (QSS)-dissipative systems. The dis-
sipativity characterization given is an extension to the dissipativity case of
that given in [16] for the losslessness case.

The KYP conditions here presented are different from previous results
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given in [2,3,10]. On the one hand, in [3], the characterization of lossless
systems which are affine in the control input is given, while the dissipativity
case is treated for systems of general form in the present paper. On the
other hand, [2,10] handle with the characterization of passive systems. The
necessary conditions for the characterization of passive systems of general
form presented in [10] are different from those given in this paper due to the
fact that in [10], the basic passivity relation is used and no dissipation rate
function is introduced. The same is for [2]. Furthermore, in [2], necessary and
sufficient conditions for the characterization of QS-passive systems which are
affine in the input are given.

The other problem treated is the action of rendering a system passive
by means of a static state feedback, which is known as feedback passivity.
Systems which can be rendered passive are referred to as feedback passive
systems. The problem of feedback losslessness has been treated in [3] by
means of the properties of the relative degree and zero dynamics of the sys-
tem. Recently [18], the feedback passivity problem has been considered for
nonlinear discrete-time systems of general form, however, only sufficient con-
ditions to characterize MIMO feedback passive systems are proposed. In the
present paper, the feedback passivity property is studied for MIMO nonlin-
ear discrete-time systems which are affine in the control input and use is
made of the relative degree and zero dynamics properties of the system, as
in [3,18]. A class of passive systems addressed as Quadratic Storage (QS)-
passive systems is analysed, see [15,16]. Necessary and sufficient conditions
for aforementioned systems to be locally feedback QS-passive are proposed.
The feedback passivity methodology presented here is an alternative to those
proposed by the author in [15,16,17]. In these works, the local feedback dis-
sipativity problem is treated for single-input single-output (SISO) nonlinear
discrete-time systems which are non-affine in the states and the control input,
and they are based on the basic dissipativity inequality. The results presented
in this paper can be considered as an extension to the QS-passivity case of
those given in [3] where the feedback QS-losslessness problem is treated and
the properties of the relative degree and zero dynamics of QS-lossless sys-
tems are analyzed. The basic ideas are inherited from the continuous-time
case [1].

The paper is organized as follows. The purpose of Section 2 is twofold.
On the one hand, it revisits the basic definitions about dissipative systems
for the discrete-time case. On the other hand, it presents necessary and
sufficient conditions for the characterization of a class of dissipative nonlinear
discrete-time systems addressed as QSS-dissipative. Section 3 is devoted to
the properties of the relative degree and zero dynamics of MIMO nonlinear
discrete-time systems which are QS-passive and affine in the control input.
Section 4 deals with the feedback QS-passivity problem through the relative
degree and zero dynamics properties for the systems presented in Section 3.
In Section 5, a class of systems modelling different discrete dynamics with
physical interpretation is used to illustrate the feedback passivity method.
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Conclusions are given in the last section.

2 Dissipativity in nonlinear discrete-time sys-
tems

2.1 Preliminary definitions

Let a system of the form,

x(k + 1) = f(x(k), u(k)), (1a)
y(k) = h(x(k), u(k)), (1b)

where f : X × U → X and h : X × U → Y are smooth maps, with X ⊂
Rn, U, Y ⊂ Rm, X × U a neighbourhood of x = 0, u = 0, k ∈ Z+ :=
{0, 1, 2, . . .}. Let (x, u) be an isolated fixed point of the system. There is no
loss of generality in considering (x, u) = (0, 0), f(0, 0) = 0 and h(0, 0) = 0.

A positive definite C2 function V : X→ R such that V (0) = 0 ⇐⇒ x = 0
is addressed as storage function. A C2 function denoted by s(y, u) with
s : Y×U→ R is addressed as supply function. A C2 function φ : X×U→ R,
such that φ(·, u) is positive for each u ∈ U, with φ(0, 0) = 0, is referred to as
a dissipation rate function in the sense proposed in [7,16].

The dissipativity definition in the discrete-time nonlinear setting given in
[3] will be rewritten in the following way.

Definition 2.1 [16] System (1) with storage function V (x) and supply func-
tion s(y, u) is said to be locally (V, s)-dissipative if there exists a dissipation
rate function φ such that

V (f(x, u))− V (x) = s(h(x, u), u)− φ(x, u), ∀(x, u) ∈ X× U (2)

Definition 2.2 System (1) is said to be locally V -passive if it is locally (V, s)-
dissipative with a supply function of the form s(y, u) = yT u.

The dissipativity characterization proposed in this section is restricted to
a class of dissipative systems, defined as follows.

Definition 2.3 [15] System (1) is said to be locally QSS (Quadratic Storage
Supply)-dissipative if it is locally (V, s)-dissipative with a storage function
V (x) and a supply function s(y, u) such that V (f(x, u)) and s(h(x, u), u) are
quadratic in u.

Now, locally QS-passive systems are introduced for nonlinear discrete-
time systems which are affine in the control input.

Let a system of the form,

x(k + 1) = f(x(k)) + g(x(k))u(k) (3a)
y(k) = h(x(k)) + J(x(k))u(k) (3b)
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where f(x), g(x), h(x), J(x) are smooth maps and f(x) ∈ X ⊂ Rn, g(x) ∈
G ⊂ Rn×m, h(x) ∈ Y ⊂ Rm, J(x) ∈ J ⊂ Rm×m, x ∈ X ⊂ Rn, u ∈ U ⊂ Rm.
Consider f(0) = 0, h(0) = 0.

Definition 2.4 [15] System (3) is said to be locally QS (Quadratic Storage)-
passive if it is locally V -passive with a storage function V (x) such that V (f(x)+
g(x)u) is quadratic in u ∀f , ∀g.

Remark 2.5 Although the denominations of QSS-dissipative, QSS-lossless
and QS-passive systems are first introduced by the author in [15,16], these
classes of systems are used in [2] for the passivity case and in [3] for the
losslessness case.

Remark 2.6 Storage functions V (x) such that V (f(x)+g(x)u) is quadratic
in u ∀f , ∀g can be proposed as a quadratic form such that V = xT Px, with P
a constant positive definite matrix. In this case, the relation between function
V (x) and the dynamics of a locally QS-passive system of the form (3) can be
obtained by means of the strict positive nature of the diagonal leading minors
of the Hessian matrix of the function V (x) + (h(x) + J(x)u)T u − V (f(x) +
g(x)u) evaluated at x = 0 and u = 0.

2.2 Characterization of discrete-time dissipative systems
in general form

The results presented in this section follow the same approach given in [16].
The difference is that, in [16], KYP-type conditions were established for
QSS-lossless systems of the form (1), here, the QSS-dissipativity case is
treated. Furthermore, the necessary and sufficient conditions proposed for
the characterization of QSS-dissipative systems are an extension of those
given in [2] for the QS-passivity case in affine-in-input systems.

Theorem 2.7 Let V (x) be a storage function and s(y, u) be a supply function
such that V (f(x, u)) and s(h(x, u), u) are quadratic in u. Then, a system of
the form (1) is locally QSS-dissipative with V (x) and s(y, u), if and only if,
there exist real functions l(x), m(x) and k(x), all of appropriate dimensions



52 Eva M. Navarro-López

such that,

V (f(x, 0))− V (x) = s(h(x, 0), 0)− lT (x)l(x)−mT (x)m(x) (4a)

∂V (z)
∂z

∣∣∣∣
z=f(x,0)

∂f(x, u)
∂u

∣∣∣∣
u=0

+ 2lT (x)k(x) =
∂

∂u
s(h(x, u), u)

∣∣∣∣
u=0

(4b)

(
∂f(x, u)

∂u

)T
∣∣∣∣∣
u=0

∂2V (z)
∂z2

∣∣∣∣
z=f(x,0)

∂f(x, u)
∂u

∣∣∣∣
u=0

+

+
∂V (z)

∂z

∣∣∣∣
z=f(x,0)

∂2f(x, u)
∂u2

∣∣∣∣
u=0

=

=
∂2

∂u2
s(h(x, u), u)

∣∣∣∣
u=0

− 2kT (x)k(x) (4c)

Proof. (Necessity): If system (1) is locally QSS-dissipative, there exists
a dissipation rate function φ satisfying (2). Since V (f(x, u)) and s(h(x, u), u)
are quadratic in u, the function φ can be written as follows

φ(x, u) = [l(x) + k(x)u]T [l(x) + k(x)u] + mT (x)m(x) ≥ 0, ∀u ∈ U (5)

for some real functions m(x), l(x) and k(x). Condition (4a) is obtained
restricting (2) to u = 0, and taking φ(x, u) as defined in (5). Conditions (4b)
and (4c) follow from the first-order derivative and the second-order derivative
of (2) with respect to u, considering (5) and u = 0.

(Sufficiency): Assume there exist real functions m(x), l(x), k(x) which
satisfy conditions (4). Multiplying equality (4b) by uT from the left and
adding (4a), it is obtained

V (f(x, 0))− V (x) + uT ∂

∂u
V (f(x, u))

∣∣∣∣
u=0

= s(h(x, 0), 0)+

+ uT ∂

∂u
s(h(x, u), u)

∣∣∣∣
u=0

− 2lT (x)k(x)u− lT (x)l(x)−mT (x)m(x) (6)

Adding to the right-hand side term of (6) uT kT ku −uT kT ku, and using (4c),
one yields

V (f(x, 0)) + uT ∂

∂u
V (f(x, u))

∣∣∣∣
u=0

+
1
2
uT ∂2

∂u2
V (f(x, u))

∣∣∣∣
u=0

u− V (x) =

= s(h(x, 0), 0) + uT ∂

∂u
s(h(x, u), u)

∣∣∣∣
u=0

+
1
2
uT ∂2

∂u2
s(h(x, u), u)

∣∣∣∣
u=0

u−
(7)

− φ(x, u) (8)

with φ(x, u) given in (5). By claiming that V (f(x, u)) and s(h(x, u), u) are
quadratic in u, the second-order Taylor expansion at u = 0 of V (f(x, u)) and
s(h(x, u), u) can be considered in (8), and (2) is obtained.
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Remark 2.8 As it is recommended in [21], a new function m(x) has been
considered, in comparison to the passivity conditions given in [2] for nonlinear
discrete-time systems affine in the control input.

Remark 2.9 If V (f(x, u)) and s(h(x, u), u) are not considered to be quadratic
in u, conditions (4) yield only necessary conditions, as it is shown in [16].

Necessary and sufficient KYP conditions appeared in the literature for
dissipative MIMO discrete-time systems are strictly contained in the ones
given in Theorem 2.7, either for the linear or the nonlinear case. For example,
passivity conditions appearing in [2] for systems of the form (3) are obtained
taking s(y, u) = yT u and m(x) = 0, and losslessness conditions given in
[3] with s(y, u) = yT u and φ(x, u) = l(x) = k(x) = m(x) = 0. In order
to obtain the dissipativity conditions for nonlinear affine-in-input systems
presented in [21], the left-hand side of equality (4a) would be V (f(x) −
x) and in (4b) and (4c), z = f(x) − x should be considered with V (x) =
BT (x) + xT C(x)x, with B and C matrices of appropriate dimensions, and
s(y, u) = yT Qy + 2yT Su + uT Ru, with Q, S, R constant matrices, Q and R
symmetric. In order to obtain the losslessness conditions presented in this
work, in addition, φ(x, u) = k(x) = l(x) = m(x) = 0 must be considered.
Conditions for the characterization of QSS-lossless systems of the form (1)
defined in [16] can be also derived from conditions (4) considering φ(x, u) =
l(x) = k(x) = m(x) = 0. For the linear case, passivity conditions appearing
in [8] are obtained taking m(x) = 0, V (x) = 1

2xT Px, s(y, u) = yT u, and
dissipativity conditions presented in [6] are obtained by taking m(x) = 0,
s(y, u) = yT Qy + 2yT Su + uT Ru, V (x) = 1

2xT Px, with P a real symmetric
positive definite matrix.

3 Relative degree and zero dynamics of QS-
passive nonlinear discrete-systems affine in
the input

The local relative degree zero of QS-passive systems of the form (3) and the
properties of the zero dynamics are studied in this section. These properties
will be used to treat the feedback passivity problem in Section 4.

The basis of the analysis will be the QS-passivity characterization ob-
tained as the restriction of QSS-dissipativity conditions (4) to s(y, u) = yT u
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and dynamics (3). Conditions (4) take the following form [2]:

V (f(x))− V (x) = −lT (x)l(x)−mT (x)m(x) (9a)

∂V (α)
∂α

∣∣∣∣
α=f(x)

g(x) + 2lT (x)k(x) = hT (x) (9b)

gT (x)
∂2V (α)

∂α2

∣∣∣∣
α=f(x)

g(x) = JT + J(x)− 2kT (x)k(x) (9c)

Definition 3.1 [3] System (3) is said to have local relative degree zero for all
the outputs at x = 0 if J(0) is nonsingular. The system has uniform relative
degree zero for all the outputs if J(x) is nonsingular ∀x ∈ X.

Definition 3.2 A system of the form (3) has locally passive zero dynamics
if there exists a storage function V (x) locally defined in a neighbourhood X
of x = 0 in Rn such that

V (f∗(x)) ≤ V (x), ∀x ∈ X (10)

with f∗(x) the zero dynamics of the system.

The properties of the relative degree and zero dynamics of locally QS-
passive systems of the form (3) are established as follows.

Proposition 3.3 Let system (3) be locally QS-passive with a storage func-
tion V (x). Assume that x = 0 is a nondegenerate critical point of V (x). If
rank{g(0)} = m then,

i) The system has local relative degree zero at x = 0.

ii) If the system has local relative degree zero at x = 0 then the zero dynam-
ics locally exists at x = 0 and is locally passive with V (x) as storage
function.

Proof.

i) Evaluating condition (9c) at x = 0, and considering that the Hessian
matrix of V (x) at x = 0 is positive definite, it is concluded that if
rank{g(0)} = m then JT (0) + J(0) must be positive definite, conse-
quently, J(0) is nonsingular and the system has local relative degree
zero at x = 0.

ii) If system (3) has local relative degree zero at x = 0 then there is an open
neighbourhood X of x = 0 such that J−1(x) is well defined ∀x ∈ X,
therefore, the zero dynamics locally exists in X. The zero dynamics
of (3) is defined by x(k + 1) = f∗(x(k)) = f(x(k)) + g(x(k))u∗(k),
∀x(k) ∈ X, with u∗(k) = −J−1(x(k))h(x(k)), ∀x(k) ∈ X the control
which makes the output equal to zero. The result directly follows from
relation (2).
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4 The feedback QS-passivity problem

This section is devoted to render a system of the form (3) locally QS-passive.
Results presented in Section 3 will be used. The feedback passivity approach
can be considered as an extension to the passivity case of that given in [3]
where the feedback losslessness problem is treated.

Let α(x) and β(x) be smooth functions, with α(0) = 0. Consider a static
state feedback control law of the form,

u = α(x) + β(x)w (11)

Definition 4.1 A feedback control law of the form (11) is regular if for all
x ∈ X it follows that β(x) is invertible. System (3) with u(k) = α(x(k)) +
β(x(k))w(k) is referred to as the feedback transformed system.

Definition 4.2 Consider system (3). Assume that there exists a storage
function V (x) and consider a supply function of the form s = yT w. The
system is said to be locally feedback QS-passive if there exists a regular static
state feedback control law of the form (11) such that the feedback transformed
system is locally QS-passive. w is the new input defined in a neighbourhood
X× U of x = 0, w = 0.

Theorem 4.3 Let a system of the form (3). Suppose there exists a storage
function V (x) such that V (f(x)+ g(x)u) is quadratic in u, ∀f , ∀g and x = 0
is a nondegenerate critical point of V (x). Assume that rank{g(0)} = m.
Then, system (3) is locally feedback QS-passive with V (x) as storage function
by means of a regular feedback control law of the form (11) if and only if the
system has local relative degree zero at x = 0 and its zero dynamics is locally
passive.

Proof. (Necessity): Assume that there is a regular static state control law
of the form (11) which renders system (3) locally QS-passive. Then the
feedback transformed system,

x(k + 1) = f(x(k)) + g(x(k))w(k) (12a)

y(k) = h(x(k)) + J(x(k))w(k) (12b)

is locally QS-passive, with f(x) = f(x) + g(x)α(x), g(x) = g(x)β(x), h(x) =
h(x) + J(x)α(x), J(x) = J(x)β(x). On the one hand, since the function
β(0) is nonsingular, rank{g(0)} = m. Considering Proposition 3.3, it is
concluded that J(0) is nonsingular, therefore J(0) is nonsingular and system
(3) has local relative degree zero at x = 0. On the other hand, due to the
fact that system (12) is locally QS-passive with V (x) as a storage function,
by Proposition 3.3, it has a locally passive zero dynamics with V (x) as a
storage function. It can be checked that the zero dynamics of (3) is identical
to the zero dynamics of (12), and, in conclusion, is locally passive.
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(Sufficiency): Since the system relative degree is zero at x = 0, J(x) is
invertible in a neighbourhood X of x = 0, then J−1(x) is well defined ∀x ∈ X.
It is chosen

u(k) = u∗(k) + J−1(x)v(k) (13)

with u∗ = −J−1(x)h(x). System (3) with (13) yields to x(k+1) = f∗(x(k))+
g∗(x(k))v(k), y(k) = v(x(k)), where f∗(x) = f(x) − g(x)J−1(x)h(x) repre-
sents the zero dynamics of the original system and g∗(x) = g(x)J−1(x).
Now, a new input control and a new output are defined as y(k) = v(k) :=
h(x(k)) + J(x(k))w(k). Then, the new system dynamics is given by:

x(k + 1) = f∗(x(k)) + g∗(x(k))h(x(k)) + g∗(x(k))J(x)w(k)

y(k) = h(x(k)) + J(x)w(k) (14)

It is defined,

J(x) =

(
1
2
g∗

T ∂2V

∂z2

∣∣∣∣
z=f∗(x)

g∗(x)

)−1

(15)

h(x) = −J(x)

(
∂V

∂z

∣∣∣∣
z=f∗(x)

g∗(x)

)T

(16)

System (14) with (15) and (16) will be shown to be locally QS-passive with a
storage function V (x). Since V (f∗(x)+ g∗(x)u) is quadratic in u, the Taylor
expansion formula can be used on this function. Considering that the zero
dynamics of (3) is locally passive, one yields to

V (f∗(x) + g∗(x)h(x))− V (x) = −rT (x)r(x)−mT (x)m(x)+

+
∂V

∂z

∣∣∣∣
z=f∗(x)

g∗(x)h(x) +
1
2
h

T
(x)g∗

T

(x)
∂2V

∂z2

∣∣∣∣
z=f∗(x)

g∗(x)h(x) (17)

with r(x) = l(x) + k(x)h(x). Differentiating both sides of (17) with respect
to h(x), and multiplying the result by J(x), in addition to use (15) and (16),
the passivity condition (9b) for system (14) follows.

Taking the second-order derivative with respect to h(x) in both sides of
(17) and multiplying both sides of the result from the left by J

T
(x) and from

the right by J(x), using (15) and supposing J(x) to be symmetric, one yields
to the passivity condition (9c) for system (14). For the passivity conditions
of system (14), the equivalent of functions l(x) and k(x) are l(x) + k(x)h(x)
and k(x)J(x), respectively.

Besides, using (15) and (16) on the Taylor expansion of V (f∗(x)+g∗(x)u),
one yields to V (f∗(x) + g∗(x)h(x)) = V (f∗(x)). Taking into account that
the original system has locally passive zero dynamics, i.e., V (f∗(x)) ≤ V (x),
the passivity condition (9a) for the system (14) is obtained. In conclusion,
system (3) with the feedback passivity scheme (13)-(16) is locally QS-passive.
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Remark 4.4 The control rendering the system QS-passive has the same
structure as the control which renders a system QS-lossless in [3].

5 Application of the feedback passivity method.
Some remarks

Models of type (3) describe a great variety of systems, most of them with
physical interpretation. In this section, the feedback passivity methodology
proposed in the previous section will be applied to a class of bilinear systems.
On the feedback transformed system, some of the properties satisfied by
passive systems presented in Sections 2 and 3 will be checked.

5.1 A class of examples

Let a system of the form,

x(k + 1) = [A0x(k) + B0] +
m∑

i=1

A1ix(k)ui(k) + B1u(k)

y(k) = h(x(k)) + J(x(k))u(k)

(18)

where A0, B0, A1i and B1 is an (n × n), an (n × 1), an (n × n) and an
(n ×m)-dimensional constant matrix, respectively, with ui each component
of the m-dimensional input vector u. For simplicity’s sake, let us consider a
SISO system (m = 1). Then, system (18) takes the form,

x(k + 1) = [A0x(k) + B0] + [A1x(k) + B1] u(k)
y(k) = h(x(k)) + J(x(k))u(k)

(19)

Model (19) describes a great variety of discretized versions of systems, such
as, several power converters (see [4]), DC (direct current) motors [23] and
other kinds of nonlinear discrete-time models, see for example [22]. Let con-
sider,

V =
1
2
xT Px (20)

with P a constant symmetric positive definite matrix.
The fixed point x for system (19) with u = 0 is x = (I−A0)−1B0. Notice

that, in general, x is not zero, then the coordinate change x′ = x− x can be
made in order to have x = 0. Consequently, the system is rewritten as,

x′(k + 1) = [A0x
′(k) + B′

0] + [A1x
′(k) + B′

1] u(k)
y′(k) = h(x′(k) + x) + J(x′(k) + x)u(k)

(21)

with B′
0 = (A0 − I)x + B0, B′

1 = A1x + B1.
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The feedback passivity methodology presented in Section 4 can be applied
to systems of type (19). Two particular examples will be considered: (i) an
approximated discrete model of a DC-to-DC boost converter, (ii) a discretized
model of a DC motor.

As [4] shows, an approximated discretization of an averaged model of a
DC-to-DC boost converter [5,9] can be obtained by the first-order Taylor
series expansion of its exact discretization about a fixed duty cycle (for the
example it is equal to 0.5 s). Then, xT = (x1, x2), with x1 the current flowing
through the inductor (L), x2 the voltage across the capacitor (C), and u the
duty cycle. For the following physical parameters,

L = 0.36 mH, C = 28.2 µF, vin = 50 V, R = 48 Ω,

with a sampling period T = 1
20 kHz , the following matrices are obtained [4],

A0 =
(

a01 a02

a03 a04

)
=

(
0.934039 0.861448
−0.0674801 0.969563

)

A1 =
(

a11 a12

a13 a14

)
=

(
0 −0.000327837

−0.0000256806 0

)

B0 = vin

(
b01

b02

)
=

(
0.0889542
0.135042

)

B1 = vin

(
b11

b12

)
=

( −0.00230366
−0.00207904

)

(22)

The energy associated with the system is considered as the storage function,

V =
1
2

(
Lx2

1 + Cx2
2

)
=

1
2
xT

(
L 0
0 C

)
x

The second model to be used is the first-order discretization of a simplified
(singularly perturbed) model of a DC motor presented in [23], which takes
the form (19) with,

A0 =
(

a11 0
0 a21

)
, A1 =

(
0 a12

a22 0

)

B0 =
(

a13

0

)
, B1 =

(
0
0

) (23)

and

a11 = 1 + Tb1, a12 = Tb3

a13 = Tb2, a21 = 1 + Tb4, a22 = Tb5

where T = 0.01 s is the sampling period and b1, b2, b3, b4, b5 are constants
related to system physical parameters (Lr, Jm, Rs, Rr, Ls, Vr, F , K). The
system state vector is xT = (x1, x2), with x1 and x2 representing the rotor
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current and the motor shaft angular velocity, respectively. The control vari-
able u is the stator voltage. The storage function V is defined as the energy
associated with the system, i.e.,

V =
1
2

(
Lrx

2
1 + Jmx2

2

)
=

1
2
xT

(
Lr 0
0 Jm

)
x

5.2 Application of the feedback passivity method

The feedback passivity methodology presented in Section 4 will be applied
to system (19) in order to stabilize the system fixed point. For some cases,
the fixed point x of the original system is not locally stable. Representation
(21) must be used in order to apply the results presented in Sections 2, 3 and
4. Hereinafter, for the sake of simplicity in notation, x, y, B0 and B1 will
denote x′, y′, B′

0 and B′
1, respectively.

Consider V as defined in (20) as storage function, s = yu as supply
function and J(x) = 1. If system (19) does not fulfill conditions (9), it is
not QS-passive. However, the system can be rendered locally QS-passive by
means of a static feedback control law (11), see Theorem 4.3, if and only if
J(x) is nonsingular and the zero dynamics of the system is locally passive.
The first condition is satisfied. The control u∗ rendering the output zero is
u∗ = −h(x). Control u∗ substituted in (19) gives the zero dynamics of the
system. Condition (10) for the zero dynamics to be locally passive takes the
following form for system (19):

(A0x + B0)T P (A0x + B0)− 2(A0x + B0)T P (A1x + B1)h(x)+

+ hT (x)(A1x + B1)T P (A1x + B1)h(x)− xT Px ≤ 0
(24)

The system output, more specifically h(x), plays an important role in the
fulfillment of relation (24). For example, for the boost converter model, if
h(x) = x2, the system has a non-passive zero dynamics and can not be
rendered passive by the method. Then, a fictitious output without physical
interpretation has to be proposed, for instance,

h(x) =
a01x1 + a02x2 + vinb01

a13x1 + a14x2 + vinb12

For the discretized model of the DC motor, h(x) = x2 is considered and the
zero dynamics of the system is locally passive.

Provided that (24) is satisfied, the feedback passivity scheme (13)-(16)
will be applied to (19) and feedback transformed system (12) will be obtained
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with:

f(x) = (A0x + B0) + (A1x + B1)
[
h(x)− h(x)

]

g(x) = (A1x + B1)J(x)

J(x) = 2
[
(A1x + B1)T P (A1x + B1)

]−1

h(x) = −J(x)
[
(A1x + B1)T P (A0x + B0)− (A1x + B1)T P (A1x + B1)h(x)

]

(25)

(i) (ii)

(iii) (iv)

x1 x2

y u; w

u

w

Time (kT s) Time (kT s)

Time (kT s)Time (kT s)

Figure 1: Application of the feedback passivity scheme. System response for
a discretized model of a DC motor with the form (21) with (23). k is the
number of iterations, T = 0.01 s is the sampling period and x0 = (54, 82)T :
(i) x1, (ii) x2, (iii) system output, (iv) control u rendering the system QS-
passive and stabilizing control w.

As it is proposed in [11], the control w(k) = −y(k) can be substituted
into the feedback transformed system (12) with (25). This control locally
asymptotically stabilizes a V -passive discrete-time system. In this case,
w(k) = − [

J(x(k)) + 1
]−1

h(x(k)). For the DC motor, with h(x) = x2, the
feedback transformed system response is depicted in Figure (1). The coordi-
nate change x′ = x − x has been made. The following parameters obtained
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from a real system have been used: b1 = −30, b2 = 1500, b3 = −0.15,
b4 = −0.002, b5 = 0.03, Lr = 0.1, Jm = 0.5. As it can be appreci-
ated from the figure, the states and the output are stabilized to the origin
x = (0, 0)T , y = 0. It can be also checked that the feedback transformed sys-
tem fulfills the characteristics of a locally QS-passive shown in Proposition
3.3.

For particular cases of system (19) corresponding to systems with physi-
cal interpretation, applications specialists could improve the performance of
the feedback transformed system by means of introducing a different control
scheme w.

6 Conclusions

Some properties of MIMO nonlinear discrete-time dissipative systems have
been studied. On the one hand, necessary and sufficient conditions fulfilled
by a class of dissipative systems referred to as QSS-dissipative systems have
been derived. On the other hand, the properties of the relative degree and
zero dynamics of a class of passive systems have been related to its feedback
passivity property, and a feedback passivity methodology has been proposed
for a class of MIMO nonlinear discrete-time systems affine in the control
input. The class of systems for which the feedback passivity problem has been
considered are referred to as QS-passive systems, that is, passive systems
with V (x(k + 1)) quadratic in u. The feedback passivity methodology has
been illustrated by means of a class of systems describing different discrete
dynamics with physical interpretation. The results here presented are an
extension to the passivity case of the ones given in [3] where the losslessness
feedback problem is reported.
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