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Abstract

Emissions trading programs are designed to keep compliance costs low but studies on ac-
tual savings are limited. This paper is the first to conduct a comprehensive analysis of the
cost savings from the Acid Rain Program (ARP), the largest emissions trading program im-
plemented in the U.S.. I estimate a discrete choice model of coal procurement and scrubber
installation to recover structural parameters of compliance cost functions at the generating
unit level. Using the model, I predict compliance choices under a uniform emission stan-
dard that yields the same aggregate emissions as the ARP. I estimate cost savings under
the ARP to be about 265-380 million (1995 USD) per year. The numbers are much smaller
than in previous literature (Carlson et al., 2000; Ellerman et al., 2000). I propose that lower
transport costs reduced cost heterogeneity across generating units, and that improvements
in scrubbing technology and state policies may have also contributed to a decrease in cost
savings.
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1 Introduction

Since the 1970s economists have argued that market-based instruments – in particular, tradable

pollution permits – are preferred over command-and-control approaches to environmental reg-

ulation (Montgomery, 1972; Tietenberg, 1990). The gains from trade, which occur when firms

with higher pollution abatement costs buy permits from lower cost firms, have motivated pol-

icy makers to adopt permit trading programs to control air and water pollution. However,

there has been little research that measures the cost savings from pollution permits retrospec-

tively, based on actual compliance behavior. If the gains from trade are modest, more politically

feasible regulations such as performance standards might be an acceptable alternative.

This paper fills a gap in the literature by estimating the cost savings from the US Acid Rain

Program (ARP) based on observed compliance strategies. The Acid Rain Program, enacted

under Title IV of the 1990 Clean Air Act Amendments, is regarded as a milestone in the history

of cap-and-trade programs in the United States. The program distributed permits to emit

sulfur dioxide (SO2) to electric utilities and allowed sources to trade permits in order to achieve

an annual cap of 8.95 million tons of SO2, approximately half of 1985 emissions. Before the

legislation was passed, the program was predicted to reduce the cost of meeting the SO2 cap

by more than $3 billion per year, compared to a uniform performance standard (GAO, 1994).

The question is whether these costs savings were realized.

To answer this question I estimate a structural model of compliance behavior for all coal-fired

electric generating units (EGUs) covered by the ARP, and use the model to compute the cost sav-

ings achieved by the ARP compared to a uniform performance standard that achieved the same

aggregate emissions reduction. For each unit I model the joint decision of the type of coal to

purchase and whether to install pollution abatement equipment (i.e., a flue-gas desulfurization

unit or scrubber). I assume in making these decisions that plants weight various components of

costs differently, reflecting various regulatory and institutional factors (e.g., whether the plant

is subject to cost-of-service regulation). The main methods of reducing SO2 emissions are to

switch to coal with a low sulfur content and/or to install a flue-gas desulfurization unit (scrub-
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ber), and geographical distance between plants and coal mines determine the heterogeneity in

compliance cost due to transportation cost.

My approach essentially estimates the marginal abatement cost (MAC) ‘curves’ for every gen-

erating unit and uses those to infer the equilibrium in the uniform performance standard case.

In the data I observe the equilibrium emission rates and compliance choices in the ARP for each

unit. By estimating the discrete choice model, I estimate the slope of the functions which are

primarily determined by the transportation cost of coal. This model is used to predict compli-

ance behavior under a performance standard, and to calculate compliance costs and emissions

under the ARP and under a performance standard.1 Estimating a discrete choice model (in-

stead of estimating a continuous function) allows me to take the regulatory and institutional

factors into their decision making.

Previous approaches that study the cost savings of ARP are based on either pre-program data

or on a subset of units only. (Carlson et al., 2000) project the long-run cost savings achieved by

the ARP based on MAC functions estimated using pre-ARP (1985-1995) data. The MAC func-

tions, based on a static cost-minimization model, capture the cost of reducing SO2 emissions

only through fuel switching.2 Carlson et al. (2000)’s estimate of the long-run cost savings from

the ARP, compared to a uniform performance standard, is $780 million (1995 USD) per year –

a figure much lower than other estimates. No paper since Carlson et al. (2000) has economet-

rically modeled the abatement decisions of Phase I and Phase II units using actual compliance

data. Keohane (2007) estimates a discrete choice model of the scrubber uptake decision but

focuses only on the generating units in Phase I of the program. Related research by Arimura

(2002) studies the decision to switch low sulfur coal but also focuses only on Phase I units.

There are, however, reasons to believe that Carlson et al. (2000)’s estimate may overstate cost

savings: It assumes that the ARP will achieve the least-cost solution to emissions reductions. In

fact, state Public Utility Commissions (PUCs), which allowed scrubbers to enter the rate base

under cost-of-service regulation and often encouraged the purchase of in-state coal, could well
1By doing that I am ignoring the benefit side of the policy. My concurrent work (joint with Andrew Chupp, Maureen
Cropper and Nick Muller) addresses this by computing the net benefits of the program.

2(Carlson et al., 2000) assume that no additional scrubbers will be built after 1995, the first year of the ARP.

3



have prevented attainment of the least-cost solution. I explicitly allow for this by estimating a

compliance cost function that allows different policies or incentives to enter the cost function.

This allows units in my model to deviate from the least cost solution as computed by (Carlson

et al., 2000). Second, the costs of coal procurement and scrubber installation have changed since

the 1985-95 period. It is difficult to calculate the impact of these cost changes without making

simplifying assumptions or using actual data.

I model the long-run compliance behavior coal-fired EGUs in the ARP using a mixed logit

model of the choice of whether or not to scrub and what type of coal to buy, described by

geographic location. Each EGU chooses a compliance strategy to minimize the weighted cost

of compliance subject to a state or local emission standard.3 The compliance choice for each

EGU depends on delivered coal price, the cost of scrubbing, the cost of emissions (i.e., permit

cost), on the sulfur and ash content of coal, as well as on the cost of retrofitting the boiler if

the unit switches from high to low sulfur coal after the ARP. Coefficients on the various cost

components are interacted with state-level regulations including electricity deregulation status

and credits for using in-state coal. Given the variation in ash and sulfur content within each

coal basin, I use an iterative procedure to estimate the county within each basin from which

coal is bought.

After estimating the model, compliance choices, aggregate costs and emissions are predicted

under the ARP and under a uniform performance standard that achieves the same aggregate

emissions as achieved under the ARP. Both sets of compliance choices are predicted using

conditional distributions (i.e., distributions conditional on the observed choice being made)

of the random coefficients and the error term in the cost function. Specifically, I treat the

conditional mean of the error term in the cost function as a permanent difference in costs.

This captures unobserved heterogeneity in costs, which is important to capture, given that the

cost savings from emissions trading originate from abatement cost heterogeneity. Unweighted

compliance cost – the estimated cost of coal, costs of scrubbing and additional retrofitting cost

– are compared across different policy scenarios, conditional on predicted choices.4

3The state or local emissions standard is imposed by restricting the set of choices available to each EGU.
4My approach is similar to (Fowlie, 2010) who estimates a random coefficient logit model to look at compliance
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Based on my model, I estimate the cost savings from emissions trading to be between 265 and

380 million (1995 USD) per year. This number is fairly small compared to numbers in Carlson

et al. (2000) and Ellerman et al. (2000). This difference may be explained by reductions in the

cost of transporting coal following railroad deregulation and lower scrubber operating costs.

Both factors lowered compliance costs and reduced heterogeneity in these costs across coal-

fired generating units. State and local emissions standards also constrained the alternatives

that each generating unit could choose. I also find that, conditional on the above factors,

many generating units did not pursue the least-cost options to reducing emissions. Weighted

costs differ significantly from unweighted costs, suggesting that many units did not pursue the

compliance option that yields the lowest cost.

The rest of the paper is organized as follows. Section 2 provides a concise introduction to

the Acid Rain Program. Section 3 presents my model of compliance choice. The data used to

estimate the model are described in Section 4, as are the equations used to predict the cost of the

options in each unit’s choice set. It also provides an overview of compliance strategies chosen.

Section 5 discusses estimation methods and Section 6 presents estimation results. These are

used in Section 7 to predict compliance choices and calculate the cost savings from emissions

trading. Section 8 concludes.

2 A Concise Introduction to the Acid Rain Program5

The objective of the Acid Rain Program was to reduce sulfur dioxide emissions from fossil-

fueled power plants in the U.S. by 50% from the 1985 levels. The program was implemented

in two phases: in Phase I (1995-1999) the most polluting 263 generating units were required to

participate. In Phase II, beginning in 2000, the program was extended to all generating units

choices with regard to the NOx trading program. The fundamental difference between our approaches is that she
estimates the cost indices associated with engineering cost estimates while I am also estimating the underlying
unobserved cost components.

5This section presents only the basic facts about the ARP. For more details about the program, see Joskow,
Schmalensee and Bailey (1998), Ellerman et al. (2000), Burtraw and Szambelan (2009) and Chan et al. (2012).
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with a capacity exceeding 25 megawatts (approximately 1100 coal-fired units).6 The Environ-

mental Protection Agency (EPA) allocated annual permits to each generating unit equal to the

product of the target emission rate (1.2 pounds of SO2 per million Btu) and the unit’s heat

rate in the 1985-97 reference period. Under the ARP units are free to trade permits within and

across states. They are also allowed to ‘bank’ permits for future use but cannot borrow permits

from future years.7 Figure 1 provides an overview of the market over time.

I focus on all coal-fired generating units that participated in the ARP and study their compliance

strategies in Phase II of the program. Units constructed after September 1971 are excluded from

my study as those units were subject to New Source Performance Standards (NSPS), i.e. they

were subject to SO2 emission regulations at least as stringent as those under the ARP when they

were constructed. Plants built between 1971 and September 1977 were required to reduce their

SOw emissions to 1.2 pounds per MMBtu; those built after September of 1977 were, in effect,

required to install scrubbers.

Plants have reduced their SO2 emissions under the ARP either by reducing the sulfur content of

the coal they burn or by installing scrubbers. The cheapest way to comply with the Acid Rain

Program depends primarily on the geographic location of the power plant. For plants located

close to the Powder River Basin (PRB) in Wyoming, burning low-sulfur PRB coal may be the

cheapest option. PRB coal has the lowest minemouth cost and sulfur content of any coal in the

US; however, it has lower heat content than Eastern coal. Boilers deigned to burn high-sulfur

coal may have to be retrofitted to burn PRB coal. There is also the cost of transporting coal to

the plant. Plants in the Midwest benefit from smaller transportation costs hence low sulfur coal

is a common compliance option for these plants. Indeed, differences among plants in the cost

of transporting coal from the PRB are the primary source of heterogeneity in compliance costs

under the ARP. Another compliance option is to install and operate a flue-gas desulfurization

6The Acid Rain Program also regulates gas-fired and oil-fired generating units, which brings the number of regu-
lated generating units to over 1800. I do not study either gas- or oil-fired units emit very small number of sulfur
dioxide therefore I am not studying these uni. Gas units emit small quantities of sulfur dioxide. Oil-fired units
emit at a higher rate, but do not account for a high portion of SO2 emissions.

7Phase I units were allocated allowances based on the emissions level of 2.5 pounds of SO2 per million Btu in the
first five years of the program. Some units also received some bonus allowances each year depending on their state
incentive schemes or fulfilling early emissions reduction requirements. Many papers have documented that these
units use banking as a way to smooth out the compliance cost over time (Schennach, 2000).
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device, commonly known as a scrubber. A scrubber uses an alkaline agent to react with SO2

and typically removes 85-90% of emissions. Figures 2 and 3 show the prevalence of these two

compliance choices by state.

The flexibility of the cap-and-trade program also allows units to use coal with higher sulfur

content and purchase allowances from other plants. Figure 4 shows the difference between

actual emissions and allocations at the state level in 2002. It provides evidence of the geograph-

ical disparity in cost noted above – generating units in Mid-Atlantic region are buying more

permits from the West to cover their emissions, indicating that their average emission rate is

above the 1.2 pounds of SO2 per MMBtu threshold. As Figures 2 and 3 show, most of the units

did not install scrubbers or utilize low sulfur coal from the West. My model captures compli-

ance choices by allowing units to choose the type of coal and the scrubber installation decision,

which ultimately determines the emission rate that each unit wants to achieve. Each strategy is

associated with a premium on sulfur that represents the price of allowances.

Allowance trading among compliance units is an important feature of the Acid Rain Program.

Table 2 lists (for net buyers of permits) the share of emissions that were covered by trading. This

share captures the importance of trading to units that purchased permits to cover emissions.

It is calculated as the excess of emissions over current allowances, minus the stock of permits

held at the beginning of the period, divided by the total emissions. As we can see from Table 2,

permits purchased by net buyers of permits cover about 40% of the emissions in Phase II (2000

onwards). This indicates that trading did, indeed, occur under the program.

Figure 5 presents further evidence of trading activity by showing the transfers of allowances

in each year. Even though trades between related entities (under the same utility) sometimes

make up more than half of the trades in a given year, they could result in efficiency gains to both

entities if their compliance costs differ. Trading activity by itself does not, however, indicate that

the program lowered compliance costs – nor does it provide evidence of their magnitude.

To estimate the magnitude of trading gains under the ARP I estimate a model of coal choice

and the decision whether or not to install a scrubber using observed compliance choices from
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the first three years of Phase II (2000 to 2002). I argue in Section 3 that generating units had

adjusted to the ARP by this time. It is also the case the regulatory regime changed sharply after

this time. EPA revised the regulation on sulfur dioxide by proposing the Clean Air Interstate

Rule (CAIR) in late 2003. This rule would have eventually cut SO2 emissions by 73% below 2003

emissions levels. More importantly, complying units were offered an opportunity to trade Title

IV permits at some unknown trading ratios to the CAIR (Fraas and Richardson, 2010). This

leads to a huge spike in the permit price in 2004, as we can see from Figure 6. The increase in

the demand for permits suggests that power plants were strongly reacting to the introduction

of CAIR and, therefore, that their compliance choices were not be targeted towards the ARP

alone. I therefore do not use compliance choices beyond 2003 in my analysis.8

3 Model

In this section I describe the structural model of compliance choice. I begin the section by

describing the general framework. Then, I will go into details the assumptions, the structure

and identification of my random coefficients choice model where each generating unit picks

types of coal to burn and whether to install a scrubber (pollution control equipment).

3.1 General Framework

The objective of the estimation procedure is to structurally estimate a model that allows me to

predict both (1) the aggregate cost of compliance and (2) aggregate emissions under the ARP

and the uniform emission standard. In the data, I observe the emission rates and also the

compliance choices that the generating units (EGUs) make. To answer the research question

on the magnitude of the cost savings, one has to know (1) the cost of compliance associated

with the choice they picked, as well as (2) the emission rates and the compliance cost for other

compliance choices. I estimate the cost functions associated with difference choices, allowing

8I test my robustness by using average compliance from 2000 to 2003. The fit of the model is a bit worse but the
main results hold.
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for both observed variation in costs (e.g. coal prices and transportation costs), the shadow

value that firms place on sulfur emissions and unobserved factors such as cost of retrofitting

(modifying boiler to burn a different kind of coal), and operating cost associated with low

sulfur coal.

A lot of decisions made by power plants are of discrete nature. When power plants are pick-

ing their choices of coal, they decide on which coal region that they want to buy their coal

from – located from East to West, different regions offer coal of different quality (sulfur and

ash content) associated with different transportation cost. Investing on pollution control equip-

ment, known as scrubbers, is also a discrete choice. Therefore, it is reasonable to estimate a

discrete choice model to understand the tradeoffs between these different compliance choices.

A discrete choice model, which allows discrete jumps in the compliance cost functions, also

helps control for the institutional factors such as electricity market deregulation and credits

from using in-state coal (more details in Section 3.2), which are otherwise hard to handle in a

continuous or discrete-continuous framework.

My model explains observed choices of what type of coal to burn in an EGU and whether the

unit was attached to a scrubber during the period 2000–2002. I assume that these cboices were

made to minimize weighted fuel plus abatement costs, plus the cost of allowances to cover

emissions. The period 2000–2002 representa a window between thee beginning of the ARP

and the change in regulatory regime facing coal-fired power plants. As noted above, plans to

increase the stringency of the SO2 cap under CAIR were announced at the end of 2003.9 This

caused a huge spike in allowance prices in 2004 and, beginning in 2005, led many units to

install scrubbers in anticipation of the new regulatory regime. My goal is to model compliance

behavior under the ARP once power plants had adjusted to it Figure 7, which shows survey

data on compliance strategies by Phase I and II units, suggests I argue that this had occured by

the period 2000–2002. I do, however, vary this window for sensitivity analysis.

The ARP is seen as a cost-effective way of achieving emissions reduction as it gives power

9Although the CAIR was eventually vacated by the courts, it was followed by a series of rules designed to reduce
the SO2 cap by more than 50%.
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plants the flexible to pick their emissions, taking into account a permit price component that

increases with its desired emission rate. With the estimated model, I can then simulate a uni-

form emission standard, which is an emission constraint imposed on all generating units, such

that the aggregate emissions reduction is identical to the ARP. The displacement between the

ARP equilibrium and the constrained equilibrium (under the standard) indicates the difference

in the compliance cost, which can be aggregated as the cost savings achieved from emissions

trading. By estimating a discrete-choice model, not only can I predict what the compliance

choices are going to be under the constrained standard case, but I can also predict the observed

and unobserved compliance cost.

I choose to estimate a static not dynamic model for two reasons. Despite the dynamic nature of

the permit market, I did not pursue a dynamic model that explicitly models the permit banking

decisions (Zhang, 2007). In this paper, I am not interested in studying the permit banking

and trading in the equilibrium. Instead, each generating unit chooses a compliance strategy,

which is associated with its desired SO2 emission rate, that would implicitly incorporate permit

banking motive into account. My model will estimate the shadow price of emissions and

compare that to the allowance prices. Permit prices are stable during the period of my analysis

(see Figure 6) which suggests that the banking motive should not change much.10

Besides the stability of the permit market, price trends for different kinds of coal did not fluc-

tuate much over my study period. If this is violated, the snapshot in 2000–2002 might have

just reflected the fact that particular set of coal is cheap during those years, and this does not

necessarily reflect the compliance choices that they would otherwise make. Even if the prices

do change, it requires some effort by the generating units to change the type of coal they are

using given the fixed cost in altering the specification of the boiler as well as changing any con-

tractual arrangement. Figure 11 plots the minemouth prices for three regions – Appalachians,

Interior (including Illinois Basin) and the West (sources of low sulfur coal) using data in EIA

10Since each compliance strategy would lead to its desired emission rate, the sulfur content of the coal (as well as the
presence of scrubber if the unit chooses to install one) should be sufficient in determining the unit’s actions in the
allowance market. In other words, each unit still has to choose the type of coal that they use besides engaging in
permit banking. Both Schennach (2000) and Zhang (2007) suggest that banking serves as a ‘pollution smoothing’
instrument for Phase I units – most of the allowance bank is owned by Phase I units and the bank of allowances
is slowly drawn down for Phase I units but not for Phase II units.
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(2013). Though prices are trending down from 1990 to 2000, the trends for these three regions

follow each other very closely and there is no evidence of a huge discount from any of the

regions. Therefore, current prices should act as a good proxy for the future prices and a static

compliance cost function can act as a good proxy for the true compliance cost that they face.11

3.2 A Model of Compliance Choice

In my model each generating unit i chooses a compliance strategy to minimize weighted com-

pliance cost. There are in total 2N compliance strategies that each unit can choose – a binary

choice of installing a scrubber as well as choosing one of the N types of coal. Each type of coal

is associated with a mean sulfur and ash content. I assume that each generating unit i has no

market power in both the electricity and the permit market and produces a constant output –

therefore it treats the heat input (in MMBtu, and hence electricity output) as fixed.12 This is

a reasonable assumption as coal-fired power plants are often located at the lower portion of a

electricity load curve and they are to generate electricity given they are the least-cost producers.

Less than 10 generating units indicate that they decreased utilization to comply with the ARP

(as indicated by the EIA survey data in Figure 7). An emissions rate, as a function of the sulfur

content used and the scrubber installation status, and compliance cost can then be generated

from the estimated model.

Location of the plant is the primary source of the observed heterogeneity of the compliance cost.

Plants in Michigan, which are closer to the source of low sulfur coal in Wyoming and Colorado,

will have a lower cost compared to the ones in Pennsylvania due to the transportation cost

component. The delivered price of coal, which is a sum of the minemouth coal price and the

transportation component (which differentiates the plants), will be included in the compliance

cost functions. Each generating unit is also subject to a state or local regulation that prohibits

11Right now the prices that I am using are the ones that coincide with the 2000–2002 period. In future work, I am
going to incorporate other models of price expectations.

12I have tested the production / thermal efficiency of different types of coal and they are not statistically different
from each other. Heat content is the only factor that matters in electricity production and therefore I will base
everything on the heat input in MMBtu.
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them from polluting more than a certain emission rate due to the National Ambient Air Quality

Standard (NAAQS). This standard is effectively a constraint that affects the choice set for each

decision maker. I term this standard the ‘state emission standard’ as this standard is enforced

at the local or state level. The state emission standard is modeled such that generating units

could not choose the kinds of coal that will violate this emission constraint. Therefore, each

boiler minimizes the per MMBtu compliance cost subject to current emission standard:

min
j

Ci(j, β) s.t. (1− θ(j))SULFUR(j) ≤ SULFURi (1)

where Ci(j, β) is the weighted compliance cost per MMBtu for generating unit i which chooses

compliance strategy j. These weights control for different institutional and economic factors

(such as utilizing in-state coal, more details to follow) that affect power plants. SULFURi

represents the local or state emission standard (in pounds of SO2 per MMBtu) facing unit i

and it is taken as exogenously imposed. To take the emission standard constraint into account,

I drop alternatives that violate the constraints based on the 10% quantile of observed sulfur

and ash content. The weighted compliance cost per MMBtu takes the following parametric

functional form:

Ci(j, β) = βFCOALPRICEi(j) + βA ASH(j) + βSSULFUR(j) + βtSULFUR(j)× (1− θ(j))

+1(j = PRB)(βl
0 + βl

1AGEi) + βzSCRUBCOSTi(j) + βM MODIFYi(j) + ε i(j)
(2)

β serves two purposes in the above equation. First, it represents the weights that each manager

is placing on each category of costs (Fowlie, 2010) and the possible non-cost minimizing motives

that they may have respective to each component. Second, it estimates the capital and operating

cost that I will discuss it below. Unlike Fowlie (2010), I do not observe the associated capital

cost regarding each compliance strategy. I attempt to measure the operating cost by controlling

for ash content of coal (per MMBtu) (βA).

The compliance cost functions in equation (2) consist of [1] coal prices (βFCOALPRICEi(j)),

[2] cost of scrubbing (βzSCRUBCOSTi(j)), [3] operating cost (βSSULFUR(j) + βA ASH(j)), [4]

emissions ((1− θ(j))SULFUR(j), where θ(j) = θ if a scrubber is installed, zero otherwise; and

12



θ is the exogenous removal rate of the scrubber), [5] operating cost associated with use of low

sulfur coal (βl
0 + βl

1AGEi), and [6] cost of retrofitting (βM MODIFYi(j)). The last component,

ε i(j). represents the component of the cost that are specific to each alternative j but not observed

by the econometrician. I assume that ε i(j) follows type-I generalized extreme value distributes

and it is identically and independently distributed across generating unit i and alternative j. I

will discuss components [4], [5] and [6] below.

Shadow price of permits will be estimated from the model based on coefficient βt. (1 −

θ(j))SULFUR(j) represents the emission rate and βt in equation (2) is the permit price (as

perceived by firms) and it carries an opportunity cost equal to the permit price. To estimate βS

and βt, I include sulfur content of coal as well as an interaction term between sulfur and scrub

status dummy. Theoretically these coefficients should differ by θ but I did not restrict that in

the estimation due to possible operating cost associated with the sulfur content of coal (repre-

sented by βS) or different weighting of the two by the decision maker. In the counterfactual

both βS and βt will be shut down to indicate that there is no shadow price of permits in the

emission standard case.13

Components [5] and [6] in the above equations are the two types of unobserved retrofitting

costs modeled in my specification. First, using coal from the Powder River Basin often incurs

an additional operating cost due to the fact that it has a lower heat content (hence the need to

pump coal quickly to achieve the same thermal efficiency). Second, there is a potential cost of

modifying the source of the coal. This represents two types of costs – the retrofitting costs that

power plants incur when they modify the types of coal they use (as a boiler is often designed

to burn a subset of coal types only) and the cost of building the required rail road network to

access the mine. I control for these by including the respective dummies in the cost function,

interacted with the age of the boiler. I use data on average compliance choice in 1981–1983

and set the retrofitting dummy equal to one if the coal type used in 2000–2002 differs from

1981–1983.
13As a robustness check, I have allowed a possible operating cost component from βS in the counterfactual. While

the magnitude of the cost savings is similar, the implied abatement cost is significantly lower.
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The weights (which are represented by the β’s) capture some of the differences in economic

incentives that may make generating units non-cost minimizing. Units that are regulated under

rate-based regulation maybe included towards the scrubber option because the scrubber is

viewed as a capital investment included in the rate base (allowed to increase their allowed

revenue). Therefore, estimating these parameters rather than assuming their effects can capture

non-cost minimizing behavior. This may case cost savings to differ from estimates that assume

a least-cost solution.

The coefficients on scrubber cost and coal prices are allowed to be correlated with some ob-

served plant attributes:

βz = βz
0 + βz

1KBIASi + βz
2DEREGi (3a)

βF = βF
0 + βF

1 MINEMOUTHi(j) + βF
2 MATCHi(j) + βF

3 DEREGi (3b)

Several factors may influence the scrubber installation and fuel choice decisions. Minemouth

plants, which are plants located next to a mine, will have higher incentives to use coal from

neighboring mines as they may not wish to change contractual arrangements with the adjacent

mine. Lile and Burtraw (1998) identified plants in three states (Pennsylvania, Ohio and Illinois)

as being biased towards capital investments. Plants that have been deregulated in the electric-

ity market may act more like cost minimizers (placing more weight on the cost of scrubber).

Chan et al. (2013) and Cicala (2013) show that units in deregulated states (or divested units)

purchase coal at a lower price, implying that they certainly put more weight on purchase cost.

MATCHi(j) is a dummy that takes on the value of 1 if the mine and the plant are located in the

same state, to control for state-level incentive programs that promote the use of in-state coal.

The observable and unobserved components in equation (2) are identified using different varia-

tions in the data. Observable components include the price of coal and scrubbing cost, from the

survey forms gathered from the Energy Information Administration (more details in Section

4). Observable cost components can be identified using cross-sectional variation of coal prices

and scrubbing costs. Unobserved components, like the cost of retrofitting mentioned above, are
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identified by using the trade-offs between different compliance options observed in the data

and maximizing the likelihood that the observed compliance choice is observed.

The discrete nature of the cost function makes it less trivial to estimate a discrete-continuous

model, treating SO2 emissions as being a continuous decision variable (Dubin and McFadden,

1984). In such a framework, I have to estimate a coal price equation as a function of sulfur

emissions, which requires a structure that corrects for PRB premium. For instance, one would

need to include heat content as one of the explanatory variable in this pricing equation and

restrict how the price depends on the heat content – in my model it is handled by including a

PRB dummy that represents the cost. It is more flexible and less reliant on the assumption that

the additional cost depends on the difference in heat content. Furthermore, it is very difficult

to correct for the effects of minemouth and in-state coal as these represent discrete jumps in the

pricing equation also.

4 Data

This section provides an overview of the data used in this paper. First, I discuss the data sources

for coal procurement and prices as well as their shortcomings. Then, I briefly talk about the

source for scrubbing cost and regression results for imputing coal prices, as well as other data

that I used in this analysis. Before moving to the empirical framework, I conclude this section

by discussing summary statistics

4.1 Cost and Quality of Coal

Coal procurement data are gathered from EIA-423 and FERC-423 forms, the “Monthly Cost

and Quality of Fuels for Electric Plants Report". In the dataset, monthly cost and quality

are reported for almost all coal transactions, heat, sulfur and ash content by weight, quantity,

contract type, the mine from which the coal was purchased as well as purchase cost (which

includes the transportation cost). Since the cost of storing coal is usually very low and I do
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not observe how much coal is stored, I look at their coal procurement in 2000–2002 as an

approximation.

There are three challenges regarding these data. The first challenge is to define the type of coal

purchased. Figure 9 summarizes the sulfur content of fuel (per MMBtu) of all the coal trans-

actions observed from 1991 to 2010. There are two spikes below sulfur content of 1 lb/MMBtu

– those represent the low and medium sulfur coal respectively. I define six types of coal de-

pending on where the coal originated: North, Central, South Appalachian, Illinois Basin, Uinta

Basin (Colorado and Utah) and Powder River Basin (Wyoming and Montana). Figure 8 shows

the physical location of these coal basins. The summary statistics of their sulfur content are tab-

ulated in Table 3. North Appalachian and Illinois Basin are the main sources of high sulfur coal

– coal plants often buy coal from these regions (often the cheapest coal) and install a scrubber

to remove emissions. They could also use coal from these regions and purchase the right to

pollute by obtaining extra permits. The Central and South Appalachian regions are sources of

medium sulfur coal.

The second challenge is that 20–30% of the plants purchase more than one type of coal, and

5% of them purchase coal not originating from the six regions defined above. To avoid this

problem, I assume that plants could buy from at most two regions – they may buy 100% of

coal from one region or 50% from each of two coal basins.14 I drop generating units that do not

purchase any coal from these six regions.15 Since coal transactions are observed at the plant

level but not at the boiler (generating unit) level, I use the following algorithm to allocate coal

purchases at the unit level: (1) for a plant with minimal difference of emission rates (gathered

from the Continuous Emissions Monitoring System (CEMS) database) across its generating

units, I assume they are using the same kind of coal; (2) for a plant with boilers of significantly

different emission rates, I record the two types of coal used most intensively and assign the one

with the higher observed sulfur content to the boiler with the higher emission rate; (3) for a

14Less than 3% of my sample units purchase significant amounts of coal from more than 2 regions.
15These plants mainly buying lignite coals from Gulf Coast region or importing bituminous coal from Colombia.

I attempted to predict the price from Gulf Coast region but the estimated coal price would imply most of the
plants should have bought coal from this region. This imprecision is mainly driven by low amount of observed
transactions and these transactions are initiated by plants around Gulf Coast region.
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plant with scrubbers installed in some of their boilers, I assign and match the coal based on the

emission rate and observed removal rate. Often times this is the cheapest coal with the highest

sulfur content.

The third challenge is that I observe coal prices only for coal that a plant has purchased. There-

fore, I run the following coal price equation for each coal basin using all transactions from 1991

to 2010 to predict the price of coal for each coal plant and coal basin in my sample16

ln(COALPRICEijt − τDISTANCEij)

= α1 ln SULFURijt + α2 ln ASHijt + α3(ln SULFURijt)
2 + α4(ln ASHijt)

2

+ α5(ln SULFURijt)× (ln ASHijt) + α6SPOTijt + δt + ε ijt (4)

COALPRICEijt is the observed real coal price (in cents per MMBtu) that plant i pays if i pur-

chases from mine j at year t.17 18 DISTANCEij is the county to county rail distance between

plant i and mine j, gathered from CTA Transportation Networks. This is taken as the physical

distance between the plant and the mine as most coal is transported by rail. SULFUR and ASH

are the observed sulfur and ash content (per millions Btu), SPOT is a dummy that indicates a

spot market purchase, and δt is a time dummy. τ represents per ton per mile transportation

cost in cents, and it is estimated using nonlinear least squares, along with other coefficients. By

subtracting the transportation cost component, the left hand side of equation (4) represents the

predicted minemouth price.

Results for all of the six major coal basins are displayed in Table 4. The coefficients on the

year dummies represent the average price for coal transactions in that particular year. Signs

for sulfur content are reasonable as coal of higher sulfur content is cheaper. Transportation

costs are of similar magnitudes as the ones reported and estimated by EIA. Normally plants

do not prefer coal with high ash content as it affects the reliability of a generating units, but

16I have also tried a different specification where sulfur and ash content (and their interaction) have a linear rela-
tionship with delivered coal prices. My estimation and simulation results do not change significantly.

17All costs are expressed in 1995 dollars using the GDP deflator, downloaded from Federal Reserve Bank of St.
Louis.

18‘Mine’ is defined as a specific county where the coal is transported from. Mine-level information is incomplete
that would otherwise allow me to define mine-specific quality.
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the positive correlation between cost and ash content is also found in earlier literature (Lange

and Bellas, 2007). To estimate the average price for each plant and for each coal basin, I use

the weighted distance from plant to each of the coal mines (using observed transactions as

weights) and the average quality at the mine level to predict the average coal price in a region. I

also predict the coal prices at the mine level using the same algorithm.

4.2 Scrubbing Cost and Other Sources of Data

Operating and installation cost for scrubbers are recorded in “Steam-Electric Plant Operation

and Design Report" (EIA-767). As for coal, I observe the scrubber operating cost and installa-

tion cost only for the scrubbed units so I restimate models similar to Lange and Bellas (2005)

to impute the scrubbing costs. I separately estimated two equations, one for operating cost

and another equation for installation cost, using plant characteristics like size, operating hours

and physical location, as well as technical attributes of the scrubbers like age of scrubber, re-

moval rate and percentage of gas entering the scrubber. Results are shown in Table 5. For

scrubber-specific regressors, their average values are used to impute the scrubbing cost. In the

simulation, I assume a scrubber removes 85% of the total emissions.

To estimate equation (2), it is necessary to annualize the scrubber installation cost. Assuming

a 11.33% discount rate and a 25 year lifetime (Ellerman et al., 2000), I annualize the predicted

installation cost and compute the average cost of scrubbing as the sum of predicted operating

cost (based on the size, age and location of the boiler) and annualized installation cost. This is

expressed per MMBtu of heat input. Same as the coal prices, all scrubbing cost in the empirical

section below are imputed costs from the regression results presented earlier.

I treat the unit’s production level as fixed and assume that it does not change in the counter-

factual scenario. The corresponding heat input is taken to be the average heat input used in

2000–2002.19 There is no evidence that using different kinds of coal impacts the thermal effi-

19Heat input used is gathered from the CEMS database; in case that is missing, I supplemented it with data in EIA-
767 form. Technically speaking the heat input use data in CEMS may include generation using energy sources
other than coal, while the data in the EIA-767 isolate that for different fuels. While EIA-767 data may seem more
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ciency of the boiler.20 I also gathered the data on plant location, age of the boiler and NSPS

regulation status using data from EIA-767 and EIA-860 forms.21

4.3 First Look at the Data

Table 10 summarizes the generating units in my sample and the ones that I excluded. The

majority of the excluded units are regulated under New Source Performance Standards (NSPS).

These units were constructed after 1971 and were required to use low sulfur coal or install

scrubbers when they operate. Their compliance decisions were therefore not affected by the

Acid Rain Program.22 For the rest of the units, I either have no data on coal procurement or

they buy coal other than the six major basins that I defined. This brings the total number of units

in my sample to 777. By excluding the NSPS units from both the estimation and simulation,

I am implicitly assuming that NSPS units are not changing their compliance strategies in case

of a uniform emission standard. This is a fair assumption given that they face more stringent

regulations. The otherwise excluded units account for less than 1% of the total emissions.

Before moving to the empirical section of the paper, it is important to understand how gener-

ating units pick their sources of coal. Table 6 summarizes the actual coal prices observed in the

data for the three major coal basins – Powder River Basin (low sulfur), Central Appalachian

(medium sulfur) and North Appalachian (high sulfur). Table 7 presents similar results based

on imputed prices. Powder River Basin is often the cheapest coal facing coal plants. This might

suggest that most coal-fired power plants would purchase coal from the Powder River Basin

(PRB); whereas in practice, only a portion of them do so. Units often incurs additional costs

to burn PRB coal, this includes operating costs to increase the speed of pumping coal into the

superior, it suffers from some data availability and reliability issues. Coal is usually used to generate 95% of the
electricity output and therefore the cost associated with ignoring other fuel types should be small.

20When I run a fixed-effect regression of heat input on power generated, and I cannot reject the hypothesis that the
inverse heat rates (the coefficient on heat input) for low, medium and high sulfur coal are the same from each
other.

21In case the age of a unit is missing, I use the age of the plant as a proxy.
22There are different classes of the NSPS, depending on whether they were constructed after September 1971 (des-

ignated as “D" units) or August 1978 (designated as “Da" units). Although “D" units have more flexibility in
choosing how to meet the NSPS, the required emission standard is still far below the target set by the Acid Rain
Program, therefore I also excluded these units from my analysis.
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boiler to keep the same output plus additional retrofitting costs. Therefore it is empirically

important to estimate the hidden cost (or premium) in using PRB coal.

The identification of compliance strategies relies on the geographical variation in (imputed) coal

prices, the variation in the sulfur and ash content of coal as well as the exogenous variation in

the local emission standard. The geographical distances between the coal mines and plants

determine the type of coal chosen as we can see from the imputed prices in Table 7. Further

evidence can be seen by looking at the biggest buyers for different coal basins. For each coal

basin, I check which states the buyers are from and summarize the results in Table 8. The

bigger buyers are all very close by – Pennsylvania units are buying from North Appalachian,

Midwest (Michigan, Illinois, Missouri) units are getting PRB coal, while South Appalachian

coal are bought by the Alabama coal plants only. Table 9 provides similar summary statistics

by looking at the coal procurement practice in each state.

Another important dimension of the compliance strategies is the choice of scrubbing. Out

of my sample units, 88 (11.34%) scrubbed and 688 other units did not install a scrubber as

of 2002. This is summarized in Table 11 together with the coal blending status of the boiler.

However, out of these 88 units, 44 were installed before 1988 – indicating that they installed

scrubbers for a reason other than the Acid Rain Program. Therefore, I exclude these 44 units

in my estimation but not in the simulations, by restricting these units to choose a compliance

option with scrubber installed. For the other 44 units, the average unit installed a scrubber in

1995 while half of these units installed a scrubber between 1993 and 1997. Table 12 provides

a summary statistics of other variables including the cost of scrubbing for my sample – on

average it is of similar magnitudes with the low sulfur premium observed in the data.

5 Empirical Framework

In this section I discuss the methods used to estimate the model outlined in Section 3. I begin

with the standard conditional logit model. Then, I discuss the estimation using a mixed logit
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model and its benefits compared to using the conditional logit model. To conclude, I discuss

an iterative procedure to more accurately predict coal choice and emissions, developed based

on the random coefficient logit model.

5.1 Estimating a Discrete Choice Model

The most simple and straightforward way to estimate the model in Section 3 is to use a condi-

tional logit model. Given that ε i(j) follows a type-I extreme value distribution, the probability

that alternative j is chosen is given by

Pr(j|Xi, β) =
exp(−C(j, β; Xi))

∑J
j′=1 exp(−C(j′, β; Xi))

(5)

where Xi are all the observable characteristics of i used to estimate C(·). Here the key assump-

tion is that ε i(j), which represents the unobserved cost component, is i.i.d. across generating

units and alternatives. The corresponding likelihood function is given by

L(β|Y, X) = ∑
i

∑
j

1(Yi = j) ln Pr(j|Xi, β) (6)

As mentioned in Section 3, local emission standards are taken into account by eliminating alter-

natives that lead to a violation of the constraint. In predicting scrubber installation decisions,

Keohane (2004) had the state emission standard entered as a of covariate to control for its indi-

rect effects. The state emission standards impact the scrubber installation decision in my model

directly by restricting the feasible choice set.

However the conditional logit model restricts the coefficients to be homogeneous across gener-

ating units. Even after controlling for observed attributes that influence scrubber installation,

allowing the coefficients to vary can capture unobserved heterogeneity that impact generating

units, given that some of these coefficients represent unobserved cost components. More impor-

tantly, underestimating these unobserved heterogeneity will likely lead to an underestimation
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of the cost savings in my simulation. Therefore, random coefficient logit model is used instead

of the conditional logit model. Its log-likelihood function takes the following form:

l(b, Σ) = ∑
i
∑

j

1(Yi = j) ln

∫ ∞

−∞

exp(−C(j; b, Xi))

∑J
j′ exp(−Ci(j′; b, Xi))

f (β|b, Σ)dβ (7)

where Yi is the actual choice made by i, f (β|b, Σ) is the probability distribution for the random

coefficients and b, Σ are the parameters associated with the probability distribution. The inte-

gral has no closed-form solution and it will be approximated by simulation using 200 Halton

draws and I will use maximum simulated likelihood to estimate the parameters associated with

equation (2).

I allow the coefficients on scrubbing cost, operating cost for using Powder River Basin coal and

implicit cost of retrofitting to depend on an idiosyncratic unobserved component ϕ where ϕ is

assumed to be normally distributed with zero mean and a diagonal variance-covariance matrix

Σ. I use the coefficient of coal price to scale all parameters to a dollar value so it is kept as a fixed

coefficient. In the results below, I assume ϕ to be identically and independently distributed for

each generating unit, although these coefficients may be correlated within a plant. 23

5.2 Extension to allow within region coal choices

As seen in Table 3, each coal basin is associated with a range of sulfur content that may not

capture the actual sulfur choice that they want to achieve – they may be buying coal with a

lower sulfur content (while it is still in the same coal basin) to comply with the Acid Rain

Program. In this subsection I introduce an algorithm to take the huge variance into account

without the need to extend the choice set further. A plant may find coal in the West of region 1

better while another plant may find coal in the East of region 1 attractive.

23In future work, l will also check the robustness of my results by allowing a plant or a utility to draw one ϕ for
all associated generating units (Fowlie, 2010). The otherwise ‘panel’ setting assumes a plant as being a decision
maker – I will keep the unit as a decision maker by restricting the random coefficients to be identical across units
within a plant.
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Therefore I extend the random coefficient logit model above to capture a nested decision mak-

ing using the algorithm below:

1. Start with a guess of β(0).

2. For each choice j, I assume that each generating unit i picks a coal type k within j, asso-

ciated with attributes FUELCOST(k; j), SULFUR(k; j) and ASH(k; j), that minimize the

same compliance cost function as in equation (2)

min
k

Ci(k; j) for all i and j (8)

3. After determining the optimal k∗(i, j) for each i and j, unit i will choose k∗(i, j) if it

chooses alternative j. Substitute the attributes of coal type k∗(i, j) to the matrix Xi in the

logit model

4. Re-run the maximum simulated likelihood procedure on the mixed logit model based on

these new attributes from region j to get β∗.

5. Update β(t) = 0.8β(t−1) + 0.2β∗ and repeat Steps 2 to 4 until β(t) is sufficiently close to

β(t−1), i.e. |β(t) − β(t−1)| < 1× 10−6.

This algorithm is reliable as long as the units weigh cost and quality for coal within a region

the same way when they select different regions. Each coal type k is represented as coal from a

mine-producing county (within a coal basin) in my data. I infer the average cost based on the

same regression equation (4) using the rail distance between the plant and mine counties and

the average sulfur and ash content for produced coal in that mine. Similar to the non-nested

model, I allow a unit to buy coal from at most two counties – they can be within the same

region or in different regions (which would end up as two different alternatives). I excluded

mines with fewer than 300 observed coal transactions in 20 years because the observed average

may not coincide with actual quality.
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6 Cost Function Estimation Results

Table 13 displays the estimated coefficients of the cost functions. These coefficients will be

scaled by the coefficient on coal price to give values in dollars. I will discuss the mean effects

of the estimated coefficients, and move to their standard deviation and heterogeneity. First,

as expected, all the signs are positive as we expect ash content (which lowers reliability) and

other retrofitting and operating expenditures to increase compliance costs. Powder River Basin

coal shows a large positive coefficient indicating that even though its coal may be the cheapest

(as demonstrated in Table 6), it bears additional costs that deter units from using it. More

importantly, older generating units incur a higher cost in adopting Powder River Basin coal.

Based on the average age of 44, it is equivalent to a premium in the price of coal of around

50 cents. After adding 50 cents premium to the purchase cost of coal, PRB coal is roughly the

same price as Uinta Basin coal (which does not have a statistically significant premium). Often

times they are the most expensive coal source for Northeast units.

A second point to notice is that deregulated units are more sensitive to coal prices and cost

of scrubbing and they tend to buy cheap coal. This result is also found in earlier literature

on the effect of electricity market deregulation (Cicala, 2013; Chan et al., 2013) who found

that deregulated plants incur a lower cost of coal procurement. This follows the theoretical

predictions that competitiveness in electricity markets provides incentives to power plants to

minimize their cost. Cicala (2013) in particular found that this is done by selecting more efficient

coal mines instead of a pure transfer of rent from mine to plant. Other interaction terms with

state policies also show the expected signs: there is an effective ‘discount’ to using in-state coal,

and units in states with capital intensive investment bias also attach a lower weight to the cost

of scrubbing. I also found a huge discount for minemouth units to use minemouth coal – this

may reflect the value of long-term contracts.

The implied shadow price on the permit, based on the coefficient on the interaction term of

sulfur content of coal and scrubber status, is about $180 (per ton of emissions, constant 1995
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dollars).24 The actual prices were around $150 - $200 in nominal US dollars in 2000–2002, so

the shadow price is not too far from the actual price. This implies that the permit market is

operated efficiently when the estimated shadow price coincides with the observed price.

Third, there is considerable heterogeneity in the impacts of the observables. Table 13 shows a

statistically significant variation in the random coefficients. This again shows the importance of

estimating my model using the more flexible mixed logit approach. These random coefficients

lead to unit-specific parameters as a conditional distribution of parameters, conditional on the

observed choices (Train, 2009). Taken into account these unit-specific variation, 77% of my

sample units chose the compliance strategies which have the highest predicted probability (and

71% of the scrubbing choices). The aggregate predicted emissions are 8.70 million tons of SO2

which are slightly bigger than actual emissions.

Even though a prediction rate of 77% indicates good model fit, it is important to understand

why the other 23% are not choosing the predicted compliance strategies. Traditionally, unob-

served cost differences are dealt with using plant fixed effects. Since my model is static, I work

on the unobserved cost term εi(j) and argue that there must be some unobserved cost compo-

nents that are orthogonal to the observables that lead to the result: if my model predicted i to

use option j but it used j′ instead, it must be more costly for i to use j (or less costly for i to

use j′). These potentially permanent differences in costs may be important because they may

be ‘carried over’ to the uniform emission standard scenario, and that will also lead to more or

less heterogeneity across different compliance units.

Therefore, I estimate the conditional mean of these unobserved cost terms (ε’s) and incorporate

them in the simulation. I first draw 40,000 shuffled Halton draws (Bhat, 2001) for each unit and

each alternative, then select those draws that lead to the highest predicted probability for the

choices made, and average them to estimate the conditional mean. After taking the conditional

means into account, I can perfectly predict compliance choices. Using the predicted choices, I

24I recover the shadow price in a few steps. First, I divide the coefficient by the average removal rate of 85% and
by the coefficient on coal prices to scale the parameter to a value in cents. Second, I multiply the coefficient by
2000 to convert it from pounds to tons and divide that by 2 since 1 unit of sulfur content leads to 2 units of SO2.
Finally, I divide that number by 100 to convert the price from cents to dollars terms.
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compute emissions as the product of emission rates (as a function of sulfur content of coal and

scrubber installation status) and heat input. I plot the predicted and actual emission rates in

Panel A of Figure 10. Due to the nature of the discrete choice model, the predicted emission

rates take on discrete values. They do not perfectly align with the actual ones, though the

trends closely match one another. After taking the unobserved cost components into account,

aggregate emissions are predicted to be 7.97 million. From Panel B of Figure 10, the prediction

errors seems to be centered around zero and the predicted emission rates appear not to be

systematically different from the observed emission rates.

6.1 Comparison to other models

Table 14 compares my baseline model in Table 13 with two other alternative specifications – a

conditional logit modelwith no random coefficients which restricts the effect of observables to

be fixed, and a random coefficient logit model which approximates the coal attributes in each

coal basin by their mean values (without using the iterative algorithm presented in Section 5.3).

The estimates all have the same signs but differ in magnitude. The conditional logit and the

standard mixed logit would have predicted a lower shadow price since the coefficient on the

interaction term of sulfur and scrubbing status is much smaller. These two models also predict

a higher operating and retrofitting for PRB coal.

To further compare the models, I look at how well they predict the compliance choices made by

the units. Not surprisingly, the conditional logit model predicts less than 67% of the compliance

choices. Although the mixed logit model without the iterative algorithm performs slightly

better than the baseline model (79% over 77%), the prediction error in emissions is considerably

larger: baseline model (without accounting for the conditional distribution of ε’s) predicts

emissions to be 8.7 million tons while mixed logit model predicts 10.6 million tons; actual

emissions are 7.16 million tons, as documented in Table 10. Therefore, this alternative mixed

logit model may not be able to predict well the cost savings for an emission standard that

achieves the same emissions reduction, even though it can predict the compliance choices more
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accurately.

7 Estimating Cost Savings from Emissions Trading

In this section, I used the estimated parameters in Section 6 to estimate the cost savings from

the Acid Rain Program. To begin this section, I present the methodology. I use the estimates

to predict the choices under the ARP and compute aggregate emissions and compliance cost.

Then, by removing the allowance price component from the compliance cost function and

limiting the choice set for each unit i, I predict what their compliance choice would be under

a uniform performance standard. After presenting the methodology, I present the simulation

results and discuss the difference between my results and those in the literature.

7.1 Methodology

Before running the counterfactual, I estimate the conditional distributions of the unobserved

terms in my model (conditional on the observed choices made by generating units), namely

the coefficients on scrubber, PRB and retrofitting costs, as well as the unobserved cost terms.

I control for unobserved cost terms using their conditional means, estimated using shuffled

Halton draws. The motivation behind using the conditional distribution is that these can be

permanent unobserved effects. In a dynamic setting one can use fixed effects for each decision

maker to control for the unobserved time-invariant differences, while in my static model I

have to rely on the distributional assumption to compute the conditional distribution. The

unobserved cost terms can lead to a smaller or bigger estimate of the cost savings. Cost savings

are smaller if they suggest that units are ‘stuck’ at an alternative that look attractive to them

but not to the econometrician based on the mean values, or the savings can be larger as more

cross-sectional heterogeneity leads to higher cost savings from theoretical predictions.

Based on the conditional distribution of random coefficients and unobserved costs, I predict the

compliance choice with the highest probability and compute the implied aggregate emissions
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and unweighted compliance cost – I omitted the coefficients and computed the inferred costs

from the coal price equation, scrubbing cost equations, estimated operating costs, retrofitting

costs, as well as the premium to PRB coal, scaled by the coefficient on coal price to give dollar

values. Weights in my model are used to predict actions by generating units while these weights

should be set to one when I predict compliance costs. I scale all parameters that represent cost

using the coefficient on coal price. Two of the three random coefficients – PRB and retrofitting

costs – enter the compliance cost function as conditional mean. The compliance cost function

that will used in the counterfactual scenario takes the following form:

COMPCi(j) = SCRUBCOSTi(j) + COALPRICEi(j) + 1(j = PRB)(Eiβ
l
0 + βl

1AGEi)/βF︸ ︷︷ ︸
Premium for PRB Coal

+ βA ASH(j)/βF︸ ︷︷ ︸
Operating Cost

+ Eiβ
M(j)/βF︸ ︷︷ ︸

Retrofitting Cost

+ ε i(j)/βF︸ ︷︷ ︸
Unobs. Cost

(9)

In the counterfactual scenario where the uniform emission standard is in place, the objective

function (2) is the same except that the emissions components (both βS and βt) are removed.

This implies under a uniform emission standard, generating units should have picked the type

of coal which has the lowest cost, taking into account all the other operating cost components.

This is a different methodology compared to the one used in Keohane (2007) – while Keohane

(2007) assumes they select the otherwise cheapest coal under a uniform emission standard, he

did not estimate the unobserved cost components.

I begin by setting a starting value for an uniform emission standard, and the target is to find a

standard such that the new aggregate emissions match the predicted aggregate emissions in the

ARP. I assume that only the ARP is changed in the counterfactual and the current local emission

standards are still in place. In other words, the uniform emission standards are relevant for i

only if it is tighter than the state emission standard imposed on i. This holds the benefit of the

policy almost constant (ignoring that the social damage may be different across regions (Muller
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and Mendelsohn, 2009)) and the difference in the compliance costs for the two scenarios can be

regarded as the cost savings from the Acid Rain Program.

Using the algorithm developed in Section 5.2, I allow more discrete jumps in the aggregate

emissions that help get the aggregate emissions matched up. Instead of using the observed

choice k within j, I run the algorithm above to predict k within each j since I observe the coal

procurement data with noise – it is more confident for me to say that i uses coal from region

j rather than i uses coal from mine k in region j given that they can blend coal from multiple

mines. By allowing for additional variation within each coal basin, I can also more accurately

predict the sulfur content of coal and hence their respective emissions.

The following list summarizes the above steps in details:

1. Estimate unit-specific scrubbing cost conditional distribution (Revelt and Train, 2000)

µi(β|Di = Y, Xi, b, Σ) =
P(Di = Y|Xi, β) f (β|b, Σ)

P(Di = Y|Xi, b, Σ)
(10)

where Y is the observed choice made by i. This will be used to predict the choice made

by each generating unit i

2. Estimate the conditional mean of the logit error term which represents the unobserved

cost using shuffled Halton Draws. Treat them as separate unit-specific and alternative-

specific constant terms.

3. Compute the total compliance cost as well as predicted emission based on the predicted

choice ĵi for each unit

AGGCOMPC =
I

∑
i=1

COMPCi( ĵi)qi (11)

where qi is the observed heat input in MMBtu.

4. Set βs = βt = 0 and start with a uniform emission standard s̄(0). Repeat the iterative

procedure described in Section 5.2 with coal types that violate with a uniform emission

standard s̄(0) are ruled out. Predict the optimal compliance strategy j that minimizes the

29



new weighted compliance cost function, or maximizes the following probability

P̂ri(j|Xi, b, Σ) =

∫ ∞

−∞

exp(−C̃(j; b, Xi))

∑J
j′ exp(−C̃(j′; b, Xi))

µi(β|Xi, b, Σ)dβ (12)

5. Compute the aggregate compliance cost and emissions as in Step 3, using the same ob-

served heat input in MMBtu. If aggregate emissions exceed the predicted emissions in

the emissions trading case, repeat Step 4 again with s̄(t) = s̄(t−1)− 0.01 until the emissions

are close to or lower than the one in the last iteration.

7.2 Simulation Results

Table 1 reports the simulation results. The implied abatement costs are all expressed in 1995

Million US$ for better comparison across studies. The compliance costs for the uniform stan-

dard are weighted averages of two compliance costs under two standards (by assuming that the

abatement cost curve is locally linear) to achieve the same emissions. The implied abatement

costs can be viewed as the average aggregate costs per year.

Table 1: Simulation Results

Cost ARP Standard Cost Savings

Mean Zero 843.43 1108.51 265.07 (23.91%)
Conditional 688.39 1067.10 378.71 (35.49%)

Prior Literature
Carlson et al. (2000) 1040 1820 780 (42.87%)

Ellerman et al. (2000) 1923 4037 2115 (52.39%)

Note: The numerical figures are all Annual Cost in con-
stant 1995 Million USD.

Table 1 presents two sets of results – numbers in the first row assume that the unobserved

cost components are random (or white noise) and can be treated as mean zero (implying that

the unobserved effects are not permanent) while numbers in the second row assume that the

unobserved costs are permanent and it is equivalent to the conditional means estimated in Step

2. After controlling for the unobserved costs, the cost savings increase from 265.07 million to
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378.71 million. The unobserved cost components are estimated to rationalize the choices made

by generating units – if the unobserved factors that affect the choices are carried over to the

uniform emission standard case, my model may have predicted a smaller cost savings as it

implies less flexibility for them and less cost heterogeneity. On the other hand, from what we

have seen in Table 1, after taking into account the unobserved cost differences, we achieve a

larger estimate of cost savings due to a larger degree of heterogeneity.

Through this simulation exercise I can also predict each unit’s compliance choice under the

uniform emission standard. Table 15 provides an overview of the number of units in each

compliance strategy categories in the ARP and simulated uniform emission standard cases.

Generating units, under the uniform emission standard, cannot use coal from Illinois Basin to

comply without installing a scrubber. Therefore, there is a huge shift in compliance choices

from burning high sulfur coal (and obtain more permits) to either blending high and medium

sulfur coal or install a scrubber. Out of the 171 units that switched their compliance choices,

125 of them were burning high sulfur coal under the cap-and-trade. Since these units are still

using high sulfur coal as their main or secondary source of coal, any general equilibrium effects

that lead to adjustments in coal prices should be of second order.

7.3 Why Are the Cost Savings Low?

The estimated cost savings are much smaller compared to the existing literature. Carlson et al.

(2000) predicted a cost savings of around $780 million (while they estimated a $250 million

actual savings in the first two years); Ellerman et al. (2000) predicted a $2 billion cost sav-

ings in Phase II of the program, while Keohane (2007) estimated a $150 million cost savings

among Phase I Table A (mandatorily complied) units.25 It is worth noting some features of the

methodology used in these studies. Carlson et al. (2000) estimate a long-run cost function, and

assume that plants are cost minimizers and the Acid Rain Program would have achieved the

25Normally we expect a much higher number for cost savings for Phase II as it involves more units and hence
potentially more cost heterogeneity, so results in Keohane (2007) are not directly comparable to the numbers
presented in this paper.
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least cost solution. There are several reasons why that may not be the case: first, plants under

cost-of-service regulation may not have a lot of incentives to minimize their cost, and second,

state-level policies might also magnify the value for certain options. State emission standard,

although it is not as stringent as the ARP target, limits the compliance strategies that different

generating units can use – it is not viable for units to buy permits even if it may be cheapest for

them to do so. In my model I capture some of these differences by allowing the weights to be

correlated with state level policies.

Using estimated operating costs, I study whether a least-cost solution is achieved and I find that

most generating units are not using the cheapest way to comply with the program. I compute

the (unweighted) compliance costs for two most common compliance strategies: (1) fuel switch

to low sulfur coal (PRB) or (2) install a scrubber (with high sulfur coal). For more than half of

the 44 scrubbers installed after 1988, I find that it is 10 to 100 cents cheaper for them to fuel

switch.26 I also compute a per ton cost of SO2 removal for units that use PRB coal and I find

that more than 60% of these units are spending more than the price of a permit to reduce their

SO2 by buying PRB coal – the median unit spends more than $350 to remove one ton while the

shadow price of permit is only $180.

Here I also propose two other reasons why we may see a decrease in cost savings – a decrease

in the transportation cost for Powder River Basin coal and a decrease in the operating cost of

scrubbers. I re-estimated the transportation cost indices using equation (4) by dividing my

sample into 1991-93 and 2001-03. The estimated coal transportation rates (in constant 1995

dollars) are shown in Table 16. The most striking observation is that the transportation cost for

Powder River Basin coal has been cut for almost half in 10 years time, while the minemouth

prices follow almost the same trends for these coal basins (as shown in Figure 11). Since rail

road deregulation, known as the Staggers Rail Act in 1980, the transportation cost for coal has

been drastically decreased (Christensen Associates, 2008; Schmalensee and Stavins, 2013) – it

implies that the coal plants in Ohio do not have to pay that much if they intend to switch to

Powder River Basin coal.27 This also implies that the heterogeneity in compliance cost is smaller

26I get similar numbers by looking at only scrubbers installed beyond 1995.
27Transportation to and from Powder River Basin is traditionally operated by two major rail lines (Busse and Keo-
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compared to earlier literature which is based on the pre-1990 or early 90s levels.

Cost heterogeneity is also reduced through the improvement in scrubber technology. Using the

estimates in the scrubber operating cost equation, I plotted the estimated coefficients on the

time dummies which represent the average operating cost over time in Figure 12. Year 1991

is the excluded category therefore all the coefficients are relative to the 1991 level. Clearly the

operating cost for scrubbers are at a decreasing trend and the operating cost in 2000 is around

40% lower than the 1991 level. This implies that originally units might need to pay a lot to

operate a scrubber, and now the difference is smaller. Bellas (1998) also found similar evidence

in the technological advancement in scrubber technology using the same data source. It also

suggests that the marginal abatement cost is lower than earlier estimates – and this will lead to

a decrease in both the compliance cost and predicted cost savings.

8 Conclusions

In this paper, I quantify the cost savings from a market-based instrument compared to a

command-and-control instrument by using ex-post data in the first three years in Phase II

of the Acid Rain Program (ARP) to help identity their optimal choice of coal as well as a scrub-

ber installation decision. Cost heterogeneity arises primarily because of geographic variation -

some generating units are closer to the sources of low sulfur coal yet some other states may en-

act incentive programs that favor scrubbing. Compared to the existing literature, the approach

allows me to (1) estimate the unobserved components in the compliance cost function, (2) use

ex-post data that covers almost all participants and (3) consider a wider range of strategies that

they can do.

I proceed by first estimating a static random coefficient logit model to identify optimal com-

pliance strategy for regulated generating units and recover parameters associated with the

compliance cost function. I found economically and statistically significant unobserved com-

hane, 2007) and therefore the effect of increasing competition may have significantly decreased transportation rate
for PRB coal compared to other kinds of coal (Pittman, 2010).
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ponents for retrofitting cost as well as additional cost for using Powder River Basin coal, which

rationalizes the puzzling fact that they are often the cheapest source of coal. By estimating

a mixed logit model I can control for statistically significant variation on the impacts of the

covariates on the compliance cost functions. Observed components include electricity market

restructuring status, whether the generating unit is located next to a mine, and other state poli-

cies that might favor scrubbing. As found in the literature on electricity market restructuring,

I found that deregulated units attach a great weight on the coal price and scrubbing cost, that

lead them to act more like cost minimizers.

I include only non-NSPS units in my analysis and my model can predict 77% of their compli-

ance strategies. I estimate a conditional mean for the unobserved cost components and treat

them as a possible permanent effect. Based on my estimated model, I simulate what would

happen to the aggregate compliance cost when we have a uniform emission standard that

achieves the same emissions reduction compared to the ARP. I found that the cost savings is

around 265–380 million dollars (in 1995 US dollars) per year, depending on how the unob-

served cost components are treated. This number is considerably smaller than estimates from

earlier literature. I postulate that three effects may lead to the difference in our estimates: (1)

lower transportation cost induces less cost heterogeneity across generating units, (2) technolog-

ical improvement in scrubbing technology also lowers the marginal abatement cost curves, (3)

state policies, in particular state emission standard, might have limited their choice sets and

prevented the coal-fired units to achieve the least cost solution.

This analysis helps us to take a step back when we are designing environmental policies –

emissions trading program may not be always superior than other less flexible regimes. Often

times political economy in designing these programs, although sometimes these efforts are

trying to make it more efficient, impedes the program from operating efficiently. One great

example is the failure of the Clean Air Interstate Rule (CAIR) in 2005. After the EPA learned

that the inter-state transport of pollutant is affecting upwind and downwind states differently

(Fraas and Richardson, 2010), EPA proposes the CAIR to phase out ARP. The Court ruled that

the EPA has to re-design a new policy when it was striked down by the court in 2008 as the rule
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is allowing unconstitutional trade between states. Afterwards, the EPA proposes Transport Rule

which is also deemed unconstitutional later in 2012 because of it is granting inter-state trading

rights too. Not only it generates huge regulatory uncertainty on the permit market in ARP, but

it also affects the efficiency of the environmental regulation as it got delayed. Tightening up

state emission standards, which is less flexible than adopting a cap-and-trade program, may

not be a terrible alternative if it turns out that cost savings are not that large.

While the results apply to the largest trading program in the U.S., the claim here that emissions

trading may not yield such a large cost savings may not hold in other trading programs. My

estimation is based on coal-fired electricity generators, and it is on this particular trading pro-

gram. Other markets might have less influenced by the state or federal government; also, there

may be a large cost heterogeneity across compliers – in those cases, other firms may be able to

achieve the least-cost solutions and capture the large cost savings. Further research is required

on ex post evaluations of policies – in general ex ante studies might have inflated the numbers

of interest and things might have changed. Studying the effects of state-level policies on the

efficiency on federal-level policies remain an important direction for future research.
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Figure 1: Allowance Bank

Source: EPA (2009)
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Figure 2: Percentage of Scrubbed Units in 2002

Figure 3: Percentage of Units Utilizing Low Sulfur Coal in 2002

N.B. Based on units where coal procurement data are available.
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Figure 4: Emissions Net of Allocations in 2002

Figure 5: Allowance Transferred

Source: EPA (2009)
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Figure 6: Permit Price

Figure 7: Stable Compliance Strategy
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Figure 8: Coal Basins

Source: Enviroknow

Figure 9: Distribution of Sulfur Content
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Figure 10: Predicted Emission Rate

Panel A: Scatter Plot

Panel B: Difference between Actual and Predicted Emission Rate
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Figure 11: Minemouth Price for Coal

Source: EIA (2013)
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Figure 12: Predicted Operating Cost for Scrubbers

Table 2: Share of Emissions Covered by Trading

Share (in %) Emissions (in 1000’s tons)
Year All Excl. NSPS All Excl. NSPS

1995 19.88 19.88 5246.7 4957.6
1996 35.54 33.85 5370.3 5231.5
1997 31.15 30.62 5429.9 5302.5
1998 26.56 24.95 5217.5 5115.1
1999 23.71 23.71 4903.2 4816.2
2000 39.74 43.36 10587.3 8159.4
2001 35.46 37.67 9951.8 7597.1
2002 39.59 42.14 9749.1 7431.1
2003 42.18 44.27 10004.0 7667.0
2004 39.09 40.88 9729.8 7462.7
2005 39.98 40.73 9727.1 7448.1
“Share of Emissions Covered by Trading" is defined as the
ratio of the net purchase (positive only) of allowances over
the emissions, deducting the permits carried over the next
period (in the case where total permit holding exceeds emis-
sions).
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Table 3: List of Coal Basins

Basin Mean Sulfur Range

North App. 3.700 (1.895,6.207)
Central App. 1.575 (1.066,2.228)
South App. 2.118 (1.078,3.225)

Illinois Basin 4.499 (2.063,6.462)
Uinta Basin 0.990 (0.659,1.663)

Powder River Basin 0.758 (0.462,1.059)
Unit is in pounds of SO2 per MMBtu. Range is based on the
observed 10th to 90th percentile. Summary statistics are based
on observed transaction data from 1991 to 2010.
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Table 4: Cost Equation for Coal

NA CA SA IL UB PRB

Year = 1999 3.758*** 4.564*** 4.483*** 3.815*** 5.046*** 1.211***
(0.027) (0.023) (0.135) (0.045) (0.146) (0.353)

Year = 2000 3.668*** 4.501*** 4.405*** 3.772*** 4.969*** 1.069***
(0.028) (0.023) (0.135) (0.045) (0.146) (0.353)

Year = 2001 3.700*** 4.665*** 4.417*** 3.833*** 5.028*** 1.002***
(0.028) (0.023) (0.135) (0.045) (0.146) (0.353)

Year = 2002 3.772*** 4.662*** 4.390*** 3.855*** 5.000*** 1.076***
(0.027) (0.023) (0.136) (0.045) (0.145) (0.353)

Year = 2003 3.773*** 4.653*** 4.344*** 3.828*** 4.969*** 1.064***
(0.027) (0.023) (0.136) (0.045) (0.146) (0.353)

ln SULFUR -0.370*** -0.420*** -0.192** -0.285*** 0.242*** -0.464***
(0.015) (0.017) (0.089) (0.023) (0.070) (0.163)

(ln SULFUR)2 -0.053*** -0.076*** -0.064*** 0.002 0.063*** 0.149***
(0.004) (0.005) (0.015) (0.004) (0.016) (0.020)

ln ASH 0.997*** 0.243*** 0.541*** 0.892*** -0.404*** 1.938***
(0.023) (0.020) (0.121) (0.042) (0.121) (0.298)

(ln ASH)2 -0.243*** -0.094*** -0.135*** -0.235*** 0.070*** -0.362***
(0.005) (0.005) (0.028) (0.010) (0.025) (0.063)

ln SULFUR× ln ASH 0.081*** 0.144*** -0.032 0.056*** -0.084*** 0.323***
(0.007) (0.008) (0.038) (0.011) (0.031) (0.072)

Spot Market -0.022*** -0.009*** -0.153*** -0.034*** -0.123*** -0.155***
(0.002) (0.001) (0.008) (0.003) (0.008) (0.007)

Transport (Per Mile-Ton) 1.312*** 1.483*** 0.549*** 1.781*** 1.008*** 0.971***
(0.018) (0.011) (0.120) (0.016) (0.012) (0.006)

Observations 81987 165073 6166 47799 16082 70155
Adjusted R2 0.938 0.953 0.953 0.948 0.925 0.929
Note: For all regressions, the dependent variable is Log(Cost) where cost is defined as cents per million Btu.
‘NA’, ‘CA’, ‘SA’, ‘IL’, ‘UB’ and ‘PRB’ are abbreviations for North, Central, South Appalachians, Illinois Basin,
Uinta Basin and Powder River Basin respectively. The above regressions also include other year dummies
which are omitted here for exposition purposes. All standard errors are robust standard errors. *, **, and ***
indicate significance at the 10, 5, and 1 percent levels.
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Table 5: Cost Equation for Scrubbers

(1) (2) (3)
Log(OM Cost) Log(Install Cost)

Log(UnitAge) 0.374**
(0.164)

Log(ScrubAge) 0.131*** 0.098*
(0.048) (0.056)

Log(CoalUse) 0.124 0.453*** 0.929***
(0.081) (0.048) (0.102)

PRB = 1 -0.451*** -0.418***
(0.118) (0.126)

Log(Removal) 0.359*** 0.371*** 0.866***
(0.090) (0.099) (0.245)

Log(Hour) 0.589*** 0.423*** -0.527**
(0.095) (0.104) (0.239)

Federal Reg. 0.160 0.219** -0.460**
(0.106) (0.107) (0.230)

Log(Exit Rate) 0.491***
(0.109)

Log(% Entering) 0.531** 0.845*** 0.020
(0.243) (0.228) (0.629)

Northeast 0.680*** 0.796*** 0.467
(0.205) (0.268) (0.361)

South -0.008 -0.004 0.157
(0.170) (0.175) (0.245)

Midwest 0.175 0.141 0.275
(0.174) (0.178) (0.241)

Observations 4213 4218 364
Adjusted R2 0.468 0.412 0.495
Note: All standard errors are robust standard errors clustered at the
plant level. *, **, and *** indicate significance at the 10, 5, and 1 percent
levels. The regressions for operating cost also include year dummies,
and are based on observed scrubbing costs for all generating units from
1991 to 2010. The regression for capital cost includes dummies for the
installation decade.
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Table 6: Observed Delivered Coal Prices, in 1995 cents

Northeast Midwest South
Period PRB CA NA PRB CA NA PRB CA NA

1998-2001 157.0 122.8 92.1 122.7 112.9 108.5 133.4 111.3
2002-2005 168.7 189.5 138.6 86.6 145.1 116.3 103.7 157.2 126.1
2006-2010 202.8 256.9 191.3 116.1 204.8 177.6 136.1 237.1 177.8

Table 7: Imputed Delivered Coal Prices, in 1995 cents

Coal Basin West Northeast Midwest South

North Appalachian 215.6 126.0 145.4 148.6
Central Appalachian 242.1 160.0 163.4 155.6
South Appalachian 177.5 159.0 154.3 148.3
Illinois Basin 226.0 164.9 136.1 151.2
Uinta Basin 122.2 180.3 149.3 170.3
Powder River Basin 82.6 135.6 95.2 128.4

Table 8: Major Buyers from the Coal Basins

Coal Basin Three Major States Other Buyers

North Appalachian PA (29.41%) DE, IA, IN, MD, MI, NC,
OH (17.65%) NH, NJ, WI, WV
NY (13.53%)

Central Appalachian NC (16.19%) AL, CT, DE, FL, IN, KY,
OH (15.11%) MA, MD, MI, MO, NJ, NY,
GA (9.71%) PA, SC, TN, VA, WI, WV

South Appalachian AL (100%) –

Illinois Basin IN (34.43%) AL, FL, IA, KY, MN, MO,
IL (17.21%) MS, WI
TN (12.30%)

Uinta Basin CO (17.54%) AZ, IL, KS, MA, MI, MO,
IA (12.28%) NM, NV, UT, WI
KY (12.28%)

Powder River Basin MI (17.94%) AZ, CO, IA, IN, KS, KY,
IL (15.25%) MN, MT, ND, NE, OH, SD,
MO (12.56%) WA, WI, WY
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Table 9: Coal Procurement by Non-NSPS Units

(All in %)
State Total NA CA SA IL UB PRB Others

AL 33 0 36.36 60.60 33.33 0 0 0
AZ 5 0 0 0 0 80.00 20.00 0
CO 15 0 0 0 0 66.67 33.33 0
CT 1 0 100.00 0 0 0 0 0
DE 5 60.00 40.00 0 0 0 0 0
FL 17 0 58.82 0 35.29 0 0 5.88
GA 29 0 93.10 0 0 0 0 6.90
IA 30 3.33 0 0 16.67 23.33 60.00 10.00
IL 55 0 0 0 38.18 3.64 61.82 0
IN 56 10.71 19.64 0 75.00 0 16.07 0
KS 11 0 0 0 0 45.45 90.91 9.09
KY 39 0 35.90 0 35.90 17.95 5.13 5.13
MA 5 0 80.00 0 0 20.00 0 0
MD 13 100.00 30.77 0 0 0 0 0
MI 46 15.22 41.30 0 0 2.17 86.96 0
MN 20 0 0 0 5.00 0 85.00 10.00
MO 30 0 6.67 0 10.00 10.00 93.33 0
MS 2 0 0 0 100.00 0 0 0
MT 2 0 0 0 0 0 100.00 0
NC 49 4.08 91.84 0 0 0 0 8.16
ND 3 0 0 0 0 0 100.00 0
NE 8 0 0 0 0 0 100.00 0
NH 5 100.00 0 0 0 0 0 0
NJ 6 66.67 66.67 0 0 0 0 0
NM 6 0 0 0 0 100.00 0 0
NV 4 0 0 0 0 100.00 0 0
NY 37 62.16 27.03 0 0 0 0 21.62
OH 68 44.12 61.76 0 0 0 17.65 0
PA 53 94.34 1.89 0 0 0 0 5.66
SC 21 0 80.95 0 0 0 0 19.05
SD 1 0 0 0 0 0 100.00 0
TN 29 0 48.28 0 51.72 0 0 0
TX 1 0 0 0 0 0 0 100.00
UT 3 0 0 0 0 100.00 0 0
VA 31 0 80.65 0 0 0 0 19.35
WA 2 0 0 0 0 0 100.00 0
WI 33 18.18 6.06 0 6.06 12.12 60.61 6.06
WV 30 66.67 40.00 0 0 0 0 0
WY 11 0 0 0 0 0 100.00 0
Note: This table is compiled using all non-NSPS coal-fired generating units avail-
able. Proportions are calculated as the percentage of units in the respective state that
procure coal from the region specified during my sample period. ‘NA’, ‘CA’, ‘SA’,
‘IL’, ‘UB’ and ‘PRB’ are abbreviations for North, Central, South Appalachians, Illinois
Basin, Uinta Basin and Powder River Basin respectively. ‘Others’ represent the pro-
portion of units that did NOT make any significant purchase to the six major coal
basins. Proportions may not sum up to 100 due to the fact that they may blend coal
from more than one region.
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Table 10: Sample in Estimation and Simulation

Class Count Emissions Heat Input

Sample 777 7160.6 11174.7
NSPS D / Da 246 2341.6 8443.4
Excluded 69 357.3 593.3
Note: Emissions are in 1000’s tons and heat input are
in million of MMBtu.

Table 11: Coal Blending and Scrubbing Status for Sample Units

Scrub?
Blend? No Yes Total

No 600 83 683
Yes 89 5 94

Total 689 88 777

Table 12: Other Summary Statistics

Variable Mean Std.Dev.

Scrub Cost (in cents per MMBtu) 38.64 23.96
Boiler Age 43.43 10.08
Deregulated 0.3376 0.473
Phase 1 0.3840 0.487
Heat Input (in 1000s MMBtu) 14392.1 14365.5
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Table 13: Estimates for the Cost Function

Sulfur 6.3711*** Scrub Cost 0.2752**
(0.9223) (0.1313)

Sulfur × Scrub -2.4772** Scrub Cost × Bias -0.0456
(1.1053) (0.0844)

Ash 0.9870*** Scrub Cost × Restr. 0.1198
(0.3533) (0.1000)

Coal Price 0.1607*** PRB 4.7562***
(0.0139) (1.1498)

Coal Price × In-state -0.0107** PRB × Age 0.0599***
(0.0041) (0.0166)

Coal Price × Restr. 0.0149 Part. PRB 3.7166***
(0.0115) (0.7330)

Coal Price × Minemouth -0.0652*** Part. PRB × Age 0.0263*
(0.0161) (0.0138)

Modification 2.6756*** Part. Modif. 1.7527***
(0.3175) (0.1472)

Standard Deviation
σZ 0.1256* σM 1.8300***

(0.0758) (0.4627)

σPRB 1.0323*
(0.5977)

Note: All standard errors are resulted from a bootstrap process that estimates coal price
equation, scrubbing cost equations and the mixed logit model. *, **, and *** indicate statistical
significance at the 10, 5, and 1 percent levels. In all specifications NSPS units are dropped. All
columns are estimated based on observed choices for generating units that have not installed
a scrubber or they have installed a scrubber after 1988. The 51st to 200th Halton draws are
used to simulate the integral. “Part." indicates separate dummies for choices that blend PRB
with other kinds of coal (Part. PRB) or modify 50% of their compliance choices from the
choices in 1983.
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Table 14: Comparison Across Models

Baseline Cond. Logit Mixed Logit

Estimates

Sulfur 6.3711*** 2.9876*** 3.9460***
(0.9223) (0.2265) (0.3158)

Sulfur × Scrub -2.4772** -0.6765*** -1.3212***
(1.1053) (0.2503) (0.3616)

Coal Price 0.1607*** 0.1479*** 0.1951***
(0.0139) (0.0116) (0.0162)

Modification 2.6756*** 2.3069*** 3.3048***
(0.3175) (0.2052) (0.3884)

Scrub Cost 0.2752** 0.0969*** 0.1808***
(0.1313) (0.0121) (0.0336)

PRB 4.7562*** 8.9360*** 12.7364***
(1.1498) (0.9350) (1.3909)

Log Likelihood -867.94 -880.71 -850.15
Prediction (%) 77.48 66.75 79.25
Pred. Emissions 8.7008 11.1745 10.6296
Note: All models are based on the same covariates presented in Table
13, except for omitting the standard deviations for the random coeffi-
cients for conditional logit. ‘Baseline’ model uses the same specification
as in Table 13 while ‘Mixed Logit’ is otherwise the same except that it
is not run on an iterative algorithm correcting for variation within each
coal basin, i.e. only mean values in each coal basin are used. All models
are based on the same set of sample units (777). All standard errors are
robust standard errors except for the ‘Baseline’ model which is boot-
strapped standard errors. *, **, and *** indicate statistical significance
at the 10, 5, and 1 percent levels.
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Table 15: Compliance Choice in ARP and Emission Standard

Number of Units
Choice ARP Standard

No Scrubber 689 665
High 201 76
Med 215 214
Low 196 177
High+Med 41 155
High+Low 11 33
Med+Low 22 10

Scrubber 88 112
High 48 74
Med 3 1
Low 35 35

Note: Total number of units = 777. ‘High’
includes (a mix of) Illinois Basin and North
Appalachian, ‘Med’ includes (a mix of)
South and Central Appalachian, and ‘Low’
includes (a mix of) Uinta Basin and Pow-
der River Basin. Categories for coal blend-
ing for scrubbers are omitted for exposi-
tion purposes.

Table 16: Est. Coal Transportation Rate (in cents)

1991-93 2001-03

Powder River Basin 1.11 0.66
Central Appalachian 1.15 1.78
North Appalachian 1.38 1.30

Illinois Basin 1.80 1.39
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