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Novelty 

 

This paper studied the H-infinite control problem of continuous-time Markovian jumping linear 

systems via a new online iterative algorithm. The main study of this paper are within the scope of 

International Journal of Robust and Nonlinear Control, such as the model based control design, the 

H-infinite controller design, the Lyapunov based techniques, the adptive learning control methods, 

the relevant iterative algorithm and etc.  

 

The main contribution of this paper are mainly as follows: 

1. This paper first studied a new online iterative algorithm to solve the H-infinite control problem 

of continuous-time Markovian jumping linear systems. 

2. Based on the on-line iterative algorithm and a new online decoupling technique named 

Subsystems Transformation method, a set of linear subsystems which implementation in parallel 

are obtained. 

3. By means of the online Adaptive Dynamic Programming technique, the two-player zero-sum 

game and the coupled game algebraic Riccati equation (CGARE) are solved. The convergence of 

the novel policy iteration algorithm is also established. 

4. We also proposed the relevant simulation results to show the effectiveness and applicability of 

the proposed methods. 

 

The relevant Keywords which correspond with the topics covered by the journal and dealt with in 

the paper are as follows: 

control design, control applications, adaptive control, H-infinite control 
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Abstract: A new online iterative algorithm for solving the H∞ control problem of continuous-time Marko-

vian jumping linear systems (MJLSs) is developed. For comparison, an available off-line iterative algorithm for

converging to the solution of the H∞ control problem is firstly proposed. Based on the off-line iterative algorithm

and a new online decoupling technique named Subsystems Transformation method, a set of linear subsystems

which implementation in parallel are obtained. There, by means of the online Adaptive Dynamic Programming

(ADP) technique, the two-player zero-sum game and the coupled game algebraic Riccati equation (CGARE) are

solved. The convergence of the novel policy iteration algorithm is also established. At last, simulation results

have illustrated the effectiveness and applicability of these two methods.

Keywords: Markov jump linear systems (MJLSs); H∞ control; Subsystems Transformation; Coupled game

algebraic Riccati equation (CGARE); Online

1 Introduction

Over the last few years, continuous-time Approximate/Adaptive Dynamic Programming (ADP) approach has

been widely applied to the optimal controller design for linear/nonlinear systems (see, for instance [1, 16, 23, 31,

34, 35]). In recent years, this method has been widely used to solve the zero-sum infinite horizon differential

games control problems [32, 33, 38]. The greatest advantage of this algorithm is that it can solve the optimal

problems without using the systems dynamics [23], and the convergence speed of the online iterative algorithm

shows much faster [38].

Markovian jumping linear systems (MJLSs) have attracted much research attention because they may effec-

tively represent a class of plants with abrupt variations in their structures, such as random failures of components,

∗Corresponding author. Tel: +86 0551 63861413, fax: +86 0551 63861413. Email addresses: shuping.he@ahu.edu.cn(S. He),

sjky5211@163.com(J. Song), zhengtao.ding@manchester.ac.uk (Z. Ding), fliu@jiangnan.edu.cn (F. Liu).
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sudden environmental disturbances, changing subsystems interconnections and abrupt variations in the operating

point of a nonlinear plant. Specially, a number of jump systems were modeled by the continuous-time MJLSs,

which belong to the sort of hybrid systems since the states take values continuously from the real number field

and the modes takes discrete values [15]. Some relevant results on the stability, stabilization, and optimal control

of continuous-time MJLSs can be found in [5, 7], and the references therein.

As one of the most important robust control methods, H∞ control has attracted much attention over the past

decades [12, 25], since it can eliminate the effect of disturbance and minimize a desired performance when the

worst case disturbance is implemented. It is well known that finding the H∞ controller of MJLSs is equivalent

to finding the unique positive-definite sequence solution for a set of coupled game algebraic Riccati equation

(CGARE) [8]. Parallel Algorithm (PA) with a sequence of Lyapunov algebraic equations has been proposed by

Gajic and Borno in [10] to converge to the solution of the coupled algebraic Riccati equations that associated with

the H2 optimal control problem for continuous-time MJLSs. Recently, in [24], an implicit sequential algorithm

was developed for solving coupled Lyapunov matrix equations of continuous-time MJLSs. To solve the coupled

stochastic Riccati equations, a heuristic iteration algorithm has been proposed for H∞ control of stochastic

systems in [29].

It should be pointed out that almost all the aforementioned results are proposed by the off-line numerical

algorithms, which implicitly assumes that the exactly information of the MJLSs dynamics is known as a priori.

However, such assumption is no longer true in many practical applications. Motivated by the fact, the main

objective of this work is to develop an algorithm for solving H∞ control problem for the continuous-time MJLSs

without using the information about the system matrices by using continuous-time ADP approach.

At first, we first extend the framework of PA in [4, 10] to an off-line iterative algorithm for solving the CGARE

for the H∞ control of continuous-time MJLSs. Subsequently, a new decoupling technique called Subsystem Trans-

formation [13] is introduced to separate the embedded state-coupled information (i.e. transition probabilities

associated jumping modes) of MJLSs into a explicit formula. Then, motivated by the work [38], we present a

continuous-time ADP algorithm associated with the integral reinforcement learning to find the Nash equilibrium

solution for the two-player zero-sum differential game. The new ADP iterative computing algorithm is based on

the framework of two-step policy iteration. At last, the new policy iteration algorithm is implemented online by

means of the Recursive Least Squares (RLS), and the relevant simulation examples are also given.

Notation. In the sequel, if not explicitly stated, matrices are assumed to have compatible dimensions.‖ · ‖
denotes the Euclidean norm for vectors or the spectral norm of matrices. Ln2 [0 N ] is the space of n-dimensional

square integrable function vector over [0N ]. E{·} denotes the mathematics statistical expectation of the stochastic

process or vector. The superscript ”T” represents the transpose. vec(A) is defined to be the mn-vector formed

by stacking the columns of A ∈ Rn×m on top of one anther, i.e. vec(A) =
[
aT

1 aT
2 · · · aT

m

]T
, where ai ∈ Rn

are the columns of A. ⊗ represents the Kronecker product.

2 Problem Formulation and Off-line Iterative Algorithm

2.1 Problem formulation

For a given probability space (Ω,F ,P), where Ω is the sample space, F is the algebra of events, and P is

the probability measure defined on F . Define the {r(t), t ≥ 0} is a continuous-time discrete-state Markovian

process with left continuous trajectories [26] and taking values from a finite set S = {1, 2, · · · , N} with transition

2
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probabilities given by

Pr{r(t+ ∆t) = j|r(t) = i} =

{
πij∆t+ o(∆t) j 6= i,

1 + πii∆t+ o(∆t) j = i,
(1)

where ∆t > 0, lim∆t→0
o(∆t)

∆t = 0, and πij ≥ 0 (j 6= i) is the transition rate from mode i at time t to mode j at

time t+ ∆t and

πii = −
∑

j∈S,j 6=i
πij . (2)

Consider the following continuous-time MJLSs with external disturbance over the given probability space

(Ω,F ,P): 



ẋ(t) = A(r(t))x(t) +B1(r(t))d(t) +B2(r(t))u(t)

y(t) =

[
C(r(t))x(t)

D(r(t))u(t)

]
(3)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, d(t) ∈ Rp is the disturbance input which

belongs to L2[0,∞), y(t) ∈ Rq is the control output.

The coefficient matrices in MJLSs (1)-(3) are mode-dependent real matrices with appropriate dimensions. To

simplify the mathematical notation, when r(t) = i (i ∈ S), denoting A(r(t)), B1(r(t)), B2(r(t)), C(r(t)) and

D(r(t)) as Ai, B1i, B2i, Ci and Di, respectively. In addition, we suppose that the pair (Ai, B2i) is stochastically

stabilizable.

Subject to the MJLSs (1)-(3), our aim is to find the following mode-dependent state-feedback controller:

u(t) = Kix(t), (4)

such that, for all nonzero d(t) ∈ L∞[0,∞) ∩ L2[0,∞),

‖y(t)‖2,E ≤ γ‖d(t)‖2, (5)

where γ > 0 is a prescribed level of disturbance attenuation to be achieved and

‖y(t)‖2,E = E
{∫ ∞

0

yT(t)y(t)dt
}1/2

, ‖d(t)‖2 =
[ ∫ ∞

0

dT(t)d(t)dt
]1/2

.

It is well known that the solution to the H∞ control problem is the saddle point solution to a two-player

zero-sum game, where the control input u(t) is a minimizing mode-dependent player and the disturbance input

d(t) is a maximizing mode-dependent player [9, 22]. Define a infinite horizon quadratic performance index as

V (u,w) = E

∫ ∞

0

(
‖y(t)‖2 − γ2‖d(t)‖2

)
dt = E

∫ ∞

0

[
xT(t)Qix(t) + uT(t)Riu(t)− γ2dT(t)d(t)

]
dt, (6)

where Qi = CT
i Ci and Ri = DT

i Di. The goal of the game problem is to find the following Nash equilibrium

solution (u∗(t), d∗(t)):

u∗(t) = Kix(t) = −R−1
i BT

2iPix(t), (7)

d∗(t) = Lix(t) = γ−2BT
1iPix(t), (8)

where matrix PT
i = Pi > 0 is the solution of the following CGARE:

AT
i Pi + PiAi +

N∑

j=1

πijPj +Qi + γ−2PiB1iB
T
1iPi − PiB2iR

−1
i BT

2iPi = 0. (9)

3
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Obviously, finding the Nash equilibrium solution to the game problem of MJLSs (1)-(3) is equivalent to solving

the above CGARE (9). Generally, in order to solve the CGARE (9), the exact information of the system matrix

Ai is required.

In this work, our primary objective is to remove this limitation by using continuous-time ADP approach.

Before proceeding with the study, we will introduce an off-line iterative algorithm for solving the CGARE (9).

The off-line iterative algorithm will be used to develop subsystems transformation technique and finally help us

to prove the proposed online iteration algorithm.

2.2 An off-line iterative algorithm for solving the CGARE

In [10], PA was developed to solve the coupled algebraic Riccati equations of continuous-time MJLSs. In the

spirit of this work, we propose a iteration method based on PA to converge to the solutions of the CGARE of

the H∞ control problem for an MJLSs (1)-(3). Thereafter, we will prove that the PA is essentially the Newton’s

method. The following Assumption 1 is needed to obtain the off-line algorithm.

Assumption 1Assumption 1Assumption 1 [10] The triples (Ai, B2i, Ci), i ∈ S, are stabilizable-detectable and

maxi∈S

{
infΓi

|λmax[

∫ ∞

0

eM̃
Tt × eM̃tdt]

}
< 1, (10)

where M̃ = Ai + γ−2B1iB
T
1iΓi −B2iR

−1
i BT

2iΓi + πii

2 I, Γi are arbitrary real matrices.

Assumption 1 assumes that there exists a unique stabilizing Pi of the CGARE (9). The PA is given as follows

in terms of decoupled algebraic Lyapunov equations.

Remark 1. It is noticed that the solution of the nonlinear CGARE (9) can be obtained by iteratively solving a

sequence of decoupled linear algebraic Lyapunov equations. At each iteration step, the value of N Qi(k) (11) are

updated and the relevant N Lyapunov equations (12) are solved. Till now, many numerical algorithms to solve

(12) have been imbedded in MATLAB functions, such as, lyap [3].

Next, we will prove that Algorithm 1 converges to the solution of CGARE (9). The proof is motivated by

[20]. To this end, the following lemmas for positive operator are introduced:

Lemma 1. [2] An operator T : E −→ F between two ordered matrix spaces is said to be positive operator (in

symbols T > 0) if T A > 0,∀A > 0.

Lemma 2. [27] Let T : W −→W be positive operator and ρ(T ) be the spectral radius of T . Then, the following

statements are equivalent:

(i). ρ(T ) < 1;

(ii). There exists an X > 0 such that T X −X < 0.

Define an operator as follows:

{
F : Rn×n −→ Rn×n

F(Pi(k)) = [Ai + πii

2 I]TPi(k) + Pi(k)[Ai + πii

2 I]− Pi(k)SiPi(k) +
∑N
j=1,j 6=i πijPj(k) +Qi

(13)

Thus, we have the Fréchet differential of F(Pi(k)) at Pi(k) is

F ′Pi(k)(M) = [Ai +
πii
2
I − SiPi(k)]TM +M [Ai +

πii
2
I − SiPi(k)], (14)

4
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Algorithm 1: Using PA to solve CGARE (9).

Input: Give a set of initial stabilizing matrices {Pi(0), i = 1, 2, · · · , N}
Output: The solution of CGARE (9): {P ∗i , i = 1, 2, · · · , N}
k = 0;

Pi(k) ∈ Rn×n;

while k ≥ 0 do

for i = 1 : 1 : N do

Qi(k) = Qi +

N∑

j=1,j 6=i
πijPj(k); (11)

Compute: [
Ai + πii

2 I − SiPi(k)
]T
Pi(k + 1) + Pi(k + 1)

[
Ai + πii

2 I − SiPi(k)
]

= −Pi(k)SiPi(k)−Qi(k),
(12)

where Si = B2iR
−1
i BT

2i − γ−2B1iB
T
1i;

{Pi(k + 1)};
if max{‖P1(k + 1)− P1(k)‖, ‖P2(k + 1)− P2(k)‖, · · · , ‖PN (k + 1)− PN (k)‖} ≥ ε then

k = k + 1;

else

for i = 1 : 1 : N do

P ∗i = Pi(k + 1);

break;

return {P ∗i };

5
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where M ∈ Rn×n. Based upon operators F and F ′Pi(k), we define another operator in form of:

L = I − (F ′Pi(k))
−1F . (15)

Lemma 3. The proposed Algorithm 1 (PA) can be rewritten as:

Pi(k + 1) = L(Pi(k)). (16)

Proof. The equation (16) is equivalent to the following equation:

F ′Pi(k)(Pi(k + 1)) = F ′Pi(k)(Pi(k))−F(Pi(k)), (17)

By means of (14), we have

F ′Pi(k)(Pi(k + 1)) = [Āi − SiPi(k)]TPi(k + 1) + Pi(k + 1)[Āi − SiPi(k)],

F ′Pi(k)(Pi(k)) = [Āi − SiPi(k)]TPi(k) + Pi(k)[Āi − SiPi(k)], (18)

where Āi = Ai + πii

2 I.

Substituting (13) and (18) into (17), it follows that:

[
Āi − SiPi(k)

]T
Pi(k + 1) + Pi(k + 1)

[
Āi − SiPi(k)

]
= −Qi −

N∑

j=1,j 6=i
πijPj(k)− Pi(k)SiPi(k). (19)

Obviously, the above equation is just the iterative (11) and (12) of the Algorithm 1. This completes the

proof.

Lemma 4. The operator L is an positive operator.

Proof. Since Pi(k + 1) and Pi(k) are positive matrix, we know: L(Pi(k)) > 0. According to Lemma 1, it is easy

to see that the operator L is an positive operator. This completes the proof.

Based upon the above four lemmas, we can prove the following result regarding the convergence of Algorithm

1.

Theorem 1. Let P ∗i (i = 1, 2, · · · , N) be the solution of the CGARE (9) and {Pi(k)}∞k=0 be the sequence

generated by Algorithm 1 (PA). Then, Algorithm 1 monotonically converges to nonincreasing sequences and

limk→∞ Pi(k) = P ∗i .

Proof. Along a similar line to [11], one can find a initial stabilizing sequence {Pi(0),∀i = 1, 2, · · · , N} such that

it satisfies

Pi(0)− Pi(1) > 0,∀i. (20)

Since Pi(0) must be positive, we get

L(Pi(0))− Pi(0) = Pi(1)− Pi(0) < 0. (21)

By Lemma 2, we know that

ρ(L) < 1. (22)

6
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Therefore, Algorithm 1 monotonically converges to nonincreasing sequences by the theorem of monotonic

convergence of positive operators [11, 17].

On the other hand, we let limk→∞ Pi(k) = P ?i . Taking limit on the both sides of (19) and considering the

relation of limk→∞ Pi(k + 1) = limk→∞ Pi(k), we have

AT
i P

?
i + P ?i Ai +

N∑

j=1

πijP
?
j +Qi + γ−2P ?i B1iB

T
1iP

?
i − P ?i B2iR

−1
i BT

2iP
?
i = 0. (23)

Denote ∆P = P ?i − P ∗i . Substituting (23) into (9) with P ∗, it has

AT
i ∆Pi + ∆PiAi +

N∑

j=1

πij∆Pj + γ−2∆PiB1iB
T
1i∆Pi −∆PiB2iR

−1
i BT

2i∆Pi = 0.

Recalling ρ(L) < 1 for Qi ≡ 0, it implies that the above equations have a unique solution 0, that is, P ?i = P ∗i .

This completes the proof.

Remark 2. By using Nash equilibrium strategies, the mixed H2/H∞ control problem for continuous-time s-

tochastic MJSs with multiplicative noise has been studied in [28] and a heuristic algorithm has been proposed to

solve the CAREs in [29]. However, similar to the PA proposed in Algorithm 1, the exact knowledge of the system

dynamics must be known as a priori for these off-line algorithms. In the following, based on ADP techniques

[32, 33, 34], we present a new approach to solve the CGARE (9) without using the system matrices Ai.

3 Online Solving H∞ Control Problem for MJLSs

Associating with the continuous-time linear/nonlinear systems, the online ADP techniques has been proposed

in [32, 33, 34], which are implemented by online measuring the system states x(t). The information regarding

to the system matrix A is embedded in the measured system states. However, subject to the continuous-time

MJLSs (1)-(3), the coupled relation between working subsystems in different modes can not be known by online

measuring the MJLSs states since the system modes take values from a discrete-state set with known transition

probabilities. Namely, Pj (j ∈ S, j 6= i) need to be known while we find the solution Pi from the CGARE (9).

In order to deal with the H∞ control problem for MJLSs (1)-(3) by means of online ADP techniques, we

first introduce a new online decoupling approach, which so-called Subsystems Transformation [13]. In the sequel,

this technique is used to separate the coupled relation from CGARE (9) based on PA (Algorithm 1) and related

results presented in [21, 38].

3.1 Subsystems Transformation based on Algorithm 1

Algorithm 1 shows that the sequence {Pi(k)} generated by iterations (11)-(12) converges to the solution sequence

{Pi} of CGARE (9). Subject to the ith iteration equation in (11), the value of Qi(k) need to be reset at each

iteration step by Eq. (12) and the coupled information of MJLSs (1)-(3) is contained in Qi(k). Before proceeding

the study, the following Lemma 5 is required:

7
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Lemma 5. (Off-line SPUA [38]) For the H∞ control problem of the linear time-invariant continuous-time systems

which described as:

Σ :





ẋ(t) = Ax(t) +B1w(t) +B2u(t)

y(t) =

[
Cx(t)

Du(t)

]
(24)

where w(t) is the norm-bounded disturbance input. Then, the sequence {Π(k)} given in following iteration equa-

tion:

[A+ ρ−2B1B
T
1 Π(k)−B2R

−1BT
2 Π(k)]TΠ(k + 1) + Π(k + 1)[A+ ρ−2B1B

T
1 Π(k)−B2R

−1BT
2 Π(k)]

= −Q+ ρ−2Π(k)B1B
T
1 Π(k)−Π(k)B2R

−1BT
2 Π(k),

(25)

can converge to the unique solution of the following H∞ ARE:

ATΠ + ΠA+Q+ ρ−2ΠB1B
T
1 Π−ΠB2R

−1BT
2 Π = 0 (26)

where ρ > 0 is a prescribed level of disturbance attenuation.

Comparing Algorithm 1 with Lemma 5, we can get:

a) At each iteration step k, Algorithm 1 need to calculate N parallel linear Lyapunov equations and Lemma 5

only computes one linear Lyapunov equation;

b) At each iteration step k, Algorithm 1 need to reset Qi(k) (embed the coupled relation into the computation)

for every parallel equation but Q in Lemma 5 is a constant.

Simultaneously, notice that the H∞ controller for system Σ in (24) can be obtained from the solution of (26).

Based on the above analysis, we give the following Theorem 2 for the H∞ control problem of MJLSs (1)-(3) by

using a new decoupling method called Subsystems Transformation:

Theorem 2. Subject to a set of N linear subsystems (Σ1, Σ2, . . . , Σi, . . . , ΣN ) which run simultaneously, we

can discribe Σi (∀i = 1, 2, · · · , N) as follows:





ẋi = (Ai + πii

2 I)xi +B1id+B2iu,

yi =

[
Cixi

Diu

]
.

(27)

By utilizing the iteration (25) to solve H∞ control problem for subsystems {Σi} with same disturbance input d(t)

and same disturbance attenuation level γ. And, at each iteration step k, {Qi} is updated by (11). Then, the

obtained sequence {Πi(k)} is convergent and

lim
k−→∞

Πi(k) = Pi, (28)

where Pi is the solution of CGARE (9).

Proof. Subject to the ith subsystem, we use Lemma 5 to find the H∞ controller gain. Replacing the system

matrix A with Ai + πii

2 I in (25). And updating Q by (11) at every iteration step. Then it is easy to see that the

obtained equation is into (12). According to Theorem 1, it follows that (28). This completes the proof.

Remark 3. In this work, we separate MJLSs (1)-(3) into N reconstructed linear subsystems and a explicit coupled

relation among these reconstructed linear subsystems is proposed by the Subsystems Transformation technique

8
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[13]. Notice that the exact information of system matrices Ai are contained in the linear subsystems matrices

Ai + πii

2 I. Therefore, the subsystems states xi(t) which can be observed online contain the information regarding

to the system matrix Ai. It implies that we can develop an online two-step iteration algorithm without using the

system matrix Ai. A new online policy iteration algorithm will be studied in the following Subsection 3.2.

Define the following control input player ui(t) and disturbance input player di(t) associated with a two-player

zero-sum game for subsystems (27):

ui(t) = Ki(k)x(t) = −R−1
i BT

2iΠi(k)x(t), (29)

di(t) = Li(k)x(t) = γ−2BT
1iΠi(k)x(t). (30)

Based on Theorem 2, we give the following Theorem 3:

Theorem 3. If Πi(k) is one of the obtained sequence {Πi(k)} in Theorem 2 which satisfies (28), the following

equations will be held:

lim
k−→∞

Ki(k) = Ki, (31)

lim
k−→∞

Li(k) = Li. (32)

where Ki and Li are the solution of (7) and (8), respectively.

Proof. Combining (28) and the predefined equations (29) and (30), one can get (31) and (32) directly. The proof

is completed.

3.2 A novel online policy iteration algorithm for the solution of CGARE

In this subsection, we propose a novel policy iteration algorithm which can be implemented online for learning

the solution of CGARE (9) without using the exact knowledge of system matrix Ai of MJLSs (1)-(3). The novel

policy iteration algorithm is based on a two-step iteration framework which named Policy Evaluation and Policy

Improvement. The proof of convergence of the new algorithm is also provided.

Based on Theorem 2 and Theorem 3, an online policy iteration algorithm is developed for learning the solution

of CGARE (9) as follows:

Remark 4. It can be seen from the Policy Evaluation (33) that the dynamic matrices {Ai} of MJLSs (1)-(3)

are not involved. Actually, the information regarding to each subsystem matrix Ai is embedded in the relevant

subsystems state.

Remark 5. In Algorithm 2, at every iteration step k, overall N policy evaluation equations need to be solved

and the relevant policy improvement equations also need to be calculated. A remarkable difference between (33),

(34) and (35) is that, {Πj(k)} (j ∈ S, j 6= i) are used to update Qi(k) while (33) and (35) only require Πi(k) to

improve the control input player gain Ki(k) and the disturbance input player gain Li(k).

Remark 6. From a viewpoint of computation, the differences of our Policy Iteration Algorithm with the existing

results proposed for continuous-time linear/nonlinear systems (e.g. [31, 32, 33, 34, 38]), are mainly focused on

• In Algorithm 2, Policy Evaluation step is solved by utilizing some discrete data while sampling the con-

structed linear subsystems state trajectories. But in [34], the used data is direct sampled on original system

state trajectories;

9
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Algorithm 2: Using online policy iteration algorithm to solve CGARE (9).

Input: Give initial matrices {Πi(0)}, {Ki(0)} and {Li(0)} (i = 1, 2, · · · , N)

Output: Optimal controller gain {K∗i } and optimal disturbance controller gain {L∗i }
k = 0; Qi(0) = Qi + Πi(0);

while k ≥ 0 do

for i = 1 : 1 : N do
Online solve: (Policy Evaluation)





xT
1,tΠ1(k + 1)x1,t = xT

1,t+TΠ1(k + 1)x1,t+T

+
∫ t+T
t

xT
1,τ [Q1(k) +KT

1 (k)R1K1(k)− γ2LT
1 (k)L1(k)]x1,τdτ,

...

xT
i,tΠi(k + 1)xi,t = xT

i,t+TΠi(k + 1)xi,t+T

+
∫ t+T
t

xT
i,τ [Qi(k) +KT

i (k)RiKi(k)− γ2LT
i (k)Li(k)]xi,τdτ,

...

xT
N,tΠN (k + 1)xN,t = xT

N,t+TΠN (k + 1)xN,t+T

+
∫ t+T
t

xT
N,τ [QN (k) +KT

N (k)RNKN (k)− γ2LT
N (k)LN (k)]xN,τdτ,

(33)

where xi,t is used to denote the states of the corresponding subsystems (27) at the moment of t;

Obtain {Πi(k + 1)};
for i = 1 : 1 : N do

Coupling Relation Update:

Qi(k + 1) = Qi +

N∑

j=1,j 6=i
πijΠj(k + 1) (34)

Get {Qi(k + 1)};
if max{‖Π1(k + 1)−Π1(k)‖, ‖Π2(k + 1)−Π2(k)‖, · · · , ‖ΠN (k + 1)−ΠN (k)‖} ≥ ε then

for i = 1 : 1 : N do
Compute: (Policy Improvement)

{
Ki(k + 1) = −R−1

i BT
2iΠi(k);

Li(k + 1) = γ2BT
1iΠi(k);

(35)

Obtain {Ki(k + 1)} and {Li(k + 1)};
Refresh k = k + 1;

else

for i = 1 : 1 : N do

Π∗i = Πi(k + 1);

K∗i = −R−1
i BT

2iΠ
∗
i ;

L∗i = γ2BT
1iΠ
∗
i ;

break;

return {K∗i } and {L∗i };

10
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• In Algorithm 2, at every iteration step, overall the 4N equations need to be computed. But only 2 equations

were computed at each iteration step, see [32, 34, 38] for example;

• At Policy Improvement step of Algorithm 2, we need to consider the coupled relation formula (28). However,

the Policy Improvement step presented in [31] did not contain this equation.

In fact, the above differences are determined by the fact that MJLSs are stochastic hybrid systems.

Then, we will propose a theorem to prove the convergence of Algorithm 2:

Theorem 4. The sequence {Πi(k)} generated by Algorithm 2 converges to the solution Pi of CGARE (9), that

is, limk−→∞Πi(k) = Pi.

Proof. Let k = 0, and choose a stabilizing initial conditions {Πi(0)}, {Ki(0)} and {Li(0)} (i = 1, 2, · · · , N). By

Policy Evaluation (34), we have

xT
i,tΠi(1)xi,t = xT

i,t+TΠi(1)xi,t+T +

∫ t+T

t

xT
i,τ

[
Qi(0) +KT

i (0)RiKi(0)− γ2LT
i (0)Li(0)

]
xi,τdτ (36)

Solving (36) by using the discrete data which sampled on subsystem (27), one can obtain a set of solutions Πi(1).

On the other hand, the solutions of (36) have been proven is equivalent to the solution of the following equation

[34, 38]:

[
Ai +

πii
2
I − SiΠi(0)

]T
Πi(1) + Πi(1)

[
Ai +

πii
2
I − SiΠi(0)

]
= −Qi −

N∑

j=1,j 6=i
πijΠj(0)−Πi(0)SiΠi(0), (37)

Obviously, (37) leads to (12) by letting k = 0 in Algorithm 1.

Performing the same procedure, we can get that, at every iteration step k, the solution Πi(k) of Algorithm

2 is equivalent to the corresponding kth iteration solution of Algorithm 1. According to the Theorem 2, we

can conclude that the sequence Πi(k) generated by Algorithm 2 converges to the solution of CGARE (9). This

completes the proof.

3.3 Online implementation of Algorithm 2

In this subsection, we derive the implement approach for Algorithm 2 based on RLS [6, 34]. With respect to the

ith equation in (33), the following relation by Kronecker product representation, we obtain:

(xT
i,t ⊗ xT

i,t − xT
i,t+T ⊗ xT

i,t+T )vec(Πi(k + 1)) =

∫ t+T

t

xT
i,τ [Qi(k) +KT

i (k)RiKi(k)− γ2LT
i (k)Li(k)]xi,τdτ, (38)

Considering Πi = [Λlr]i ∈ Rn×n is positive-definite symmetric matrix, we define the following two vectors:

x̂i = [x2
i,1, xi,1xi,2, · · · , xi,1xi,n, x2

i,2, xi,2xi,3, · · · , x2
i,n] ∈ R1× 1

2n(n+1), (39)

Π̂i = [Λi,11, 2Λi,12, · · · , 2Λi,1n,Λi,22, 2Λi,23, · · · ,Λi,nn]T ∈ R
1
2n(n+1)×1. (40)

Using (39) and (40), then (38) can be rewritten as

(x̂i,t − x̂i,t+T )Π̂i(k + 1) =

∫ t+T

t

xT
i,τ [Qi(k) +KT

i (k)RiKi(k)− γ2LT
i (k)Li(k)]xi,τdτ, (41)
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Notice that the symmetric matrix Πi(k) has n(n+ 1)/2 unknown independent elements. Hence, there require at

least M ≥ n(n+ 1)/2 independent equations to get Πi(k + 1). Then, we should sample M state vectors in each

time interval T from the linear subsystems Σi. The relevant Πi(k + 1) can be found by the following RLS sense:

Π̂i(k + 1) = [XT
i Xi]

−1XT
i Yi, (42)

where

Xi =
[
x̂i(t)− x̂i(t+ δt) · · · x̂i(t+ (M − 1)δt)− x̂i(t+Mδt)

]T
∈ RM×

1
2n(n+1), (43)

Yi =
[
y

(0)
i (k) y

(1)
i (k) · · · y

(M−1)
i (k)

]T
∈ RM×1, (44)

and with δt = T/M and y
(r)
i (k) =

∫ t+(r+1)δt

t+rδt
xT
i,τ [Qi(k)+KT

i (k)RiKi(k)−γ2LT
i (k)Li(k)]xi,τdτ (r = 0, 1, · · · ,M−

1).

Figure 1: The flowchart of the new online policy iteration algorithm.

Start

Subsystems Transformation

Give initial matrices {Πi(0)}, {Ki(0)}, {Li(0)}

Online Solving





Π̂1(k + 1) = [XT
1 X1]

−1XT
1 Y1

...

Π̂i(k + 1) = [XT
i Xi]

−1XT
i Yi

...

Π̂N (k + 1) = [XT
NXN ]−1XT

NYN

max
i∈S

(‖Pi(k + 1)− Pi(k)‖) < ǫ
Policy Improvement:

{
{Ki(k + 1)}
{Li(k + 1)} ;

Coupling Relation Update:{Qi(k + 1)}.

Stop

Yes

No

Rearrange the policy evaluation (33) of Algorithm 2 based upon online implementation approach (42), then

we have a online iterative algorithm associates to solve the H∞ control problem for continuous-time MJLS (1)-(3)

without using the exact knowledge of Ai (∀i). The flowchart of the new online iteration algorithm is shown in

Figure 1.

Remark 7. In this work, a Subsystems Transformation-based online policy iteration algorithm has been proposed

to solve the H∞ optimal control problem for continuous-time MJLSs without using the information on system

matrices Ai, which shows significantly different from some existing approaches, e.g. [14]. However, the results ob-

tained here for MJSs are intrinsically conservative due to constant transition rates and thus have many limitations

in applications [30]. Unlike the MJSs, semi-Markov jump systems (semi-MJSs) have much broader applications

owing to their relaxed conditions on the probability distributions [18, 19]. Therefore, it is very meaningful to

extend the results in this work to semi-MJSs in further research.
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Remark 8. It is worth to mention that the discrete-time Markov chain can be effectively used to model the

various network-induced phenomena in networked control systems (NCSs) so as to the concerned system can be

rewritten as a finite dimensional discrete-time MJLS [30]. Recently, the problem of adaptive optimal control of

unknown discrete-time nonlinear MJSs has regained some research interest [40]. Nevertheless, the H∞ optimal

control problem for NCSs by using discrete-time ADP approaches [37] has attracted little research attention, not to

mention the case with randomly occurring incomplete information [36, 39]. These issues deserve further research.

4 Simulation Example

In this section, we study the H∞ controller design problem for a forth-order continuous-time MJLSs by using

both off-line method (Algorithm 1: off-line iterative algorithm) and online method (Algorithm 2: a new online

policy iteration algorithm). Comparing with the computing results and the observing simulation figures, one can

see that the both algorithms are effective while finding the optimal H∞ controller for the following given MJLSs.

The matrix coefficients of the MJLSs are directly taken from [10] and presented as follows

A1 =




−2.1051 −1.1648 0.9347 0.5194

−0.0807 −2.8949 0.3835 0.8310

0.6914 10.5940 −36.8199 3.8560

1.0692 13.4230 22.1185 −13.1801



, B21 =




0.7564

0.9910

9.8255

7.2266



,

A2 =




−2.6430 −1.2497 0.5269 0.6539

−0.7910 −2.8570 0.0920 0.4160

21.0357 22.8659 −26.4655 −1.7214

27.3096 7.8736 −3.8604 −29.5345



, B22 =




0.3653

0.2470

7.5336

6.5152



,

Q1 = Q2 =




1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0



, Π =

[
−2 2

1.5 −1.5

]
, R1 = R2 = 1.

Among them, we assume that C1 = C2 =
[

1 0 1 0
]

and D1 = D2 = 1. In addition, as for the H∞ control

problem in form of (1)-(3), we set the disturbance attenuation level γ = 1.5 and the disturbance input matrices

B11 = B12 =
[

1 0 0 0
]T

.

4.1 Using Algorithm 1 to solve the H∞ control problem

While the exact information of system matrix Ai is known, we use Algorithm 1 (proposed in Section 2.2) to

solve the control problem by the parallel-iterative idea of mathematics of computation. The practical stopping

criterion of Algorithm 1 is defined as

max
{
‖P1(k + 1)− P1(k)‖, ‖P2(k + 1)− P2(k)‖

}
< ε, (45)

where ε is the iterative error of Algorithm 1.
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Letting ε = 10−15 and the initial matrices P1(1) = P2(1) = 0.1I, we obtain the following results after 34

iteration steps:

P ∗1 = P1(34) =




0.2492 0.0721 0.0398 0.0187

0.0721 0.0315 0.0087 0.0066

0.0398 0.0087 0.0157 0.0026

0.0187 0.0066 0.0026 0.0017



,

P ∗2 = P2(34) =




0.5272 0.1376 0.0525 0.0103

0.1376 0.0495 0.0139 0.0027

0.0525 0.0139 0.0193 2.4656× 10−4

0.0103 0.0027 2.4656× 10−4 2.8652× 10−4



.

Moreover, we have ‖P1(34)− P1(33)‖ = 3.4591× 10−16, and ‖P2(34)− P2(33)‖ = 4.3843× 10−16. Figures 2 and

3 shows the convergence of the Algorithm 1.

Figure 2: The convergence of P1 in Algorithm 1.
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4.2 Using Algorithm 2 to solve the H∞ control problem with partially unknown

dynamics

The solution Pi of the CGARE (9) associated with this forth-order MJLSs has 10 independent elements. There-

fore, one needs to sample at least 10 measurements of the subsystems states at each update time interval T .
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Figure 3: The convergence of P2 in Algorithm 1.
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In this note, we select the sample time interval δt = 0.03, and at each RLS problem (42), 20 sample datas are

utilized, i.e. the H∞ controller is updated every 0.6.

We start the new online iterative algorithm with the initial symmetric matrices P1(0) = P2(0) = 0.2I, the

initial controller gains K1(0) = K2(0) = 0, and the initial disturbance input controller gains L1(0) = L2(0) = 0I.

Set both the subsystems initial states as x0 =
[

0.1 −0.1 0.1 −0.1
]T

. At the first iterative step of Algorithm

2, the following results is obtained:

P1(1) =




0.2217 −0.0283 0.0189 −0.0043

−0.0283 0.1754 0.0182 0.0253

0.0189 0.0182 0.0497 0.0313

−0.0043 0.0253 0.0313 0.0369



,

P2(1) =




0.5650 0.1533 0.0507 0.0121

0.1533 0.1358 0.0209 0.0085

0.0507 0.0209 0.0405 0.0157

0.0121 0.0085 0.0157 0.0212



.

According to the above digital, a set of γ-suboptimal H∞ state-feedback controller gains for the concerned MJLSs

can be found:

K1(1) =
[
−0.2943 −0.5141 −0.7469 −0.5960

]
,

K2(1) =
[
−0.7050 −0.3024 −0.4311 −0.2629

]
.
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Keeping learning the the solution of the CGARE online by means of Algorithm 2, after seven updates, a set

of optimal solutions Pi for the CGARE (9) can be obtained as

P1(7) =




0.2493 0.0721 0.0398 0.0187

0.0721 0.0314 0.0087 0.0064

0.0398 0.0087 0.0157 0.0026

0.0187 0.0064 0.0026 0.0016



,

P2(7) =




0.5280 0.1358 0.0528 0.0102

0.1358 0.0529 0.0147 0.0026

0.0528 0.0147 0.0189 0.0005

0.0102 0.0026 0.0005 0.0002



.

The update histories of matrices P1(k) and P2(k) in Algorithm 2 are shown in Figures 4 and 5, respectively.

From the two figures, it can be seen that Algorithm 2 converges to the solution of the CGARE efficiently with a

precision ε = 0.005, that is, max{‖P1(7)− P ∗1 ‖, ‖P2(7)− P ∗2 ‖} < ε.

Figure 4: The convergence of P1 in Algorithm 2.
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4.3 Comparisons and Discussions

From the simulation results shown in Figures 2-5, it is found that Algorithm 2 is better than Algorithm 1

since the less iteration steps are required in Algorithm 2 and Algorithm 2 does not need the exact information
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Figure 5: The convergence of P2 in Algorithm 2.
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of system matrices Ai. Nevertheless, based on the same MATLAB platform, the computer operating time for

Algorithm 2 is 46.340571sec which is significantly higher than 0.065051sec of Algorithm 1. This is because of

there exist overall N ×M integral operations (e.g. ode45, ode23) and N RLS for each iteration step in Algorithm

2. In contrast, there only exist overall N algebraic operations in each step of Algorithm 1.

With the disturbance input d(t) = 0.5e−3t sin t and the initial condition x(0) =
[
−2 1 −1 1

]T
, Figure

6 shows the state errors of the continuous-time MJLSs in a simulation experiment, in which x∗ means the optimal

controller K∗i in Algorithm 1 is applied, x∗i (1) the suboptimal controller Ki(1) in Algorithm 2 is applied, and

x∗i (7) means the final controller Ki(7) in Algorithm 2 is applied. The simulation results have illustrated the

effectiveness of the proposed algorithms and approaches.

5 Conclusions

In this paper, a new online policy iteration algorithm has been developed to solve the H∞ control problem of

continuous-time MJLSs without using the exact knowledge of the systems matrices Ai. Based on a proposed

off-line iteration algorithm and a new online decoupling technique called Subsystems Transformation method, we

constructed a set of new coupled parallel-running linear subsystems. Then, we utilized a continuous-time ADP

approach to solve the two-player zero-sum game of overall N linear subsystems based on online implementation.

The proof for the convergence of the novel policy iteration algorithm was also given. Simulation results have

illustrated the effectiveness and applicability of the proposed off-line iterative algorithm and online iterative

algorithm.
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Figure 6: A simulation experiment for the state responses in different controllers applied .
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