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𝑈𝑚 > 𝑈𝑚+1

The generalised  t-V  model [2]  of  fermions
distributed on a chain of 𝐿 sites:

 𝐻 = −𝑡 

𝑖=1

𝐿

 𝑐𝑖
†  𝑐𝑖+1 + h.c. + 

𝑖=1

𝐿

 

𝑚=1

𝑝

𝑈𝑚  𝑛𝑖  𝑛𝑖+𝑚

Kinetic energy, i.e. the
hopping term, is much

smaller than the potential:
𝑡 ≪ 𝑈𝑚.

Potential energy makes sure the
particles are not closer than 𝑝
sites: otherwise energy cost is
𝑈𝑚. Example for 𝑝 = 2:

𝐸𝑝𝑜𝑡 = 0

𝐸𝑝𝑜𝑡 = 𝑈2

𝐸𝑝𝑜𝑡 = 𝑈1

Solved only in the first
order perturbation [1,2].
Using strong coupling
expansion, we will try
to approximate the
analytical solutions to
a very high order.

Spacing: 𝑝 > 1
Non-integrable

Spacing: 𝑝 = 1
Integrable

Solved  by  using 
Bethe  ansatz
approach
[3].

The method
starts similarly to the

perturbation theory. Assume:

where 𝜆 ≪ 1 , so we can treat  𝑉 as perturbation.
Eigenstates 𝛼𝑛 of  𝐻0 are known. Now, we want to create

a new truncated basis of  𝐻 using 𝛼𝑛 .

All the information about the desired states (e.g. ground states)
will be encoded in the truncated  𝐻 in the new basis [4,5].

I
First states

II
Act with  𝑉

III
Separate

IV
Orthonormalise

V
Repeat

• Include in your basis the desired subspace of
unperturbed states that you want to
approximate.

• They are of step “0” in SCE.
• Example: Ising state ↓↑↑↓↑↓ .

• Act with  𝑉 on states from previous SCE step (“n”),
creating set of states 𝑆.

• States in 𝑆 are linear combinations of the unperturbed
Hamiltonian eigenstates.

• Example: ↑↓↑↓↑↓ + ↓↑↓↑↑↓ + ↓↑↑↑↓↓ + ↓↑↑↓↓↑ .

• Separate every state in 𝑆 according to their
unperturbed energy.

• Example: ↑↓↑↓↑↓

↓↑↓↑↑↓ + ↓↑↑↑↓↓ + ↓↑↑↓↓↑

• Orthonormalise the states in set 𝑆, so they would be
orthonormal to each other and the basis.

• Include them in the basis.
• They are of step “n+1” in SCE.
• Example: The basis is now: ↓↑↑↓↑↓ , ↑↓↑↓↑↓ ,

 1 3 ↓↑↓↑↑↓ + ↓↑↑↑↓↓ + ↓↑↑↓↓↑

• Repeat from II until you achieve desired SCE step.

With every SCE step we are
increasing the accuracy by two orders in 𝜆.

 𝐻 =  𝐻0 + 𝜆  𝑉

Depending  on  fermion  density  𝑄 = 𝑁/𝐿
we have different phases:

Using SCE for near-critical densities, the Hamiltonian is small 
enough to calculate approximate solution to a very high precision.

Example: 𝑝 = 3, 𝑄 = 1/4, step “2” in SCE:

 𝐻 =

⋅ −  𝐿 2 𝑡 ⋅ ⋅ ⋅

−  𝐿 2 𝑡 𝑈3 − 3𝑡 −2𝑡 − 𝐿 − 10𝑡

⋅ − 3𝑡 𝑈2 ⋅ ⋅
⋅ −2𝑡 ⋅ 𝑈3 ⋅

⋅ − 𝐿 − 10𝑡 ⋅ ⋅ 2𝑈3

This simple 5x5 Hamiltonian gives the ground
state energy of the system up to order

 𝑡 𝑈3
5.

Critical density 
𝑄𝐶 =

𝑞

𝑝+1
; 𝑞 = 1,… , 𝑝

• Mott insulator
• Simple unperturbed 

ground state

Away from
critical density

• Luttinger liquid
• Highly degenerate 

ground state of  𝐻0.

Below
we present results

for a system with  𝑝 = 3.  Similar
results have been obtained for 𝑝 = 1 (integrable)

and 𝑝 = 2 systems. 𝑄𝐶 = 1/4. This is step “3” in SCE.

Ground state energy:
𝐸0 = −

𝐿

2𝑈3
𝑡2 +

𝐿

2𝑈3
3 −

3𝐿

2𝑈2𝑈3
2 𝑡4 +

4𝐿

𝑈2𝑈3
4 −

17𝐿

4𝑈2
2𝑈3

3 −
5𝐿

2𝑈2
3𝑈3

2 −
5𝐿

𝑈1𝑈2
2𝑈3

2 𝑡6 + 𝑂
𝑡8

𝑈7

Current density:
𝐽

−𝑖
=

𝐿

𝑈3
𝑡2 + 𝐿

2

𝑈3
3 −

6

𝑈2𝑈3
2 𝑡4 + 𝐿 −

15

𝑈2
3𝑈3

2 −
51

2𝑈2
2𝑈3

3 +
24

𝑈2𝑈3
4 −

30

𝑈1𝑈2
2𝑈3

2 𝑡6 + 𝑂
𝑡8

𝑈7

Density-density correlations:
 𝑛𝑖  𝑛𝑖+𝛿 were also obtained. Leading order is cyclic in 𝛿,

which is consistent with expectations.

Obtained accuracy was
𝑂 𝑡6 ÷ 𝑂 𝑡8 .
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More 
observables

Phase 
transition 

investigation

Densities not 
exactly equal 

to 𝑄𝐶

Time 
dependence

Temperature 
dependence

Further
work:

Summary:
 High precision results for

both integrable and non-
integrable models in Mott
insulating phases.

 Results    are    fully 
consistent   with 
other works 
[1,2,3].
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