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Abstract – A novel method for the detection of cross-correlation clusters in multivariate time
series is suggested. It is based on linear combinations of the eigenvectors corresponding to the
largest eigenvalues of the equal-time cross-correlation matrix. The linear combinations are found
in a systematic way by maximizing an appropriate distance measure. The performance of the
algorithm is evaluated with a flexible time-series–based test framework for cluster algorithms.
Attribution errors are investigated quantitatively in model data and a comparison with three
alternative approaches is made. As the algorithm is suitable for unsupervised online application
we demonstrate its time-resolved use in the example of cluster detection in time series from human
electroencephalogram.

Copyright c© EPLA, 2007

Introduction . – One of the core problems in multi-
variate time series analysis is the identification and
classification of clusters, i.e. groups of time series that
carry similar information with respect to a given similarity
measure. In general, the problem of clustering data has a
long history and produced a variety of different solutions,
see, e.g., [1,2]. Still a reliable, computationally simple
and parameter-free approach would find a wide range of
applications for the analysis of physical, social, financial
or medical systems. In the last decade various statistical
physics methods ranging from Potts spin models [3,4] to
maximum likelihood [5] or minimization of a cost function
by simple rearrangement of the channel labels [6] have
been developed. However, the multitude of the latter algo-
rithms either suffers from an elevated computational effort
or requires the definition of some kind of threshold para-
meter (occasionally fixed by the visual inspection of some
statistics). In addition for nonstationary data a continuous
adjustment of the parameters may become necessary.
In this letter we propose a method for hard partitional

clustering of multivariate time series, where both, number
and size of the clusters are determined in a self-contained
manner, i.e. without (artificial) predefinition of any

(a)E-mail: crummel@web.de

(threshold-)parameter. Due to a much smaller parameter
space used for optimization the algorithm is computa-
tionally faster than other statistical physics approaches
to clustering. We restrict our discussion to the example
of the equal-time cross-correlation matrix as similarity
measure here and discuss possible generalizations [7] in
the conclusion. The equal-time cross-correlation matrix

is constructed by the prescription C= 1/T X̃X̃
t
, where

the M ×T data matrix X̃ contains the M signal channels
measured on T time steps after normalization to zero mean
and unit variance. For any finite T the matrix elements Cij
have the deficiency that the genuine system-specific corre-
lations are contaminated by spurious correlations of size
∼ 1/
√
T . In the literature such correlations are often

denoted as “random correlations”, see, e.g., [8]. Conse-
quently cluster detection algorithms that operate on the
basis of the bivariate Cij run the risk of mis-attributions
of channels to clusters due to incidentally large matrix
elements. A step towards the solution of this problem
consists in using genuinely multivariate measures via diag-
onalization Cv= λv of the C-matrix, see, e.g., [8–11].
It has been found that genuine correlations manifest
themselves via nonrandom level repulsion [12] between
sub-groups of eigenvalues (ordered according to λl � λl−1
in the following).
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Fig. 1: Comparison of the squared components of the four
largest EV {vl} of the C-matrix with those of their linear
combinations {wl}. The channels that contribute to the K = 4
clusters of the model system are marked with full symbols
(•, �, �, �) and the uncorrelated ones with open circles (◦).

Using a block diagonal model for the C-matrix it can
easily be shown analytically that for systems contain-
ing K clusters with mk > 1 (k= 1, . . . ,K) contributing
channels (and sufficiently small inter-cluster correlations)
for each cluster one eigenvalue is increased with respect
to the uncorrelated situation and mk − 1 eigenvalues are
decreased. Note that different from some other cluster-
ing techniques in the present context uncorrelated chan-
nels are not regarded as clusters of size mk = 1 but rather
as unclustered channels. In this simplified situation the
cluster structure can directly be deduced from the eigen-
vectors (EV) of the K largest eigenvalues (henceforth
abbreviated as “largest EV”), whose nonzero components
are restricted to the cluster sub-spaces where they have
a flat distribution. In general, in the sense of principal
component analysis (PCA) these EV point to the direc-
tions of maximal variance in the M -dimensional space,
see, e.g., [13].
Indeed, using C-matrices constructed from stock return

time series, in [8,11] financial market sectors could be
identified by looking for large components a2il of the K

′

largest EV {vl}. A refined algorithm that suppresses
wrong attributions due to incidentally large components
a2il was introduced in [14]. However, in many practical
situations a clear separation is difficult due to the presence
of spurious and inter-cluster correlations, which introduce
a mixing of the EV components (see, e.g., [6]). For

illustration we show in fig. 1a the example of a numerical
test system (see below) where K = 4 groups of size m1 =
m3 = 3, m2 = 4 and m4 = 5 are correlated within a total of
M = 20 time series. The correlation matrix is constructed
from a noisy time series of T = 1024 data points length.
The problem is that all channels corresponding to one
of the clusters contribute to the largest EV v20 with a
comparable strength. In the context of financial time series
this has been called the “market wide effect” [8,11]. Note
that we obtain this behavior even though the separation
of λ20 = 1.54 from the next largest eigenvectors λ19 = 1.24
and λ18 = 1.21 is much less pronounced than for typical
financial time series where the separation is often one
order of magnitude. Based on v20 a clear distinction is
only possible between the total set of clustered channels
and the unclustered ones whose squared components are
smaller at least by a factor of 5 in the given example. Also
the next largest EV v19 . . .v17 represent mixtures of the
four clusters.
In [15,16] participation indices (PI) pil = λl a

2
il were

introduced as a step towards the solution of this kind of
problems. The PI quantify the strength of a cluster by its
eigenvalue λl > 1 and the contribution of the channels by
the components of the corresponding EV. Every channel
“i” is attributed to the cluster “k” with the maximal PI:
pik =maxl pil. Finally only clusters corresponding to the
K ′ largest eigenvalues are accepted, where K ′ is generally
chosen smaller than the number of eigenvalues larger
than unity. This concept works well in situations with a
pronounced cluster structure and a strong repulsion of the
K ′ largest eigenvalues from the “bulk” that is affected
by spurious correlations only. Furthermore, it provides
a conceptionally simple algorithm which is applicable
in automated manner and real time. However, it tends
to find “pseudo-clusters” [16] from channels that have
incidentally large components in low EV, especially when
K ′ is not fixed adequately in advance. In addition it was
found in [16] that the PI are easily misled in situations of
equal cluster size and large inter-cluster correlations.

Cluster participation vectors. – The basic idea of
the approach presented in this letter is to find a set
of orthonormal linear combinations {wl} —called cluster
participation vectors (CPV) in the sequel— of theK ′ <M
largest EV {vl} that have dominant entries exclusively for
those components which correspond to the cluster “l”. At
the same time the CPV of clusters “l” and “n” should
have a minimum of common components. Given K ′ the
CPV can be found by maximizing the distance measure

Dln =
M
∑

i=1

|b2il− b2in|, (1)

where the bil are the components of vector wl. It is
easily checked that Dln satisfies all the requirements of
a metric (symmetry, positive semi-definiteness and the
triangle inequality). Dln is equal to zero for vectors where
all components are identical to each other up to a sign and
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assumes its maximum value Dln = 2 when the normalized
wl and wn have no common components.
Starting from the full set {vl} of EV of the C-matrix

the CPV are obtained by a rotation of the K ′ <M
largest EV about the generalized Euler angles ακ,
κ= 1 . . .K ′(K ′− 1)/2 such that the sum ∆ of the mutual
distances (1) between the {wl} is maximized. An explicit
recipe for the construction of the rotation matrix needed
in K ′ dimensions is given in [17]. Due to the symmetry
of the problem under reflection of the axes it suffices
to use angles in the interval 0� ακ � π/2 in our case.
In order to obtain the global maximum of ∆(ακ) in the
(K ′(K ′− 1)/2)-dimensional space of the ακ we apply the
great deluge algorithm (GDA) of [18] which is compu-
tationally fast and gets rarely stuck in local maxima of
multidimensional landscapes.
An example for the CPV {wl} is illustrated in fig. 1b:

Each rotated vector corresponds to one cluster and a
clear distinction between clustering and uninvolved data
channels becomes possible. On the average the mutual
distances (1) have increased about 50% by the rotation.
It still remains to answer the question of how the number
K ′ <M of largest EV used for the described optimization
can be determined. In the spirit of the discussion in the
introduction it is given by the number of eigenvalues
that are repelled from the bulk to larger values. Let us
however mention, that a nonoptimal choice of K ′ >K
does not affect the results dramatically. Rather the
algorithm focuses automatically on the K largest EV
that correspond to the K clusters. Qualitatively the
CPV {wk} (where k=M −K, . . . ,M −K ′+1) have a
structure very similar to the corresponding EV {vk}
and mutual distances (1) noticeably below the maximum
value 2 [7].

Automated attribution to clusters. – As we are
aiming at a time-resolved application of the algorithm the
channels have to be attributed to clusters automatically,
once the CPV are found. For the separation of large from
small components of wl it is suitable to first arrange the
b2il in decreasing order. Two measures are candidates for
a good separation algorithm: the largest ratio and the
largest difference between neighboring ordered b2il. Either
option alone fails in certain situations. However, using the
test framework introduced below the product of both was
found to develop a pronounced peak at the correct position
in almost all cases. Consequently it allows one to deduce
a robust threshold in a self-contained manner and can
therefore be used for automated attribution. In rare cases
this procedure assigns a channel “i” to several clusters “l”.
To establish uniqueness in such cases the cluster with the
largest b2il is selected.

A test framework. – In order to be able to properly
evaluate and compare the performance of cluster detection
algorithms we set up a time-series–based test framework:
M time series of T data points length are sampled
from independent white noise. The degree of correlations

between and within sub-groups of time series is controlled
via common noise components of adjustable strength. To
model a system that contains K clusters the following
prescription is used:

Xit =

⎛

⎝1−
∑

k

ρik −
∑

(kk′)

σi(kk′)

⎞

⎠ ηit

+
∑

k

ρik ξkt+
∑

(kk′)

σi(kk′) ζ(kk′)t. (2)

The strength of the “intra-cluster correlations” is
controlled via the parameters ρik which have a nonzero
value only if channel “i” belongs to cluster “k”. Simi-
larly the parameters σi(kk′) control the strength of the
“inter-cluster correlations” and are finite only if channel
“i” belongs to one of the clusters k or k′ �= k. Finally
ηit, ξkt and ζ(kk′)t denote the individual and common
noise components that are drawn independently of a
Gaussian distribution with zero mean and unit variance
on every time step. In order to have a well-defined cluster
structure in the sense that intra-cluster correlations must
be stronger than inter-cluster correlations, the conditions
σi(kk′) �max (ρik, ρik′) must be satisfied. Moreover, in
order to be able to switch between completely correlated
and completely uncorrelated channels the value of the
bracket in (2) must fall inside the interval [0,1] for all
channels “i”.
For a general situation of K clusters the attribut-

ion errors may be sorted into the following four cate-
gories: I) channels that contribute to a given cluster are
not detected, II) channels are attributed to the wrong
existing cluster, III) uncorrelated channels are attributed
to an existing cluster, and IV) false clusters (“pseudo-
clusters” [16]) are found within the uncorrelated channels.
The attribution errors of either category can be measured
by the average ratio of mis-attributions overN realizations
of (2) with the same parameters.

Statistical performance evaluation. – In fig. 2 we
compare the performance of three alternative approaches
to the CPV algorithm. First, the method for automated
attribution of channels to clusters is used on the basis of
the largest EV instead of the CPV. This can be seen as
an unsupervised version of the approach used in [8,11].
Second, we compare to the PI algorithm (including the
trimming procedure of [15,16] but without the additional
concept of bit strings that was introduced in [16] to
filter out the most frequent cluster patterns). Third, we
use the standard k-means algorithm for hard partitional
clustering of data [1,2] with equal-time cross-correlation
as proximity measure. As this algorithm is known to
depend on the initial choice of the cluster centroids
we checked the performance of the three possibilities
beforehand: i) heuristic linear combination of K ′ disjoint
groups of time series “i” on the basis of large C-matrix
elements, ii) use of K ′ randomly chosen time series
and iii) use of K ′ randomly sampled time series. We used
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Fig. 2: Percentage of total mis-attributions in the test frame-
work for N = 100 repetitions. Shown is the equally weighted
average over all error categories (I to IV). Left column: system
with K = 2 clusters of size m1 = 8, m2 = 4 and intra-cluster
correlation given by ρ1 = 0.5ρ2. The K

′ = 3 largest EV are
taken into account. Right column: system with K = 4 clus-
ters of size m1 = 2, m2 = 3, m3 = 4, m4 = 6 and equal intra-
cluster correlations resulting from ρk ≡ ρ= 0.4. σ1 controls the
inter-cluster correlations between the first and last two clusters,
whereas σ2 couples the clusters 2 and 3. The K

′ = 5 largest EV
are taken into account.

the best performing heuristic initial centroids i) in our
comparison.
First we look at a two-cluster situation within M = 20

channels and sample T = 1024 data points form (2).
The cluster sizes m1 = 8 and m2 = 4 are kept fixed with
intra-cluster correlations according to ρ1 = 0.5ρ2. Eight
channels do not belong to a cluster. In figs. 2a to d the
percentage of total mis-attributions is shown as a function
of ρ1 and the allowed σ. For all methods the same fixed
number K ′ = 3>K of large EV is taken into account in
order to be able i) to compare the methods on the same
footing, and ii) to quantify also the erroneously obtained
clusters (error category IV). That is, in the present exam-
ple we do not take advantage of the automated detection
of the number of clusters of the CPV method. The
limitation of K ′ to a relatively small value K ′ =K +1 is
in favor of the PI because there the number of wrongly

obtained clusters increases rapidly with K ′ >K, whereas
the CPV are less sensitive to the size of K ′ as mentioned
above. For weak total correlations (i.e. small ρ1 and σ) an
increased number of errors is found for all algorithms and
the cluster structure is not determined correctly. However,
for large σ, i.e. large inter-cluster correlations, the CPV
(fig. 2a) generate a smaller number of errors than the
remaining algorithms. As compared to EV (fig. 2b) and PI
(fig. 2c) the main reason is that due to the maximization
of ∆(αk) the CPV algorithm commits a greatly reduced
amount of errors in category II, compare with fig. 1 and
see [7] for a detailed examination of the error categories.
Figure 2d displays the advantage of eigenvector-based
clustering over our implementation of the simple k-means
algorithm which commits a considerable amount of errors
even for large ρ1 and small σ. The reason is twofold: First,
the performance of k-means depends on the initial guess
of the cluster centroids. Second, the algorithm operates
directly on the bivariate elements of the C-matrix.
However, it is known that the largest eigenvalues and
corresponding eigenvectors made use of by the remaining
algorithms are much less contaminated by noise and
spurious correlations [8–12,14].
In figs. 2e to h we study K = 4 clusters of size m1 = 2,

m2 = 3, m3 = 4 and m4 = 6 and equal intra-cluster
coupling parameters ρk ≡ ρ= 0.4 withinM = 20 channels.
The inter-cluster coupling parameters σ1 couple the first
with the second and the third with the fourth cluster,
whereas σ2 couples the second and the third cluster. Five
channels do not belong to any of the clusters. Varying
both parameters in the allowed region, again, the CPV
algorithm (fig. 2e) performs clearly best. A direct oper-
ation on the largest EV instead of the CPV (fig. 2f)
cannot separate the clusters correctly if σ1 and σ2 become
large and comparable. As previously found in [16] the PI
(fig. 2g) have problems if inter-cluster correlations become
large also here. The k-means algorithm (fig. 2h) turns
out to have problems mainly in separating the smallest
clusters from larger ones they are coupled to.
The error of the CPV that remains for large inter-

cluster correlations in figs. 2a and e stems exclusively from
“pseudo-clusters” (error category IV). We have checked
that it vanishes if K ′ =K is chosen correctly. Thus, if we
allow the CPV algorithm to find the number of clusters
automatically, almost no pseudo-clusters are detected. We
have also tested other situations, obtaining very similar
results.

Time-dependent application to human EEG. –

In real-world applications time series are often intrinsically
nonstationary and it is not possible to create an ensemble
of size N under stationary conditions that is sufficiently
large to allow for error statistics as in the previous
examples. In a running window application of cluster
detection algorithms in such cases reliable results must be
delivered on every time step. In order to test whether this
requirement is met by the CPV we have produced artificial
time series with a well-defined but rapidly changing
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Fig. 3: (Color online) Application of the CPV algorithm to an EEG segment with two absence seizures. Electrophysiological
onset and ending of the seizures are marked by thick vertical lines.

time-dependent correlation structure [7]. We found a
convincing performance of the CPV in a wide range
of window size T . Due to the reduction of spurious
correlations between all channels the results become more
significant for larger T . This improvement, however, has to
be bought at the expense of a reduced temporal resolution.
Recently the PI have been applied to time-dependent

cluster analysis of long-term recordings of intracranial
electroencephalograms (EEG) of epilepsy patients [16].
Here we illustrate the use of the CPV algorithm by
showing an application of the CPV to a highly nonsta-
tionary scalp EEG containing two primary generalized
absence seizures, which start simultaneously in both hemi-
spheres and show the 3/s spike-and-wave activity typical
for this kind of seizures. The standard surface EEG with
M = 19 electrodes in Hjorth reference was recorded with
sampling rate 256/s. The numberK ′ of largest EV is found
dynamically: An appropriately chosen reference interval
without seizure activity (here: t= 110–140 s) is taken to
define the 95% confidence interval for each eigenvalue.
Using the CPV algorithm the cluster analysis is then made
on the basis of those K ′ <M eigenvalues that climb above
the upper boundary of this interval. Due to the reduced
amount of generalized Euler angles, this speeds up the
search for the absolute maximum of ∆ considerably.

In fig. 3 the dynamical evolution of the cluster structure
is shown. For the construction of the C-matrix window
lengths in the range T = 256–1024 data points (1 to 4 s)
were tested but no qualitative changes of the results were
found. The shown example corresponds to T = 512 (2 s)
and a displacement of the running window over the whole
set by 32 data points (1/8 s). Channels that contribute to
different clusters are marked by different colors.
The first observation from fig. 3 is that in the seizure-

free intervals, clusters are detected only rarely and are
not stable over time (e.g. between seconds 50 and 175).
However, the CPV provide a clear and stable pattern
of clusters during the seizures. In both cases, two well-
pronounced clusters are formed to which the electrodes
Fp1, Fp2, F3, F4, T3, T4, and C3, C4, P3, P4, T5, T6, Fz,
Pz, respectively, contribute most. This cluster structure
is symmetric and very similar in both seizures. Analogous
results were found for other data sets from different
patients containing absence seizures. In addition, it is
remarkable that in both cases one large correlation cluster
with involvement of almost all channels can be observed
a few seconds before the electrophysiological seizure
onset as defined by the method of [19] (black vertical lines
in fig. 3). We have checked that this global correlation
cluster before seizure onset is not caused by EEG artifacts.
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This global cluster then breaks up with the beginning of
the seizure. For a short period of time after the initiation
of the seizures a third cluster is detected (near seconds 23
and 190). With the disappearance of the third cluster the
stable two-cluster pattern described above is manifested.

Discussion. – In the present letter we suggested a
conceptionally simple cluster detection algorithm that
is based on the (multivariate) eigenvectors of matrices
constructed from (bivariate) similarity measures for time
series. As compared to other statistical physics approaches
to clustering [3–6] the method is computationally fast
due to the comparably small dimension of the spaces
where maximization is carried out. As compared to cluster
analysis based on the largest EV directly [8,11,15,16]
the construction of CPV has the advantage of better
separation of clusters in the presence of considerable inter-
cluster correlations.
Although we restricted our presentation to the linear

equal-time cross-correlation matrix the CPV algorithm
is not limited to this measure. It can rather be applied
directly to matrices constructed from symmetric and
normalizable nonlinear similarity measures like, e.g.,
mean phase coherence [15,16,20,21] or mutual informa-
tion [22,23]. In many applications one is interested in the
detection of clusters of time series that are correlated at
finite time delays. Using the equal-time cross-correlation
matrix as an input this is impossible. To the best of our
knowledge a genuinely multivariate generalization of the
bivariate cross-correlation function does not yet exist
for finite time delays. However, mean phase coherence is
not sensitive to delays and can therefore be used in such
situations.
We checked the performance of the method on artificial

data with a well-defined correlation structure. The
framework (2) used for these numerical tests turns out
useful for a quantitative analysis of the dependence
of cluster detection algorithms on parameters like the
strength of intra- and inter-cluster correlations or for
comparison of different methods. Furthermore we could
show that the CPV provide a clear picture of the cluster
formation within nonstationary experimental data by
using a running window approach. These observations
recommend the CPV as a valuable tool for the study of a
wide range of nonstationary complex systems. Finally we
would like to comment that the generalized Euler angles
αk can be used to reveal information about the strength
of the inter-cluster correlations [7].
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