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Abstract A simple secant-based fast gradient method is developed for problems whose objective

function is convex and well-defined. The proposed algorithm extends the classical Nesterov gradient

method by updating the estimate-sequence parameter with secant information whenever possible. This

is achieved by imposing a secant condition on the choice of search point. Furthermore, the proposed

algorithm embodies an "update rule with reset" that parallels the restart rule recently suggested in

O’Donoghue and Candes (2013). The proposed algorithm applies to a large class of problems including

logistic and least-square losses commonly found in the machine learning literature. Numerical results

demonstrating the efficiency of the proposed algorithm are analyzed with the aid of performance profiles.

Keywords Convex optimization · Secant Methods · Fast gradient methods · Nesterov gradient method.

1 Introduction

This paper considers the unconstrained optimization of convex function f :

UCOP : min
x∈Rn

f(x) (1)

where f : Rn → R is a continuously differentiable convex function. The domain of f , dom f , is the convex

set Rn and x is a real vector. A necessary and sufficient condition for a point x∗ to be a minimizer of f

is ∇f(x∗) = 0 [7]. Furthermore, it is assumed that f is bounded below and there exists a unique

minimizer x∗ : f(x∗) = f∗ with f∗ ≤ f(x) ∀ x ∈ Rn [27].
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The idea of enhancing or accelerating gradient methods directly has been intensively researched [3,

12, 23, 24, 29, 32] since the pioneering works of Shah et. al. [33] and Polyak [31]. Accelerated gradient

methods are easy to implement and offer much lower memory requirement as compared to higher-order

methods such as Newton’s method. Accelerated gradient methods compute future iterates by relying

only on the local gradient and a history of past iterates. Accelerated gradient schemes can be thought

of as momentum methods, in that the step taken at the current iteration depends on the previous

iterations, and where the momentum grows from one iteration to the next [28]. Accelerated gradient

methods, unlike gradient-descent methods, are not guaranteed to monotonically decrease the objective

value. In other words, accelerated gradient methods are nonmonotone gradient methods that utilize the

momentum from the previous iterates.

Particular schemes include the Barzilai-Borwein gradient method [2], the backpropagation method

with momentum [5,35] - a well-known algorithm in the neural network community - and a fast gradient

method developed by Nesterov [24]. All the aforementioned accelerated gradient methods use only the

previous iterate and as such they can be considered special cases of two-step iterative algorithms,

xk+1 = xk − αk∇f(yk) + ηk(xk − xk−1) : αk > 0 , ηk ≥ 0 ; yk =
i=k∑

i=0

τixi , τi ∈ R ,

with appropriate choice of αk , ηk and yk . The nonmonotonicity of the accelerated gradient methods

are beneficial and contribute to their increased convergence rate [1,10,15]. However they are susceptible

to severe bumps in the objective values that may be detrimental and may lead to wasted iterations

as noted in [28]. This is the case in the Nesterov gradient method when the momentum factor has

exceeded a critical value. This can happen when the condition number ( i.e. q−1 = L
µ
, where L, µ are

as defined in § 2 ) is underestimated [28]. Moreover, accelerating the gradient method with the precise

q in a well-conditioned region can also lead to wasted iterations [28]. The Lipschitz constant L can be

estimated in a straightforward manner using backtracking (e.g. [22, pg. 162-163], [4, pg. 195]); however

obtaining a nontrivial lower bound for the convexity parameter µ is much more challenging. In [25], a

backtracking approach is taken to estimate a nontrivial convexity parameter. The use of fixed restart

proportional to the condition number has also been considered (see e.g. [4, 13,18]). A heuristic adaptive

restart technique was recently introduced in [28] based on the idea of restarting the momentum factor

to zero when a heuristic gradient condition is satisfied. The origin of momentum restart can in fact be

traced back to the late 80’s (see e.g. [36]). O’Donoghue and Candes [28] demonstrate dramatic speed up

in the convergence rate of accelerated gradient methods by adaptively restarting the momentum factor

with zero when a heuristic gradient condition is satisfied. They show that their restart scheme recovers

the optimal complexity O(
√

q−1 In 1
ϵ
) for strongly-convex quadratic functions. A significant improved
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performance of accelerated gradient methods combined with this heuristic adaptive restart of [28] was

also reported in [11,17,19].

In this paper, we provide a theoretical justification for the heuristic restart condition of [28] by extend-

ing the Nesterov gradient method (NGM) to utilize available secant information. The proposed algorithm

is based on updating the estimate-sequence parameter with secant information whenever possible.

Furthermore, the proposed algorithm embodies an "update rule with reset" that parallels the restart

rule suggested in [28]. Numerical examples indicate that the proposed algorithm significantly outperforms

the adaptive restart [28]. The rest of this paper is organized as follows: In sections 3 and 4, the Nesterov

gradient method and the quasi-Newton method are discussed. The proposed Secant-Based-NGM is

described in section 5 and the global convergence for all convex functions will also be established therein.

2 Notation

A continuously differentiable function h : Rn → R has a Lipschitz continuous gradient on Rn with

constant L if there exist a constant L > 0 such that ∥∇h(x) − ∇h(y)∥ ≤ L∥x − y∥ , ∀x, y ∈ R
n .

A continuously differentiable function h : Rn → R is convex with parameter µ if there exists a constant

µ ≥ 0 such that h(x) ≥ h(y) +∇h(y)(x− y) +
µ

2
∥x− y∥2, ∀x, y ∈ R

n . Subsequently, the term trivial

convexity parameter means a lower bound of convexity parameter while nontrivial convexity parameter

refers to the greatest lower bound of the convexity parameter. Denote F1,1
L (Rn) as the class of convex

functions with L -Lipschitz-continuous gradient. Let the function f ∈ F1,1
L : Rn → R denote a convex

function bounded below and with a unique minimizer. If µ > 0 , then function f is strongly-convex,

i.e. f ∈ S1,1
µ,L(R

n) ⊂ F1,1
L (Rn) . The optimal values of f(x) and Φk(x) are denoted by f∗ and Φ∗

k

respectively. Let ∇ denote the gradient operator and it is defined by ∇f(x) =
[df(x)
dx1

, · · · ,
df(x)

dxn

]T
.

Assumption 1. A trivial convexity parameter µ ≥ 0 and the gradient’s Lipschitz constant L are known.

3 Nesterov Gradient Method

This section reviews the fast gradient method due to Nesterov [24]. Consider the following approximations

of f(x) at xk:

φ1
k(x) = f(xk) +∇f(xk)

T (x− xk) +
1

2α
∥x− xk∥2 . (2)

φ2
k(x) = f(xk) +∇f(xk)

T (x− xk) +
1

2
(x− xk)

T∇2f(xk)(x− xk) . (3)

The Nesterov gradient method [24] attempts to use approximations which are better than φ1
k(x) but less
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expensive than φ2
k(x) by defining an estimate-sequence (see Definition 1). Provided this estimate-sequence

satisfies Nesterov’s Principle (see below), then convergence to f∗ is guaranteed (see Lemma 1).

Definition 1 ( [24]). A pair of sequences {Φk(x)}∞k=0 , {λk}∞k=0 is called an estimate-sequence of a

function f(x) if λk → 0 and for any x ∈ Rn and for all k ≥ 0 , we have:

Φk(x) ≤ (1− λk)f(x) + λkΦ0(x) , (4)

where λk > 0 and Φk(x) is some local function. !

The Nesterov gradient method is based on the principle of utilizing a sequence of local functions Φk(x)

whose limit approaches the greatest global lower bound of f(x) .

Nesterov’s Principle: This principle requires that the estimate-sequence (see Definition 1) defined by

the local functions Φk(x) is constructed such that

f(xk) ≤ Φ∗

k , Φ∗

k = min
x

Φk(x) . ! (5)

As graphically illustrated in Fig. 1, Nesterov’s principle ensures that the local functions Φk(x) constitut-

ing the estimate-sequence have a continuum of minima that approaches the minimum of f(x) as λk → 0 .

This convergence property of Nesterov’s principle is made precise in Lemma 1.

f(x)

Φk(x)

Φk+1(x)

f(x)

x

(a) Local function Φk(x) → f(x) as the
parameter λk → 0. See (4)

f(x)

Φk(x)

Φ∗

k

f (xk)

f(x)

xkvk x

(b) Imposed requirement on the choice of local
function Φk(x). See (5)

Fig. 1 Nesterov’s optimal concept.

An illustration of Nesterov’s principle
(

f(xk) ≤ Φ∗

k
and Φk(x) → f(x) as λk → 0

)

.

Lemma 1 ( [24]). If a local function Φk(x) is chosen such that Nesterov’s principle is satisfied, then

f(xk)− f(x∗) ≤ λk[Φ0(x
∗)− f(x∗)] , ∀k > 0 . !

Thus, for any scheme that satisfies Nesterov’s principle
[
i.e. (4), (5)

]
, the convergence rate of its mini-

mization process is directly related to the rate of convergence of the λk sequence.
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The Nesterov scheme is one approach that ensures satisfaction of the Nesterov’s principle
[
i.e. (4), (5)

]
.

The following Lemma 2, gives a recursive rule that satisfies (4) i.e. Definition 1.

Lemma 2 ( [24]). Let scalars λ0 = 1, βk ∈ (0, 1),
∞∑
k=1

βk = ∞ . The following recursive rules,

λk+1 = (1− βk)λk , (6)

Φk+1(x) ≤ (1− βk)Φk(x) + βkf(x) , (7)

are sufficient to constitute an estimate-sequence {Φk(x)}∞k=0 , {λk}∞k=0 in the sense of Definition 1. !

The Nesterov scheme uses Lemma 2 to construct the estimate-sequence defined in Lemma 3. Thereafter,

the acceleration parameter βk and search point yk are carefully chosen such that (5) is satisfied.

3.1 Nesterov’s choice of Recursive rule

The Nesterov choice of recursive rule for the local function Φk(x) satisfies the requirements of Lemma 2.

In this section, the recursive rule for Φk(x) used in the Nesterov scheme is given and illustrated in Fig. 2.

Definition 2 ( [24]). Define Φk+1 (x) as

Φk+1 (x) = (1− βk)Φk(x) + βk[ f(yk) +∇f(yk)
T (x− yk) +

µk

2
∥x− yk∥2 ] (8)

for a given sequence {yk}∞k=0 and with µk ∈ [0, µ] . !

Remark 1. The recursion Φk+1(x) = Φk+1 (x) satisfies Lemma 2. In particular, Nesterov’s choice of

recursive rule corresponds to Φk+1(x) = Φk+1 (x) with µk = µ.

Consequently, Nesterov’s choice of local function Φk+1(x) is a convex combination of the previous local

function Φk(x) and the greatest global lower bound of f(x) . This choice is graphically illustrated in Fig. 2.

f (yk) +∇f (yk)T (x− yk) +
µ

2 ∥x− yk∥2

f(xk)

f(yk)

f (x)
f (x)

ykxk x

Φk(x)

Φk+1(x)

Fig. 2 Updating the local function Φk(x) for some yk.

Local function Φk+1(x) is obtained as a convex combination of Φk(x) and the greatest global lower bound of f(x) at yk.

(see Remark 1).
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3.2 Nesterov’s choice of estimate-sequence

In this section, a simple quadratic form is chosen as the initial local function Φ0(x) . This simple choice

allows the requirements of Lemma 2 to be satisfied easily. Thus the recursion of the sequences defined

in Lemma 3 defines an estimate-sequence that satisfies Definition 1.

Lemma 3 ( [24]). Let scalars βk ∈ (0, 1), γk > 0, µ ≥ 0, and vk , yk ∈ Rn . Let Φ0(x) = Φ∗
0+

γ0

2
∥x−v0∥2 .

The recursive rules in Lemma 2
[
i.e. (6), (7)

]
hold for

Φk(x) = Φ∗

k +
γk
2
∥x− vk∥2 (9)

provided the sequences {γk, vk,Φ∗

k}∞k=0 are defined as

γk+1 = (1− βk)γk + βkµ , (10)

vk+1 =
1

γk+1

[(1− βk)γkvk + βkµyk − βk∇f(yk)] , (11)

Φ∗

k+1 = (1− βk)Φ
∗

k + βkf(yk)−
β2
k

2γk+1

∥∇f(yk)∥2+

βk(1− βk)γk
γk+1

[
µ

2
∥yk − vk∥2 +∇f(yk)

T (vk − yk) ] . (12)

The variables γk and βk shall subsequently be referred to as the estimate-sequence parameter and

acceleration parameter respectively. The estimate-sequence is as desired but still the local condition

(5) at the next iterate, f(xk+1) ≤ Φ∗

k+1 , needs to be ensured. This is subsequently achieved in § 3.3 by

carefully choosing the accelerating parameter βk and the search point yk such that (5) is satisfied.

3.3 Nesterov’s choice of βk and search point yk

Suppose that f(xk) ≤ Φ∗

k . Denote ζ(βk) =
[
f(xk)− f(yk) +

βkγk
γk+1

[
µ

2
∥yk − vk∥2 +∇f(yk)

T (vk − yk) ]
]
.

Then Φ∗

k+1 (12) can be written as

Φ∗

k+1 ≥ f(yk)−
β2
k

2γk+1

∥∇f(yk)∥2 + (1− βk)ζ(βk) . (13)

The choice of yk and βk that satisfies Nesterov’s Principle
(
i.e. Lemma 3 and f(xk+1) ≤ Φ∗

k+1

)
is obtained

as follows. Take xk+1 = yk−αk∇f(yk), αk = 1
L
. Then, we have f(xk+1) ≤ f(yk)− 1

2L
∥∇f(yk)∥2 . Hence,

to satisfy f(xk+1) ≤ Φ∗

k+1 , the search point yk is chosen as

yk =
βkγkvk + γk+1xk

γk + βkµ
: ζ(βk) ≥

[βkγk
γk+1

[
µ

2
∥yk − vk∥2]

]
, (14)
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and compute βk:

β2
kL = γk+1 = (1− βk)γk + βkµ . (15)

Remark 2. The search point yk (14) can be written as

yk = xk − ρk∇Φk(x) , ρk =
βk

γk + βkµ
, ∇Φk(x) = γk(xk − vk) . (16)

The Nesterov scheme is graphically illustrated as shown below in Fig. 3.

f (x)
Φk+1(x)

f (yk) +∇f (yk)T (x− yk) +
µ

2 ∥x− yk∥2

( vk+1, Φ
∗

k+1 )

xk xk+1

f (x)

f(xk+1)

Φ∗

k+1

x

yk : equation 7.16

yk

xk+1 : xk+1 = yk −
1
L
∇f(yk)

f (yk) +∇f (yk)T (x− yk)

Fig. 3 Ensuring local condition (5) at the next iterate, f(xk+1) ≤ Φ∗

k+1
(x).

After obtaining Φk+1(x) as shown in Fig. 2, the choice of βk, yk and xk+1 ensures (5).

Algorithm 1a ( [24]). The basic Nesterov gradient method is outlined as follows:

Algorithm 1a Basic Nesterov gradient method [24].

Given a starting point x0 ∈ dom f , γ0 > 0 and v0 = x0 .

repeat until stopping criterion is satisfied

1. Compute βk ∈ (0, 1) from β2
kL = (1− βk)γk + βkµ . (15)

2. Compute γk+1 : γk+1 = (1− βk)γk + βkµ . (10)

3. Compute search point: yk = xk − ρkγk(xk − vk) . (16)

4. Compute the Nesterov iterate: xk+1 = yk − αk∇f(yk) , with αk = 1
L
.

5. Compute vk+1 : vk+1 =
1

γk+1

[(1− βk)γkvk + βkµyk − βk∇f(yk)] . (11)

end (repeat)

Algorithm 1a can be simplified by eliminating variables vk and γk . With this elimination of vk+1 and
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the estimate-sequence parameter γk+1 , Algorithm 1a simplifies to Algorithm 1b.

Algorithm 1b ( [24]). The simplified Nesterov gradient method is outlined as follows:

Algorithm 1b Simplified Nesterov gradient method [24].

Given a starting point x0 ∈ dom f , β0 ∈ (0, 1) , y0 = x0 and q = µ
L
.

repeat until stopping criterion is satisfied

1. Compute the Nesterov iterate: xk+1 = yk − αk∇f(yk) , with αk = 1
L
.

2. Compute βk+1 ∈ (0, 1) from β2
k+1 = (1− βk+1)β2

k + qβk+1 .

3. Compute θk+1 : θk+1 =
βk(1− βk)

βk+1 + β2
k

.

4. Compute yk+1 = xk+1 + θk+1(xk+1 − xk) .

end (repeat)

Remark 3. The choice of β0 =

√
µ

L
corresponds to γ0 = µ while the corresponding β0 for the case of

γ0 = L can be obtained from (15). It is important to emphasize that β0 ̸= 1 since (15) cannot hold when

β0 = 1 . Hence the choice β0 ∈ (0, 1) . Furthermore, if β0 =

√
µ

L
, then βk =

√
µ

L
and θk =

√
L−√

µ
√
L +

√
µ

for

all k . Were βk be chosen as 0 for all k ≥ 0 , Algorithm 1 would reduce to a fixed-step gradient-descent

method. Subsequently, the variable θk shall be referred to as the momentum parameter.

Theorem 1 ( [24]). Let Φ0(x) = Φ∗
0 +

γ0

2
∥x − v0∥2 . Suppose v0 = x0 . If a scheme satisfies Nesterov’s

principle
[
i.e. (4), (5)

]
, then

f(xk)− f(x∗) ≤ λk

[
f(x0)− f(x∗) +

γ0
2
∥x− x0∥2

]
, ∀k > 0 ,

where λ0 = 1 and λk =
∏k−1

i=0 (1− βi) . !

Remark 4. Take γ0 = L in Algorithm 1a ( or the corresponding β0 in Algorithm 1b ). Let v0 = x0 .

Then the Nesterov scheme satisfies the premises of Theorem 1. Since γk > 0 for all k , then the Nesterov

gradient method Algorithm 1 generates a sequence {xk}∞k=0 such that

f(xk)− f∗ ≤
4L

(k + 2)2
× ∥x0 − x∗∥2 . (17)

Furthermore, since γk ≥ µ > 0 for all k , then

f(xk)− f∗ ≤ min
{
L(1−

√
µ

L
)k ,

4L

(k + 2)2

}
× ∥x0 − x∗∥2 . (18)
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4 Quasi-Newton Method

In the quasi-Newton [27] method, the local function is a local quadratic model about xk where Bk is

f(x)

f(x)

Ψk(x)

Ψk+1(x)

P1
P2

xk xxk+1

Fig. 4 Quasi-Newton method: Updating local function Ψk(x).

Illustrating the secant line P1-P2. The imposed requirement on Bk+1 is that ∇Ψk+1(xk) = ∇f(xk).

the Hessian-approximate at xk i.e.

Ψk(x) = f(xk) +∇f(xk)
T (x− xk) +

1

2
(x− xk)

TBk(x− xk) . (19)

Define the point where Ψk(xk) = f(xk) and ∇Ψk(xk) = ∇f(xk) as point P1 (see Fig. 4). Suppose the

new iterate xk+1 has been generated by minimizing Ψk(x) i.e.

xk+1 = xk + αkdk = xk −B−1
k ∇f(xk) = xk + sk . (20)

We wish to construct Ψk+1(x) of the form

Ψk+1(x) = f(xk+1) +∇f(xk+1)
T (x− xk+1) +

1

2
(x− xk+1)

TBk+1(x− xk+1) . (21)

Similarly, define the point whereΨk+1(xk+1) = f(xk+1) and∇Ψk+1(xk+1) = ∇f(xk+1) as P2 (see Fig. 4).

Requirements can be imposed on Bk+1 based on our knowledge of the previous step. For a reliable Hessian

estimate Bk+1 , it is reasonable to expect that in addition to ∇Ψk+1(xk+1) = ∇f(xk+1) , that it is desired

to have ∇Ψk+1(xk) = ∇f(xk) . Therefore, it follows that

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk) . (22)

This imposed condition (22) is known as the secant condition and can be written as:

Bk+1sk = yk . (23)

Alternatively, the secant condition can be derived from the mean-value theorem for vector-valued func-



10 Razak O Alli-Oke, William P Heath

tions which implies that (23) is satisfied by the mean Hessian in the interval [xk, xk+1] [6]. The pair

(sk, yk) is said to be the secant pair associated with the secant condition (23). The matrix Bk is up-

dated ( see [27] ) using symmetric rank-one updates (SR1) or symmetric rank-two updates (e.g. Powell-

Symmetric-Broyden(PSB) and Davidon-Flectcher-Powell(DFP) updates).

5 A Secant-Based Nesterov Gradient Method

A careful study of (13) reveals that f(xk) ≤ Φ∗

k in the Nesterov scheme provided that β2
kL− γk+1 ≤ 0 .

This implies that the accelerating parameter βk can be chosen such that βk ∈ (0, β
′

k] where β
′

k is the

computed solution of step 1 of Algorithm 1a. A natural question that arises is ” how should βk ∈ (0, β
′

k]

be chosen? ”. In this section, a new accelerated gradient method (Secant-Based-NGM ) is proposed

by extending the classical Nesterov gradient method to utilize available secant information whenever

possible. Secant-Based-NGM is based on updating the estimate-sequence parameter γk by imposing

a secant condition on the choice of search point yk . This approach exploits the curvature information at

the kth iterate when determining the accelerating parameter βk . As a result, the computed momentum

parameter θk is varied in accordance to the changing curvature of the objective function f(x) . The global

convergence of the proposed Secant-Based-NGM is also established for all convex functions.

5.1 Recursive Rule Revisited

Definition 3. Let lk(x) : lk(x) = f(yk)+∇f(yk)
T (x− yk)+

µk

2
∥x− yk∥2 for a given sequence {yk}∞k=0

and with µk ∈ [0, µ] .

Recall from Lemma 2 that it is sufficient for the recursive rule for Φk(x) to satisfy,

Φk+1(x) ≤ (1− βk)Φk(x) + βkf(x) . (24)

Recall from Remark 1 that Φk+1(x) = Φk+1 (x) satisfies (24) where,

Φk+1 (x) = (1− βk)Φk(x) + βklk(x) . (25)

In the case µk ̸= 0 , it then follows from (25) that

Φk+1 (x) = (1− βk)
[
Φ∗

k +
γk
2
∥x− vk∥2

]
+ βk

[
l∗k +

µk

2
∥x− zk∥2

]
, (26)

where zk = yk −
1

µk
∇f(yk) , l∗k = f(yk)−

1

2µk
∥∇f(yk)∥2 . In the case µk = 0 , it follows from (25) that,
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Φk+1 (x) = (1− βk)
[
Φ∗

k +
γk
2
∥x− vk∥2

]
+ βk

[
l̂k

∗

+∇f(yk)
Tx

]
, (27)

where l̂k
∗

= f(yk)−∇f(yk)T yk . Subsequently, we do not explore the flexibility in µk and take that µk = µ

as used in the original scheme of Nesterov. Furthermore, the proposed algorithm chooses Φk+1(x) such

that Φk+1(x) ≤ Φk+1 (x) i.e.

Φk+1(x) ≤ (1− βk)Φk(x) + βk[ f(yk) +∇f(yk)
T (x− yk) +

µ

2
∥x− yk∥2 ] . (28)

5.2 Construction of Secant-Based-NGM

Basic Secant-Based-NGM extends the classical Nesterov scheme by utilizing the secant information

in updating the estimate-sequence parameter γk . The two subsequent lemmas are used to arrive at an

inequality (36) that gives an upper bound to γk .

Lemma 4. Given a, b > 0 and x1, x2 ∈ Rn , there exists x3 ∈ Rn and d ≥ 0 such that a∥x − x1∥2 +

b∥x− x2∥2 = (a+ b)∥x− x3∥2 + d for all x ∈ Rn .

Proof :

Take

x3 =
ax1 + bx2

a+ b
and d =

ab(x1 − x2)T (x1 − x2)

a+ b
. (29)

It then follows that

a∥x− x1∥2 + b∥x− x2∥2 = (a+ b)∥x− x3∥2 + d . (30)

Hence, d = 0 if and only if x1 = x2 . Thus d ≥ 0 if a, b > 0 . !

Lemma 5. Given a, b > 0 and x1, x2 ∈ Rn , there exists x3 ∈ Rn and d̂ ∈ R such that a∥x − x1∥2 +

bxT
2 x = a∥x− x3∥2 + d̂ for all x ∈ Rn .

Proof :

Take

x3 =
2ax1 − bx2

2a
and d̂ =

4abxT
1 x2 − b2xT

2 x2

4a
. (31)

It then follows that a∥x−x1∥2+ bxT
2 x = a∥x−x3∥2+ d̂ . It is clear from (31) that d̂ ∈ R if a, b > 0 . !

The subsequent Lemma 6 gives the needed freedom in updating the γk sequence and also gives the upper

bound to the acceptable value of γk .
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Lemma 6. Let scalars βk ∈ (0, 1), γk > 0 , µ ≥ 0 , and vk, yk ∈ Rn . Let Φ0(x) = Φ∗
0 + γ0

2
∥x − vk∥2 .

The recursive rules in Lemma 2
[
i.e. (6), (7)

]
hold for

Φk(x) = Φ∗

k +
γk
2
∥x− vk∥2 (32)

provided the sequences {γk, vk,Φ∗

k}∞k=0 are defined as

γF
k+1 = (1− βk)γk + βkµ , (33)

vk+1 =
1

γF
k+1

[(1− βk)γkvk + βkµyk − βk∇f(yk)] , (34)

Φ∗

k+1 = (1− βk)Φ
∗

k + βkf(yk)−
β2
k

2γF
k+1

∥∇f(yk)∥2+

βk(1− βk)γk
γF
k+1

[
µ

2
∥yk − vk∥2 +∇f(yk)

T (vk − yk) ] , (35)

γk+1 ≤ γF
k+1 . (36)

Proof :

From (25), Φk+1 (x) is defined as Φk+1 (x) = (1− βk)Φk(x) + βklk(x) . Furthermore, choose vk+1 as the

unconstrained minimum of Φk+1 (x) . Since γF
k+1 = (1− βk)γk + βkµ , we can obtain vk+1 as,

vk+1 =
1

γF
k+1

[(1− βk)γkvk + βkµyk − βk∇f(yk)] . (37)

Next, the inequality (36) is established for the cases when the convexity parameter µ ̸= 0 and µ = 0 .

Case 1: µ ̸= 0

By Lemma 4, it follows from (26) that Φk+1 (x) = (1− βk)Φ
∗

k + βkl
∗

k + d+
γF
k+1

2
∥x− vk+1∥2 for some

d ≥ 0 . The case of d = 0 occurs if and only if we have coincident minimizers i.e. vk+1 = vk = zk ( see [12] ).

Nesterov’s choice then corresponds to Φk+1(x) = Φk+1 (x) with γk+1 = γF
k+1 and Φ∗

k+1 = (1− βk)Φ∗

k +

βkl∗k + d . However, we choose

γk+1 ≤ γF
k+1 . (38)

Consequently, we then have Φk+1(x) ≤ Φk+1 (x) which still satisfies (24) and more importantly we still

have Φk+1(vk+1) = Φk+1 (vk+1). Also note that the unconstrained minimum of this choice of Φk+1(x)

still remains as vk+1 (34). This inequality (36) is crucial in the sense that it gives an upper bound

to γk for all k and allows the use of the secant information in updating the γk sequence whenever possible.

Case 2: µ = 0

By Lemma 5, it follows from (27) that Φk+1 (x) = (1− βk)Φ
∗

k + βk l̂k
∗

+ d̂+
γF
k+1

2
∥x− vk+1∥2 for some
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d̂ ∈ R . Thus the inequality (36) still holds for this case using similar arguments as in the case of µ ̸= 0 .

It remains to compute Φ∗

k+1 . It follows from (32) that at x = vk+1 , we have that Φ∗

k+1 = Φk+1(vk+1) .

Since Φk+1(vk+1) = Φk+1 (vk+1) , then by (25) it follows that Φ∗

k+1 can be computed as

Φ∗

k+1 = (1− βk)Φk(vk+1) + βk lk(vk+1) . (39)

Substitute for Φk(vk+1) in (39) using (32), then (39) becomes

Φ∗

k+1 = (1− βk)Φ
∗

k +
(1− βk)γk

2
∥vk+1 − vk∥2+

βkf(yk) + βk∇f(yk)(vk+1 − yk) +
βkµ

2
∥vk+1 − yk∥2 . (40)

It follows from (37) that

vk+1 − yk =
(1− βk)γk

γF
k+1

(vk − yk)−
βk

γF
k+1

∇f(yk) , (41)

and that

vk+1 − vk =
βkµ

γF
k+1

(yk − vk)−
βk

γF
k+1

∇f(yk) . (42)

Substituting (41) and (42) into (40), then the result for Φ∗

k+1 follows,

Φ∗

k+1 = (1− βk)Φ
∗

k + βkf(yk)−
β2
k

2γF
k+1

∥∇f(yk)∥2+

βk(1− βk)γk
γF
k+1

[
µ

2
∥yk − vk∥2 +∇f(yk)

T (vk − yk) ] . ! (43)

Remark 5. Lemma 3 is a special case of Lemma 6 if γk+1 is chosen as γk+1 = γF
k+1 .

The secant information is used in updating γk by requiring that ∇Φk+1(yk) = ∇f(yk) . It then follows

that γ̂k+1(yk−vk+1) = ∇f(yk) where γ̂k+1 is a possible update of γk . Using a symmetric rank-1 update,

it then follows that

γ̂k+1 =
∇f(yk)T (yk − vk+1)

(yk − vk+1)T (yk − vk+1)
. (44)

However, this γk updating is subject to the constraint (36). An effective way of enforcing (36) is that

larger values of γ̂k+1 correspond to updates closer to γF
k+1 and vice-versa. To this end, we define γE

k+1,

γE
k+1 =

γ̂k+1

γ̂k+1 + γF
k+1

× γF
k+1 . (45)

where the effective curvature γE
k+1 is to be used in defining an update rule for γk in the proposed algorithm.

The search point yk still has to satisfy (16) and the accelerating parameter βk computed from β2
kL = γF

k+1
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as in the classical Nesterov gradient method. However, updating γk based on (44) and (45) ensures that the

computed (βk ∈ (0, β
′

k]) satisfies β
2
kL−γFF

k+1 ≤ 0 (where γFF
k+1 = (1−βk)γF

k +βkµ , see introduction of § 5 ).

Moreover, βk is determined by the curvature information at the kth iterate ( see step 1 ofAlgorithm 2a ).

This computation of γ̂k+1 comes at an extra cost of 2 vector-vector multiplication. However, as shown

in the numerical results, the benefits of computing γk+1 outweigh the extra cost of its computation.

The update γk+1 can now be appended to the classical Nesterov gradient method in a straight-forward

manner as shown below in step 6 of Basic Secant-Based-NGM below.

Algorithm 2a (Basic secant-based algorithm). The outline is as follows:

Basic Secant-Based-NGM.

Given a starting point x0 ∈ dom f , γ0 > 0 and v0 = x0 .

repeat until stopping criterion is satisfied

1. Compute βk ∈ (0, 1) from β2
kL + βk(γk − µ)− γk = 0 .

2. Compute γF
k+1 : γF

k+1 = (1− βk)γk + βkµ . (33)

3. Compute search point: yk = xk − ρkγk(xk − vk) .

4. Compute the Nesterov iterate: xk+1 = yk − αk∇f(yk) , with αk = 1
L
.

5. Compute vk+1 : vk+1 =
1

γF
k+1

[(1− βk)γkvk + βkµyk − βk∇f(yk)] . (44)

6. Compute γ̂k+1 : γ̂k+1 =
∇f(yk)T (yk − vk+1)

(yk − vk+1)T (yk − vk+1)
. (34)

7. Compute γk+1 : γk+1 = m̂inµ ( γE
k+1 , γ

F
k+1 ) . · · · update rule

8. If γ̂k+1 < 0 , then set γk+1 = β2
kµ . · · · reset rule

end (repeat)

Remark 6. The m̂inµ operator rule in step 7 is given by

c = m̂inµ ( a, b ) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c = a if γF
k+1 > µ,

c = min ( γ̂k+1 , b ) if γF
k+1 < µ and γ̂k+1 > γ̂k

c = b if otherwise.

The extra condition in the case of γF
k+1 < µ serves to penalize oscillation in the trajectory of γ̂k+1 .

Remark 7. In the case µ ̸= 0 , see Remark 8 for the appropriate reset rule.

Just as with the classical Nesterov gradient method, vk+1 = xk+1 +
1− βk

βk
(xk+1 − xk) and the variable

vk can therefore be eliminated. With this elimination of vk+1 , Basic Secant-Based-NGM simplifies
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to Simplified Secant-Based-NGM.

Algorithm 2b (Simplified secant-based algorithm). The outline is as follows:

Simplified Secant-Based-NGM.

Given a starting point x0 ∈ dom f , β0 ∈ (0, 1) and y0 = x0 .

repeat until stopping criterion is satisfied

1. Compute Nesterov iterate: xk+1 = yk − αk∇f(yk) , with αk = 1
L
.

2. Compute γF
k+1 = β2

kL ; τk =
1− βk

βk
.

3. Compute yv = [αk∇f(yk)− τk(xk+1 − xk)] ; γ̂k+1 =
yTv ∇f(yk)

yTv yv
.

4. Compute γk+1 : γk+1 = m̂inµ ( γE
k+1 , γ

F
k+1 ) . · · · update rule

5. If γ̂k+1 < 0 , then set γk+1 = β2
kµ . · · · reset rule

6. Compute βk+1 ∈ (0, 1) from β2
k+1L + βk+1(γk+1 − µ)− γk+1 = 0 .

7. Compute θk+1 : θk+1 = ρk+1γk+1τk , where ρk+1 =
βk+1

γk+1 + βk+1µ
.

8. Compute yk+1 = xk+1 + θk+1(xk+1 − xk) .

end (repeat)

Fact: Let γk+1 , γF
k+1, βk and θk+1 be as previously defined. If µ = 0 and γk+1 =

γF
k+1

n
for some n ≫ 1 ,

then the ratio
βk+1

βk
≈

1√
n

and θk+1 ≈
1− βk√

n
. The proof follows from the definitions of γF

k+1 , βk+1

and θk+1 in steps ( 2, 6, 7) respectively.

Remark 8. In the case µ = 0 , then the reset rule in step 5 can replaced with γk+1 =
γF
k+1

L2
and this

corresponds to a momentum factor θk+1 <≈
1

L
. However, to account for the case where L ̸≫ 1 , we have

used γk+1 = min (
γF
k+1

L2
, ϵγF

k+1 ) where ϵ = 10−6 .

In what follows, the gradient restart condition and restart rule of [28] is contrasted with a gradient

condition (46) and the proposed "update rule with reset" respectively. With the substitution of vk+1 in

Basic Secant-Based-NGM, the reset condition γ̂k+1 < 0 in step 5 of Simplified Secant-Based-NGM

is then equivalent to

αk∥∇f(yk)∥2 − τk∇f(yk)
T (xk+1 − xk)) < 0 . (46)

This gradient condition (46) is more conservative than the gradient-scheme restart condition suggested

in [28] especially when the iterates are far away from the optimum point. Thus the gradient condition (46)

is less frequently satisfied. The advantage of the conservativeness of (46) is reinforced by the observation
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in [28] that ”... restarting far from the optimum can slow down the early convergence slightly, until the

quadratic region is reached and the algorithm enters the rapid linear convergence phase.”.

The restart rule of [28] is given as

1. setting βk+1 as 1.

2. setting the momentum factor θk+1 as 0.

Firstly, it should be noted that the reset βk+1 should be in the interval (0, 1) since βk ∈ (0, 1) for all

k ≥ 0 ( see Remark 3 ). Moreover, an arbitrary choice of βk+1 ∈ (0, 1) may correspond to a γk+1 that

violates the inequality γk+1 ≤ γF
k+1 (36). Furthermore, the proposed Simplified Secant-Based-NGM

proceeds with the computed βk+1 unlike the restart rule 1 of [28]. It is emphasized that the proposed

Simplified Secant-Based-NGM does not reset the momentum factor to zero ( see Remark 8 ) unlike

the restart rule 2 of [28]. Thus the Secant-Based-NGM is not a momentum-restart algorithm, and the

proposed ”update rule with reset” ( see Remarks 6, 7, 8 ) in the Secant-Based-NGM satisfies inequal-

ity (36). Moreover, restarting the momentum factor θk+1 with 0 as stated in [28] inhibits fast convergence

since it discards the entire accumulated information from previous iterates. In the next sub-section, we

establish the global convergence of the proposed Secant-Based-NGM for all convex functions.

5.3 Global Convergence of Proposed Scheme

The scheme construction of the proposed algorithm
(
Secant-Based-NGM

)
satisfies Nesterov’s prin-

ciple
[
i.e. (4), (5)

]
. Thus the proposed scheme satisfies the premises of Theorem 1 and therefore the

Secant-Based-NGM is globally convergent with

f(xk)− f(x∗) ≤
( k−1∏

i=0

(1− βi)
)
×

[
f(x0)− f(x∗) +

γ0
2
∥x− x0∥2

]
, ∀k ≥ 1 , (47)

where βi ∈ (0, 1) and γ0 > 0 . If the gradient’s Lipschitz constant L is known, then (47) reduces to

f(xk)− f(x∗) ≤
( k−1∏

i=0

(1− βi)
)
×

[γ0 + L

2
∥x− x0∥2

]
, ∀k ≥ 1 . (48)

6 Numerical Results

Consider test examples of the form

UCOP : min
x∈Rn

f(x), (49)

where x ∈ Rn is the unknown variable. The numerical tests investigate the effects of increasing the
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dimension and condition number respectively on the performance of the proposed algorithm.

Computational Setup: All numerical tests were coded in 64-bit MATLAB on a Dell-Optilex-780 PC

with Intel dual-core CPU of 2.93 GHz, RAM of 16GB and a 160GB-free Hard-Disk. All Matlab sessions

were single-threaded, feature(’accel’,’off ’) and process-Priority set to ”High”. All Matlab sessions were

executed on the PC running Windows 7 in ”‘Safe Mode”’. The stopping criterion was ∥∇f(x)∥ ≤ 10−9

and ∥∇f(x)∥ ≤ 10−6 for examples 1, 3 and 2, 4 respectively. All matrices are random square matrices

such that the Hessian has eigenvalues in the interval [ 1+µ , L+µ ] . This was achieved using singular value

decomposition to allocate the desired eigenvalues. All matrices and vectors were randomly generated in

MATLAB with seed rng(1234,’twister’). Except for Ex. 4 , the computations were also repeated with

seed rng(5678,’twister’). Except for Ex. 2 , the first run-time effects were accounted for by ignoring the

run-times of the first run while averaging over the subsequent 3 runs of each algorithm.

Test Functions and Solvers: We consider four sets of problems with varied number of instances. The

test function in Ex. 1 is is a well-known convex quadratic function used for benchmarking convex solvers

while the test functions in Ex. 2 and Ex. 3 are convex non-quadratic functions usually encountered in

machine-learning literature [8, 14, 26, 34, 37]. The test problems in Ex. 4 is the well-known Maros and

Meszaros’s collection used for benchmarking convex quadratic program solvers [16, 20]. A first-order

oracle [24] is used in all numerical computations. The set of solvers S considered is:

– Classical Nesterov gradient method(NGM)1,

– Adaptive restart [28],

– Fixed restart2 after k =

√
8L

µ
,

– Proposed algorithm : (Simplified) Secant-Based-NGM.3

In all cases, β0 =
√

µ/L if µ ̸= 0 and β0 =

√
5− 1

2
if otherwise. These chosen β0 correspond to γ0 = µ

and γ0 = L respectively. The performance profile in the sense of Dolan and More [9] is adopted to analyze

the performance data of the above set of solvers S on each problem set P . The percentage of the test

problems for which a method is the fastest is given on the left axis of the profile plot. The right side of

the profile plot gives the percentage of the test problems that were successfully solved by each of the

methods. In other words, the right side of the profile plot is a measure of an algorithm’s robustness.

Ex. 1: Ridge regression problem [21]

This is a linear least squares problem with Tikhonov regularization. Given A ∈ Rm×n , b ∈ Rn and

1 The simplified Nesterov gradient method Algorithm 1b is used for computations.
2 In the case of µ = 0 (Ex. 2 and Ex. 4), fixed restart is done after k = max{N,

√
L} iterations.

3 In the case of µ = 0 (Ex. 2 and Ex. 4), the algorithm resets with γk+1 = min (
γF
k+1

L2
, 10−6γF

k+1
) , see Remark 8.
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the convexity parameter µ = 0.1 .

f(x) =
µ

2
∥x∥22 +

1

2
∥Ax− b∥22 . (50)

The objective function f(x) ∈ S1,1
µ,L is a positive-definite quadratic convex function with Lipschitz gradient

of L = λmax(ATA)+µ and trivial convexity parameter of µ = 0.1 . All algorithms use the trivial convexity

parameter µ = 0.1 except algorithm NGM1 which used a nontrivial convexity parameter of µ = 1.1 .

The plots in Fig. 5(a) and Fig. 5(b) show the effect of increasing the problem size (N) and condition

number (L/µ) respectively. As expected the NGM with trivial convexity parameter µ = 0.1 (NGM2) is
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Fig. 5 Effect of problem size (N) and condition number (L/µ) on the run-time.

NGM1 - NGM with nontrivial µ ; NGM2 - NGM with trivial µ.

slowest with the largest run-time (RT) as observed in Fig. 5(a). Using a fixed restart shows slightly im-

proved performance with increasing dimension. However, the adaptive restart and Secant-Based-NGM

perform significantly better than NGM2 while the Secant-Based-NGM performs comparable with

NGM1 as the dimension number increases. It can be noted in Fig. 5(b) that the adaptive restart

and Secant-Based-NGM perform better than even the NGM1. Moreover, the Secant-Based-NGM

outperforms the adaptive restart as the condition number becomes high.

The computations were repeated for randomly-generated matrices and vectors with seed rng(5678,’twister’).

The plots in Fig. 6(a) and Fig. 6(b) show the effect of increasing the problem size (N) and the condition
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Fig. 6 Effect of problem size (N) and condition number (L/µ) on the run-time.

NGM1 - NGM with nontrivial µ ; NGM2 - NGM with trivial µ.

number (L/µ) respectively. Similar conclusions can be drawn from the plots in Fig. 6(a) and Fig. 6(b). The

performance profiles [9] for all problem instances
(
i.e. with seeds rng(1234,’twister’) and rng(5678,’twister’)

)

is shown in Fig. 7(a). As expected, It is clear from Fig. 7(a) that the NGM with nontrivial convexity has

the most wins (i.e. the highest probability of being the optimal solver). However, it can also be observed
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Fig. 7 The performance profiles of the set of solvers S for Ex. 1 and Ex. 2.

from Fig. 7(a) that the performance of NGM with a trivial convexity parameter is improved when a

fixed restart or adaptive restart [28] is used. Moreover, Secant-Based-NGM performs better than

when restarts are used with NGM. In general, the proposed Secant-Based-NGM has the highest
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probability
(

ps(τ)=0.95
)
of being the fastest solver within a factor τ = 1.3 of the best solver.

Ex. 2: Binary classification problem [8,26]

This a logistic regression problem with l2-regularization. Given zi ∈ Rn , yi ∈ {−1, 1} , µ = 0 and N ≥ 1 .

f(x) =
µ

2
∥x∥22 +

N∑

i=1

log(1 + e−yiz
T

i
x) . (51)

The objective function f(x) ∈ F1,1
L is a non-quadratic convex function with Lipschitz gradient of L =

0.25λmax(FTF ) and convexity parameter of µ = 0 , where the design matrix F = [z1 · · · zN ]T ∈ RN×n.

The explained variable y = sign(wTFT ) was generated as described in [8,30] except that w = [1; 1; 1 · · · 1] .

The choice of w means that each feature has an equal effect on the explained variable y.

The plots in Fig. 8(a) and Fig. 8(b) show the effect of increasing the problem size (N) and condition

number (L/µ) respectively. The computations were repeated for randomly-generated matrices and vectors
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Fig. 8 Effect of problem size (N) and condition number (L/µ) on the run-time.

with seed rng(5678,’twister’). The plots in Fig. 9(a) and Fig. 9(b) show the effect of increasing the

problem size (N) and condition number (L/µ) respectively. Similar conclusions can be drawn from the

plots in both Fig. 8 and Fig. 9. It can be observed in these figures that all the algorithms have similar

performance except for Secant-Based-NGM that clearly outperforms the rest as the dimension num-

ber increases. In Fig. 9(b), we observe a rather strange behaviour of the Fixed Restart and NGM at

the end of the plot. Nevertheless, the proposed Secant-Based-NGM significantly outperforms all other
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Fig. 9 Effect of problem size (N) and condition number (L/µ) on the run-time.

algorithms as the condition number increases while the adaptive restart performs worse than the NGM.

The performance profiles [9] for all problem instances is shown in Fig. 7(b). It is clear from Fig. 7(b)

that Secant-Based-NGM is the most efficient of the considered solvers. It solved 93% of the problems

significantly faster than the other solvers. It can also be observed from Fig. 7(b) that the performance

of adaptive restart [28] is worse than the fixed restart or the classical NGM. In general, the proposed

Secant-Based-NGM significantly improves over and above the classical NGM and the adaptive restart

suggested in [28].

Ex. 3: Approximate Huber loss [14, 34,37]

Given zi ∈ Rn , yi ∈ {−1, 1} , µ = 0.1 and N ≥ 1 .

f(x) =
µ

2
∥x∥22 +

N∑

i=1

log
(
cosh(yi − zTi x)

)
. (52)

The objective function f(x) ∈ S1,1
µ,L is a non-quadratic convex function with Lipschitz gradient of L =

λmax(FTF ) and convexity parameter of µ = 0.1 , where the design matrix F = [z1 · · · zN ]T ∈ RN×n. The

explained variable y = sign(wTFT ) was generated as described in Ex. 2.

The plots in Fig. 10(a) and Fig. 10(b) show the effect of increasing the problem size (N) and condition

number (L/µ) respectively. The computations were repeated for randomly-generated matrices and vec-

tors with seed rng(5678,’twister’). The plots in Fig. 11(a) and Fig. 11(b) show the effect of increasing

the problem size (N) and condition number (L/µ) respectively. Similar conclusions can be drawn from the
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Fig. 10 Effect of problem size (N) and condition number (L/µ) on the run-time.

plots in both Fig. 10 and Fig. 11. It can be observed in these figures that all the algorithms have

similar performance except for Secant-Based-NGM that clearly outperforms the rest as the dimension

number increases. Also in Fig. 10(b), the proposed Secant-Based-NGM significantly outperforms other
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Fig. 11 Effect of problem size (N) and condition number (L/µ) on the run-time.

algorithms as the condition number increases while the NGM has the worst performance.

The performance profiles [9] for all problem instances is shown in Fig. 12(a). It is clear from Fig. 12(a)

that Secant-Based-NGM is the most efficient of the considered solvers. It solved about 87% of

the problems significantly faster than the other solvers. It can also be observed from Fig. 12(a)

that the adaptive restart [28] has better run-time performance than the classical NGM. In general,
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the proposed Secant-Based-NGM significantly improves over and above the classical NGM and the

adaptive restart suggested in [28].

Ex. 4: Maros and Meszaros Test Problems [16,20]

This is a test suite of 138 convex quadratic programs by Maros and Meszaros. This test suite contains

selected problems from the BRUNEL and CUTE collections. The objective functions were regularized

with 10−9∥x∥22 to ensure that the Hessians are positive-definite. All considered algorithms use the trivial

convexity parameter µ = 0 . The initial vectors x0 were randomly-generated with seed rng(1234,’twister’).

In Table 1 (see Appendix), we report the running time (RT) for each of the solvers. We report only on

those test problems in which the run-time (RT) of the classical NGM is within the interval [1s, 500s] .

We also ensured that the objective functions of the considered test problems are not in repetition.

As expected the classical NGM had the slowest run-times. The run-time is slightly improved using a

fixed-restart and further improved using the adaptive restart. However, as shown in Fig. 12(b), our

proposed algorithm Secant-Based-NGM performs significantly better than the adaptive restart in

about 65% of the test problems and no worse than 1.65 times slower than the adaptive restart.

100 101
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

X: 1
Y: 0.87

p
s
×

10
0%

τ

NGM

Fixed Restart

Adaptive Restart

Secant−Based NGM

(a) Performance profiles for Ex. 3

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
TR

(b) Ratio profile for Ex. 4

Fig. 12 The performance profiles and ratio profile of the set of solvers S for Ex. 3 and Ex. 4 respectively.

RTR is the ratio of the Secant-Based NGM’s run-time to the Adaptive Restart’s run-time.

7 Conclusion

The Nesterov gradient method (NGM) needs to be restarted (e.g. [18, 28]) when a nontrivial convex-

ity parameter is not available. This paper introduces a new secant-based Nesterov gradient method

(Secant-Based-NGM ) and also establishes that it is globally convergent for all convex functions. The

algorithm only requires a trivial lower bound of the convexity parameter µ ≥ 0 and the gradient’s Lip-
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schitz constant. The efficiency of the proposed algorithm derives from updating the estimate-sequence

parameter γk by imposing a secant condition on the choice of search point yk . Furthermore, the pro-

posed Secant-Based-NGM embodies an "update rule with reset" that parallels the restart rule sug-

gested in [28]. The effectiveness of the proposed algorithm is confirmed in numerical computations in-

volving large dataset of test problems with varying dimension and condition number. The proposed

Secant-Based-NGM significantly improves over and above the classical NGM and when restarts (e.g.

[18, 28]) are used with the Nesterov gradient method.
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8 Appendix

See Table 1.

Table 1 Performance of solvers S on Ex. 4. All algorithms were stopped after 500s.

S/N Test Problem
Secant-Based-NGM Adaptive Restart Fixed Restart Classical NGM

RT(s) RT(s) RT(s) RT(s)

1 009 ’BOYD1’ 4.50 5.04 66.81 67.03

2 017 ’CVXQP1 L’ 234.41 142.38 169.84 415.49

3 018 ’CVXQP1 M’ 5.16 5.14 13.87 18.89

4 028 ’DUAL1’ 0.17 0.10 0.89 1.11

5 032 ’DUALC1’ 0.61 0.79 26.58 25.95

6 035 ’DUALC8’ 0.17 0.23 1.81 2.48

7 039 ’GOULDQP3’ 0.22 0.23 0.28 0.99

8 042 ’HS268’ 0.53 0.65 5.95 5.86

9 069 ’PRIMAL1’ 10.09 14.76 16.78 16.53

10 070 ’PRIMAL2’ 10.96 16.09 18.26 17.96

11 071 ’PRIMAL3’ 11.28 16.50 18.81 18.50

12 072 ’PRIMAL4’ 13.44 19.61 22.38 22.14

13 073 ’PRIMALC1’ 9.78 14.51 16.52 16.26

14 074 ’PRIMALC2’ 9.73 14.27 16.19 15.95

15 075 ’PRIMALC5’ 10.01 14.63 16.60 16.40

16 076 ’PRIMALC8’ 10.62 15.58 17.71 17.41

17 079 ’QAFIRO’ 32.65 58.93 54.56 53.63

18 080 ’QBANDM’ 47.61 44.87 43.45 42.75

19 081 ’QBEACONF’ 500.00 500.00 227.99 224.73

20 083 ’QBRANDY’ 58.08 55.81 53.99 53.35

21 084 ’QCAPRI’ 78.65 74.56 72.25 71.33

22 085 ’QE226’ 82.19 500.00 388.40 383.64

23 087 ’QFFFFF80’ 333.21 318.67 355.52 345.00

24 088 ’QFORPLAN’ 160.76 152.01 147.27 145.41

25 090 ’QGROW15’ 203.03 500.00 340.63 335.75

26 091 ’QGROW22’ 264.73 250.82 242.93 240.55

27 092 ’QGROW7’ 121.38 114.55 110.63 109.59

28 098 ’QPILOTNO’ 253.61 251.34 254.42 225.82

29 100 ’QRECIPE’ 34.76 500.00 58.01 57.20

30 104 ’QSCFXM1’ 151.47 500.00 255.69 252.71

31 105 ’QSCFXM2’ 204.93 500.00 344.88 341.66

32 106 ’QSCFXM3’ 236.10 500.00 397.89 394.56

33 109 ’QSCSD1’ 87.64 500.00 147.92 145.46

34 110 ’QSCSD6’ 104.74 500.00 176.15 174.71

35 111 ’QSCSD8’ 189.45 179.14 173.31 171.69

36 114 ’QSCTAP3’ 500.00 500.00 500.00 408.50

37 117 ’QSHARE2B’ 88.83 82.29 79.56 78.61

38 128 ’S268’ 0.53 0.65 5.94 5.84

39 132 ’STCQP1’ 0.17 0.14 1.20 1.46

40 138 ’ZECEVIC2’ 18.17 28.61 30.20 29.82


