
The University of Manchester Research

Abstractions of hybrid systems: Formal languages to
describe dynamical behaviour
DOI:
10.3182/20110828-6-IT-1002.01072

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Carter, R., & Navarro-López, E. M. (2011). Abstractions of hybrid systems: Formal languages to describe
dynamical behaviour. In IFAC Proceedings Volumes (IFAC-PapersOnline)|IFAC Proc. Vol. (IFAC-PapersOnline)
(Vol. 18, pp. 4552-4557). International Federation of Automatic Control (IFAC). https://doi.org/10.3182/20110828-
6-IT-1002.01072
Published in:
IFAC Proceedings Volumes (IFAC-PapersOnline)|IFAC Proc. Vol. (IFAC-PapersOnline)

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:30. Jun. 2022

https://doi.org/10.3182/20110828-6-IT-1002.01072
https://www.research.manchester.ac.uk/portal/en/publications/abstractions-of-hybrid-systems-formal-languages-to-describe-dynamical-behaviour(b86656eb-b295-4fa9-9a6b-4a9feadf1dae).html
https://doi.org/10.3182/20110828-6-IT-1002.01072
https://doi.org/10.3182/20110828-6-IT-1002.01072


Abstractions of hybrid systems: formal languages
to describe dynamical behaviour ⋆

Rebekah Carter, Eva M. Navarro-López

School of Computer Science, The University of Manchester
Oxford Road, Manchester, M13 9PL, UK

(e-mails: carterr@cs.man.ac.uk, eva.navarro@cs.man.ac.uk)

Abstract: We show how finite-state automata over finite and infinite words can capture key dynamical
properties of hybrid systems. The purpose is to obtain a discrete abstraction of the main complex
dynamical behaviour patterns that such systems exhibit. We will form a labelled transition system as
an abstraction of the hybrid system, and, in order to differentiate between the key dynamical behaviours,
we will associate a set of formal languages to each of the behaviours. We will use both finite regular
and infinite ω-regular languages. These formal languages can be accepted by a generalised Muller
automaton, which is a novel approach in the specification of dynamical properties of hybrid systems.

Keywords: Hybrid dynamical systems; Hybrid automata; Automata theory; Specification; Abstraction;
Formal languages.

1. MOTIVATION

Hybrid dynamical systems combine both real-time continuous-
type dynamics and discrete-event occurrences that interact in
some way. This interaction can cause complex dynamics, which
makes it difficult to know what will happen in the system in
general. However, in safety critical systems, it is essential to
know how the system will evolve given a certain input.

This paper is devoted to the abstraction of dynamical properties
for a class of hybrid systems. The ultimate goal is to differenti-
ate between “good” and “bad” behaviour patterns.

Abstraction is the process of forming a discrete version of the
continuous hybrid system model, so that the discrete model cap-
tures relevant information about the hybrid system. The most
common use of abstraction is in the formal verification of a
system, when we find an abstraction of the system that captures
enough information to prove a required property. Formal veri-
fication is a way of checking whether or not some properties of
a system are satisfied. Using an abstraction for verification can
greatly decrease the time required to prove a property, since we
are considering a much simpler model.

In this work, we consider a procedure for making an abstraction
of the behaviours of a hybrid dynamical system, with this
abstraction being represented as an automaton. We base the
abstraction on the known behaviour patterns of the system,
such as equilibrium points and periodic orbits. These behaviour
patterns can then be represented as unique regular or ω-regular
languages over the finite-state automaton, and can be specified
by automaton acceptance conditions, of either classical “final
state” type for the regular languages, or Muller type for the ω-
regular languages (Muller, 1963).

⋆ Corresponding author: Rebekah Carter. Phone: +44 161 275 6209. Fax:
+44 161 275 6204. This paper has been made under the framework of the
EPSRC-funded project DYVERSE: A New Kind of Control for Hybrid Systems
(EP/I001689/1). The second author is grateful for the support of the Research
Councils United Kingdom (EP/E50048/1).

With the unique languages for the different behaviours, we
will distinguish the set of behaviour pattern(s) of interest, and
can then set up an abstracted automaton to accept only these
behaviour patterns, rejecting the trajectories with a behaviour
pattern that is not wanted. In this way, we can differentiate
between safe and unsafe trajectories. The contribution of this
work is to provide this novel specification framework to distin-
guish the different behaviour patterns in hybrid systems.

Currently, the approaches to abstraction of hybrid systems are
broadly two. The first is the use of simulation relations, where
a continuous and discrete model are proved to be (bi)similar,
so that properties which hold in the discrete model will auto-
matically hold in the continuous one (Henzinger et al., 1998;
Tabuada, 2009; Tripakis and Yovine, 2001). This approach
needs rigorous proofs of similarity between systems, and so,
recently, the concept of approximate simulation relations has
been introduced (Girard et al., 2008). In approximate simula-
tion, the distance between the actual and abstracted systems is
bounded by a certain precision, which means that a much wider
class of hybrid systems can use this technique.

The other main approach to abstraction of hybrid systems
is the use of abstraction refinement, mainly counterexample-
guided abstraction refinement (CEGAR) (Clarke et al., 2003;
Ratschan and She, 2007). In abstraction refinement, we start
with a basic abstraction of the system, and improve it by using
some information about the system. When CEGAR is used
for verification, the information used is counterexamples: we
search for a trajectory of the abstracted system which starts
in the initial region and ends in the unsafe region, and use it
to refine the model if it is not a counterexample in the actual
system, or we use as a counterexample to prove the property is
false in the actual system. We do this until we either prove or
disprove the actual property.

Klaedtke et al. (2007) use formal languages to represent the
abstracted trajectories of a CEGAR abstraction method. This
kind of representation is similar to ours, however it does not



consider infinite length languages, which we do. This paper has
been a source of inspiration for our language-based approach,
along with Weiss and Alur (2007). This latter paper considers
the use of automata on infinite languages as a way of specifying
valid schedules for control components. The type of systems
treated are piecewise linear discrete-time systems. Here, we
treat more general systems and properties.

The rest of this paper is structured as follows. Sections 2 and 3
introduce some background material and definitions. Moreover,
in Section 2, a motivating example is considered. Section 4
gives an overview of the method of abstraction, and Section
5 applies the abstraction method for a large class of hybrid
systems. Section 6 looks at a case study, and Section 7 considers
extensions to the method.

2. THE HYBRID AUTOMATON FRAMEWORK

In this section we introduce the hybrid automaton, and also
present a motivating example for the rest of the paper.

2.1 Hybrid automata

Most readers will be familiar with the concept of a hybrid
automaton as a representation of the dynamics of a hybrid
dynamical system. In this paper we use a definition based on
Lygeros et al. (1999, 2003); Johansson et al. (1999), which
is reasonably general, but which does not consider inputs or
outputs into the system. We do not consider such inputs and
outputs in this paper in order to simplify the notation, although
they could be added in without too much additional work. The
notation used in this definition is similar to that of the model
proposed in Navarro-López (2009).
Definition 1. (Hybrid automaton). A hybrid automaton is a col-
lection H = (Q,X ,F , Init,Dom,E,G,R), where:

• Q = {q1, . . . ,qm} is the set of discrete locations.
• X ⊆ Rn is the continuous state-space.
• F = { fqi(x) : qi ∈ Q} is the collection of vector fields

describing the continuous dynamics, such that fqi : X →
X . Each fqi(x) is assumed to be Lipschitz continuous
on the location domain for qi in order to ensure that the
solution exists and is unique.

• Init ⊆ Q×X is the set of initial hybrid states.
• Dom : Q → 2X is the location domain. It assigns a set of

continuous states to each discrete location qi ∈ Q, thus,
Dom(qi)⊂ X .

• E ⊆ Q × Q is a finite set of edges called transitions or
events.

• G : E → 2X is a guard set. G assigns to each edge a set of
continuous states; this set contains the states which enable
transition along that edge.

• R : E ×X → 2X is a reset map for the continuous states
for each edge. It is assumed to be non-empty, so that the
dynamics cannot be destroyed, only changed. �

We also should consider how we move through this hybrid
automaton.
Definition 2. (Execution of a hybrid automaton). An execution
of the hybrid automaton H is a sequence of hybrid states with
time, {(t0,q0,x0),(t1,q1,x1), . . . ,(tn,qn,xn)}, where (qi,xi) =
(q(ti),x(ti)), such that:

• The run starts in the initial region — (q0,x0) ∈ Init.
• Between jump times we evolve continuously — for t ∈
[ti, ti+1), ẋ = fqi(x).

• At jump points, we take a transition for which we satisfy
the guard condition, the continuous state is then reset,
and we may change our discrete location. That is, when
t = ti+1, q = qi and x = xi,+, for any (qi,qi+1) ∈ E for
which x ∈ G((qi,qi+1)), the new value of x is defined by
xi+1 ∈ R((qi,qi+1),xi,+), and the new discrete location is
qi+1. �

2.2 A motivating example

To motivate the abstraction in this paper, the following discon-
tinuous system, which can be modelled as a hybrid automaton,
is considered. It is a simplified oilwell vertical drillstring that
exhibits multiple equilibria and periodic oscillations (Navarro-
López and Carter, 2010):

ẋ1 =
1
Jr
[−(ct + cr)x1 − ktx2 + ctx3 +u] , ẋ2 = x1 − x3,

ẋ3 =
1
Jb

[
ct x1 + kt x2 − (ct + cb)x3 −Tfb(x3)

]
.

(1)

x = (x1, x2, x3)
T, with x1 and x3 the angular velocities of

the top-rotary system and the bit, respectively, and x2 is the
difference between the two angular displacements. u > 0 and
the weight on the bit (Wob>0) are two varying parameters. The
discontinuous friction torque is Tfb(x3) = fb(x3)sign(x3), and

fb(x3) =WobRb

[
µcb +(µsb −µcb)exp−

γb
vf
|x3|

]
, (2)

with Rb > 0 the bit radius; µsb , µcb ∈ (0,1) the static and
Coulomb friction coefficients associated with the bit; 0 < γb <
1; and vf > 0. The Coulomb and static friction torque are Tcb and
Tsb , respectively, with Tcb = WobRbµcb , Tsb = WobRbµsb . When
x3 = 0, Tfb(x) = Tsb ·ueq(x) = ct x1 + kt x2 − (ct + cb)x3.

This system is very suitable for our purpose of abstraction
and will demonstrate our general methodology well. It exhibits
a rich collection of behaviours depending on the values of
(u,Wob), mainly:

• Positive velocity equilibrium: the bit velocity x3, con-
verges to a positive equilibrium value and x1 = x3.

• Permanent stuck bit: the bit stops rotating after some
period of time and never starts again.

• Stick-slip motion: the bit velocity oscillates between zero
and a positive velocity.

0 5 10 15 20 25 30 35 40 45 50
−1

0

1

2

3

4

5

6

Time (s)

V
el

oc
ity

 (
ra

d/
s)

 

 

Positive, at top
Positive, at bit
Stuck, at top
Stuck, at bit

0 5 10 15 20 25 30 35 40 45 50

0

1

2

3

4

5

6

7

Time (s)

V
el

oc
ity

 (
ra

d/
s)

 

 
Top
Bit

Fig. 1. Top: positive velocity and permanently stuck equilibrium
behaviours. Bottom: stick-slip motion. Dotted lines represent x1,
and solid lines represent x3.



Figure 1 shows these three behaviour patterns. We will return
to this system later to illustrate the theory presented.

3. FORMAL LANGUAGE TOOLS

3.1 Finite regular languages and their automata

We define here some theory of the regular languages and
automata that is used frequently in computer science. For more
details see Hopcroft et al. (2007).
Definition 3. (Finite-state automaton). A finite-state automaton
is a quintuple A = (Q,Σ,δ ,Q0,F), where:

• Q is a finite set of discrete states or locations.
• Σ is a finite set of input symbols or events.
• δ is a transition function such that δ : Q×Σ → Q.
• Q0 ⊆ Q is the set of initial states.
• F is a set of final or accepting states; F ⊂ Q. �

The languages that finite-state automata can accept as input
are the regular languages, which can be written as regular
expressions. These regular expressions are made up of symbols
from the extended alphabet Σ∪ε , where ε is the empty symbol,
along with three operators on these symbols:

(1) Union: the union of two strings of symbols is either one
string or the other. For two strings p and v, the union of p
and v is denoted p+ v.

(2) Concatenation: the concatenation of two strings is the first
string followed by the second. p concatenated with v is
written pv.

(3) Kleene closure: the Kleene closure of a string is that string
repeated as many times as we want, including none. The
Kleene closure of string p is p∗.

3.2 Infinite ω-regular languages and their automata

We look now at infinite languages and an automaton that can
accept them. This theory can be found in Thomas (1990). In
order to describe the infinite nature of strings, we need an
analogue of the Kleene closure operator to describe infinite
repetition. For a string p, the ω-closure of p is pω ; the string
p repeated an infinite number of times. For Σ a finite alphabet,
Σω is the set of infinite ω-regular words over Σ. For a finite
regular language L ⊆ Σ∗, the ω-closure of L is defined as

Lω = {α ∈ Σω |α = p0 p1 p2 . . . , with pi ∈ L for i ≥ 0}.
Definition 4. (ω-regular language). A language is called ω-
regular if it has the form

∪n
i=1 Ui.(Vi)

ω , where Ui and Vi are
regular languages, and n ∈N. That is, any string in an (infinite)
ω-regular language consists of a regular string from one lan-
guage followed by an infinite number of regular strings from
another language. In this sense, ω-regular languages are the
infinite extension of regular languages. �

The only difference between the finite state automaton and
automata that accept infinite languages is in the way that
the acceptance conditions are defined. That is, we change
the definition of “final states” so that infinite languages are
captured. In order to define the condition that will accept the
infinite languages, we need a piece of notation to describe
the set of locations we see infinitely often during a run of an
automaton.
Definition 5. (Infinity set). Let Q be the set of locations of a
finite-state automaton, and for an infinite string p, let run(p) =
q0q1 . . . be the sequence of locations that p causes the automa-
ton to pass through. Then the infinity set of p is defined as:
inf (p) := {q∈Q| there exist infinitely many n such that qn = q},

or, informally, the set of states that occur infinitely often during
a run of the automaton. �

We can now introduce the automaton representation that we
use in this work to accept infinite ω-regular languages. This
is the Muller automaton (Muller, 1963), which accepts an input
word if its infinity set is identically equal to one of the sets
in a defined family. We use this type of infinite language
automata rather than Büchi automata since the deteministic
Muller automata accept more languages.
Definition 6. (Muller automaton). A Muller automaton AM on
infinite strings is a quintuple (Q,Σ,δ ,Q0,F ) where

• Q is a finite set of discrete states or locations.
• Σ is the input alphabet.
• δ : Q×Σ → 2Q is the transition function.
• Q0 ⊆ Q is the set of initial states.
• F ⊆ 2Q is the family of sets of accepting (or recurrent)

states.
An infinite string p is accepted by this automaton if inf (p) = F
for some F ∈ F . �

3.3 Combining finite and infinite languages

In this paper both finite regular languages and infinite ω-regular
languages are represented in the same automaton, making use
of a definition due to Muller (1963). This definition combines
the regular language acceptance condition with a Muller ω-
regular language acceptance condition. The combination is
written as a formal sum of the two acceptance sets.
Definition 7. (Generalised Muller automaton). A generalised
Muller automaton on finite and infinite strings is a quintuple
AGM = (Q,Σ,δ ,Q0,F +F ) where Q, Σ, δ , Q0 are the same
as in Definition 6, with F ⊆ Q is the set of regular language
accepting states, and F ⊆ 2Q is the family of sets of states that
accept ω-regular strings by Muller acceptance. �

4. OVERVIEW OF THE ABSTRACTION METHOD

We assume from now on that we have a hybrid dynamical
system, which is given as a hybrid automaton H as defined
in Definition 1. Given this system, we will specify a discrete
automaton with associated languages which describe the pos-
sible system behaviour patterns. For this, we will specify a
generalised Muller automaton which has different acceptance
conditions for each possible behaviour of the system, so that we
can use these distinct acceptance conditions to accept or reject
behaviours.

A first step to specifying a generalised Muller automaton as an
abstraction of our system is to specify how we form the initial
abstraction of the system. We form a labelled transition system
(LTS), which is a finite-state automaton without any acceptance
conditions. Informally, this LTS keeps the structure of the
hybrid automaton, preserving locations and edges, but labelling
the edges with a letter from a labelling set Σ, which represents
the guard and reset conditions present on this transition.
Definition 8. (Initial abstraction). Consider a hybrid automaton
H = (Q,X ,F , Init,Dom,E,G,R). The initial abstraction of H
is a labelled transition system, LTS = (Q,Σ,δ ,Q0), where:

• Q is identical to the set of locations for H.
• Σ is an alphabet that represents the different possible

combinations of guard sets and reset maps in the hybrid
automaton. There is a mapping 7→, such that for each
e ∈ E, there is an a ∈ Σ such that G(e)×R(e,x) 7→ a.



• δ is a transition function which defines the edges in
the transition system; for qi,q j ∈ Q and a ∈ Σ, we have
δ (qi,a) = q j if and only if (qi,q j) = e ∈ E and G(e)×
R(e,x) 7→ a, with x ∈ X .

• Q0 is the set of possible starting locations, obtained by
projection of the set Init onto the set of discrete locations:
qi ∈ Q0 if and only if there exists a set Xi ⊆ X such that
qi ×Xi ⊆ Init. �

To specify different acceptance conditions for each behaviour
on this initial abstraction, we need to know what the possible
behaviour patterns are. This means that we find the equilib-
rium points, the periodic behaviours, and any other long term
behaviour patterns of the hybrid system. When we have these
behaviour patterns we work out which discrete locations of the
hybrid automaton they exist in: equilibrium points will exist in
one location, for example, whereas periodic behaviour could
traverse through many different locations, which would give an
infinitely switching behaviour in the hybrid automaton.

The way that a particular behaviour pattern moves through the
locations of the hybrid automaton can be directly translated to a
formal language by comparison with the abstracted LTS that we
obtain by using the method above. We then specify automaton
acceptance conditions, so that we can have an automaton which
is an abstraction of the structure of the discontinuities of the
system, but which also represents its behaviour patterns.

To specify the acceptance conditions for the (infinite) ω-regular
languages, we may need to make some minor changes to the
structure of the abstracted LTS so that we can accept only
the language we would like to accept. These changes can be
made in an automated way. We emphasise that it is only the
locations and transitions of the automaton that could change;
the labelling set Σ cannot change once the abstraction is made.
If we need to change the guards/resets to be able to distinguish
the behaviours, we must do this before we abstract the system
(see Section 7).
5. ABSTRACTION OF A CLASS OF HYBRID SYSTEMS

We now come to the specifics of how this method applies to
a class of hybrid systems: discontinuous dynamical systems
(DDS) with one surface of discontinuity, which can be mod-
elled by the hybrid automaton in Figure 2. Here we call this
automaton the DDS hybrid automaton, HDDS: it is a modi-
fied version of the one presented in Navarro-López and Carter
(2010) as the extended DDS hybrid automaton. Here, s(x)= 0 is
the surface of discontinuity, which we consider to be equivalent
to |s(x)| ≤ δ , in order to improve numerical stability issues.
Note that we do not put any explicit conditions on the initial
location here, since we are covering a general class of systems.

We highlight that the class of discontinuous systems consid-
ered is general, and includes systems with discontinuous state
derivatives and sliding motions. Furthermore, the methodology
and the hybrid model can be extended to systems with multi-
ple surfaces of discontinuity by means of the composition of
several DDS hybrid automata.

To be able to derive the languages which represent the be-
haviour of a large class of systems, we need to make some
assumptions. Firstly, we assume that there is at most one equi-
librium point in each location of the hybrid automaton, and
secondly, that any periodic behaviours go through more than
one location, hence will have infinite ω-regular languages to
represent them. These periodic behaviours must be distinct, in

Fig. 2. The DDS hybrid automaton, HDDS, modelling the class of
discontinuous dynamical systems with one surface of disconti-
nuity. Inside locations: top line is the location number and name,
second line is the equation for the continuous dynamics, and
third (and fourth) lines are the domain of that location. Transi-
tion markings: guard conditions near the departing location, and
resets near the arriving location.

Fig. 3. The initial abstraction of the DDS hybrid automaton.

the sense that no two periodic orbits travel through exactly the
same set of locations in the automaton. It is also assumed that
the hybrid automaton switches from one location to another a
finite number of times in any time interval, so that we do not
see Zeno behaviour. We consider how to lift some of these
restrictions in Section 7.

With these assumptions in mind, and taking into account some
practical considerations about the transition locations (q4 and
q5), we can list the possible behaviour patterns:

• There are a maximum of 3 equilibrium points, one for
each of the locations q1, q2, q3. This means that there are
at most three distinct behaviour patterns which converge
to an equilibrium point.

• We consider here only a subset of the possible periodic
orbits (infinitely switching behaviours). These possible
infinite behaviours are 1) to loop through stick, trans+,
slip+ and back to stick infinitely, or 2) through stick,
trans−, slip− and back to stick infinitely, or 3) to alternate
these two options so that we do the slip+ loop then the
slip− loop and repeat this infinitely.

The infinite behaviours that we can distinguish with these
restrictions are reasonably broad. They include stick-slip type
behaviour, such as occurs in the motivating example (bottom
of Figure 1), and also impacting behaviour, such as occurs in
the classical bouncing ball example. The alternating slip+ and
slip− behaviour can model behaviours which oscillate between
either side of the discontinuity, as well as behaviours which
oscillate, but get stuck in the discontinuity surface at points (a
generalisation of the example’s stick-slip behaviour).



Initial location
Equil. loc. q1 q2 q3 q4 q5
q1 ε +a[(b+ c)(ε +d)a]∗bd a[(b+ c)(ε +d)a]∗bd [(b+ c)(ε +d)a]∗bd (ε +d)a[(b+ c)(ε +d)a]∗bd d +(ε +d)a[(b+ c)(ε +d)a]∗bd
q2 a[(b+ c)(ε +d)a]∗cd ε +a[(b+ c)(ε +d)a]∗cd [(b+ c)(ε +d)a]∗cd d +(ε +d)a[(b+ c)(ε +d)a]∗cd (ε +d)a[(b+ c)(ε +d)a]∗cd
q3 a[(b+ c)(ε +d)a]∗ a[(b+ c)(ε +d)a]∗ [(b+ c)(ε +d)a]∗ (ε +d)a[(b+ c)(ε +d)a]∗ (ε +d)a[(b+ c)(ε +d)a]∗

Inf. beh.
slip+ a[(b+ c)(ε +d)a]∗(bda)ω a[(b+ c)(ε +d)a]∗(bda)ω [(b+ c)(ε +d)a]∗(bda)ω (ε +d)a[(b+ c)(ε +d)a]∗(bda)ω (ε +d)a[(b+ c)(ε +d)a]∗(bda)ω

slip− a[(b+ c)(ε +d)a]∗(cda)ω a[(b+ c)(ε +d)a]∗(cda)ω [(b+ c)(ε +d)a]∗(cda)ω (ε +d)a[(b+ c)(ε +d)a]∗(cda)ω (ε +d)a[(b+ c)(ε +d)a]∗(cda)ω

Alternating a[(b+ c)(ε +d)a]∗(bdacda)ω a[(b+ c)(ε +d)a]∗(bdacda)ω [(b+ c)(ε +d)a]∗(bdacda)ω (ε +d)a[(b+ c)(ε +d)a]∗(bdacda)ω (ε +d)a[(b+ c)(ε +d)a]∗(bdacda)ω

Table 1. Regular languages representing the behaviour patterns that could be present in HDDS.

Fig. 4. Muller automaton which can accept the three languages
associated to the equilibrium behaviours, as well as the three
infinite languages in Table 1, associated to periodic behaviours.

Starting from the hybrid automaton, we can make the initial
abstraction of the model to a labelled transition system. This
initial abstraction is shown pictorially in Figure 3. Note that
each different guard condition and reset map combination has
been given a different letter in an alphabet of four symbols,
Σ = {a,b,c,d}:

a ⇔ Gδ
0 , with reset ≡ {x ∈ X : s(x) := 0};

b ⇔ Gδ
+, with reset Rδ

+; c ⇔ Gδ
−, with reset Rδ

−;
d ⇔ (G+ with reset R+) or (G− with reset R−).

Note that the assignment of the same letter to the G+ and G−
transitions is a modelling decision, taken because the structure
of the system means this still gives us enough information to
distinguish the behaviours.

Using this initial abstraction we can derive the languages which
are associated with each of the possible behaviour patterns.
For instance, if the initial location is q3, then the string “[(b+
c)(ε + d)a]∗bd” represents the behaviour which converges to
the equilibrium point in location q1. We give the languages for
the various behaviours in Table 1, derived with respect to each
of the possibilities for the initial locations.

Given these possible behaviour patterns, we now find a gen-
eralised Muller automaton which can accept the infinite and
finite languages given in Table 1. The result is the automaton
in Figure 4. If the initial condition in the initial abstraction con-
tained the location qi, then in this revised abstraction the initial
condition contains the set of locations with related numbers:
{qi}, {qi,qi1}, or {qi,qi1,qi2} (depending on the value of i).

We specify the acceptance conditions on the automaton by:

• q1 equilibrium. Acceptance location F = {q1}.
• q2 equilibrium. Acceptance location F = {q2}.

• q3 equilibrium. Acceptance set F = {q3,q31,q32}.
• slip+ periodic behaviour. Muller acceptance set F =
{q1,q31,q51}.

• slip− periodic behaviour. Muller acceptance set F =
{q2,q32,q41}.

• Alternating periodic behaviour. Muller acceptance set
F = {q1,q31,q4,q2,q32,q5}.

The important point about this automaton with these acceptance
conditions is that, theoretically, we can run the automaton to
check what the behaviour of the system is, and check whether
it is a good or a bad behaviour, by selecting which of the accep-
tance conditions correspond to “good” behaviour patterns, and
which correspond to “bad”.

6. CASE STUDY

Consider the system presented in Section 2.2, which falls into
the class we considered in Section 5. Here, s(x) = x3, where x3
is the velocity of the bit, and the resets Rδ

+, Rδ
−, R+, R− are all

identity maps. The guards are defined by

Gδ
0 = (|x3| ≤ δ )∧ (|ueq| ≤ 1),

Gδ
+ = (|x3| ≤ δ )∧ (ueq > 1),

Gδ
− = (|x3| ≤ δ )∧ (ueq <−1),

G+ = x3 > δ ,
G− = x3 <−δ .

The dynamics within the locations are given by equations 1 and
2, with the friction torque defined by

Tfb =


fb(x3)sign(x3) in locations q1 and q2,

Tsb ·ueq(x) in location q3,

Tsb in locations q4 and q5.

In Section 2.2 we said that this system has three behaviour pat-
terns, which are positive velocity on the bit, permanently stuck
bit, and positive stick-slip motion. These equate, respectively,
to the equilibrium in location q1, the equilibrium in location
q3, and the periodic behaviour that infinitely repeats the loop
q3 → q5 → q1 → q3 . . ..

In this drillstring model, we usually start in location q3. For
this initial location, we can therefore find the languages which
represent the three behaviour patterns present in the system by
looking at Table 1:

• Positive velocity equilibrium (q1): [(b+ c)(ε +d)a]∗bd.
• Stuck bit equilibrium (q3): [(b+ c)(ε +d)a]∗.
• Positive stick-slip: [(b+ c)(ε +d)a]∗(bda)ω .

7. EXTENSIONS FOR MORE GENERAL BEHAVIOURS

In this paper, we have considered a general class of hybrid
systems, which are the discontinuous dynamical systems with
one surface of discontinuity. We have also considered some
languages to describe the behaviour of such systems. The



languages we have considered cover a wide range of possible
behaviour patterns, but there are many more possible behaviour
patterns that can occur if we remove some of the assumptions
we made. Hence, in this section, we will discuss the main issues
that arise when extending this theory to more behaviours within
the class of DDS with one surface of discontinuity.

The major assumption in Section 5 was to say that two (or
more) behaviours cannot occur in the same location, or in the
same group of locations. This is a fairly restrictive condition,
since even in smooth nonlinear dynamical systems we can have
more than one equilibrium point, for instance. However, this
problem can be overcome in the following manner.

If we have a DDS which can be modelled by the hybrid
automaton in Figure 2, but which has some behaviours which
occur in the same location or group of locations, we need
to make sure they will be distinguished when we make the
abstraction. In order to do this, splitting a location into some
new locations by splitting its domain may be appropriate. This
splitting should be done so that each behaviour has it’s own
location (or group of locations) which describe its long-term
behaviour in the hybrid automaton.

There are four different types of interactions between equilibria
and periodic orbits that we identify which must be separated
in order for the initial abstraction of Definition 8 to be able to
distinguish them with different languages.

(1) Multiple equilibria exist within one location. This is a
problem because they will all have the same finite regular
language, so they cannot be distinguished by automaton
acceptance conditions.

(2) An equilibrium and a periodic behaviour exist within one
location (for the same reason as above).

(3) Two (or more) periodic behaviours occur within one loca-
tion (for the same reason again).

(4) Two (or more) periodic behaviours occur through exactly
the same group of locations. The problem here is that the
acceptance condition for these two behaviours will be to
infinitely travel through the same group of states in the
automaton, and so they will be indistinguishable.

For the multiple equilibria problem, if we have k equilibria,
we can separate the languages they will produce by splitting
the domain of the location into k parts, with one equilibrium
point in each part of the domain. These k new domains then
form the basis for k new locations, replacing the one we started
with. This splitting can be achieved by use of algorithms for
separation of points in Euclidean space (for example, Boland
and Urrutia (1995)).

The transitions between these new locations will be only to
other locations which have a neighbouring domain, with the
guard conditions defined by the domain they will be entering,
with no resets (since it is within a continuous section of the
dynamics). We can also make calculations for which locations
the transitions coming in or going out of the group we have just
created will go to, so that we only have as many transitions as
are necessary.

In the other three cases, we can apply similar techniques to
separate the languages of the behaviours. We advocate ap-
proaching these problems in the order specified above, since
they increase in computational difficulty as we go down the
list, and it may be that some earlier calculations actually sep-

arate some behaviours further down, and this makes the more
computationally expensive calculations unnecessary.

With the new DDS hybrid automaton created through this
process, we will be able to form its initial abstraction, so that
we can find distinct languages which represent the behaviours
in the DDS. The languages we find will be different depending
on what behaviours we have to separate in the initial system,
but the process can be automated, minimising human effort.

REFERENCES

Boland, R.P. and Urrutia, J. (1995). Separating collections of
points in Euclidean spaces. Information Processing Letters,
53, 177–183.

Clarke, E., Fehnker, A., Han, Z., Krogh, B.H., Stursberg, O.,
and Theobald, M. (2003). Verification of hybrid systems
based on counterexample-guided abstraction refinement. In
Proceedings of TACAS 2003, volume 2619 of LNCS, 192–
207.

Girard, A., Julius, A.A., and Pappas, G.J. (2008). Approximate
simulation relations for hybrid systems. Discrete Event
Dynamic Systems, 18(2), 163–179.

Henzinger, T.A., Kopke, P.W., Puri, A., and Varaiya, P. (1998).
What’s decidable about hybrid automata? Journal of Com-
puter and System Sciences, 57, 94–124.

Hopcroft, J.E., Motwani, R., and Ullman, J.D. (2007). Intro-
duction to Automata Theory, Languages, and Computation.
Addison Wesley, 3rd edition.

Johansson, K.H., Egerstedt, M., Lygeros, J., and Sastry, S.
(1999). On the regularization of Zeno hybrid automata.
Systems & Control Letters, 38(3), 141–150.

Klaedtke, F., Ratschan, S., and She, Z. (2007). Language-
based abstraction refinement for hybrid system verification.
In Verification, Model Checking, and Abstract Interpretation
(VMCAI 2007), volume 4349 of LNCS, 151–166.

Lygeros, J., Johansson, K.H., Simic, S.N., and Sastry, S.S.
(2003). Dynamical properties of hybrid automata. IEEE
Transactions on Automatic Control, 48(1), 2–17.

Lygeros, J., Tomlin, C., and Sastry, S. (1999). Controllers for
reachability specifications for hybrid systems. Automatica,
35, 349–370.

Muller, D.E. (1963). Infinite sequences and finite machines. In
Proceedings of the Fourth Annual Symposium on Switching
Circuit Theory and Logical Design, 3–16.

Navarro-López, E.M. (2009). Hybrid modelling of a discon-
tinuous dynamical system including switching control. In
Proceedings of CHAOS09, London, UK.

Navarro-López, E.M. and Carter, R. (2010). Hybrid automata:
An insight into the discrete abstraction of discontinuous
systems. International Journal of Systems Science. In press.

Ratschan, S. and She, Z. (2007). Safety verification of hybrid
systems by constraint propagation-based abstraction refine-
ment. ACM Transactions on Embedded Computing Systems,
6(1), 573–589.

Tabuada, P. (2009). Verification and Control of Hybrid Systems:
A Symbolic Approach. Springer.

Thomas, W. (1990). Automata on Infinite Objects, volume B of
Handbook of Theoretical Computer Science, Elsevier.

Tripakis, S. and Yovine, S. (2001). Analysis of timed systems
using time-abstracting bisimulations. Formal Methods in
System Design, 18, 25–68.

Weiss, G. and Alur, R. (2007). Automata based interfaces for
control and scheduling. In Proceedings of Hybrid Systems:
Computation and Control, volume 4416 of LNCS, 601–613.


