
The University of Manchester Research

An Approach to Answer: "How Tree-Like is a Network"

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Duck, G. (2010). An Approach to Answer: "How Tree-Like is a Network". University of Manchester.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:09. Jun. 2022

https://www.research.manchester.ac.uk/portal/en/publications/an-approach-to-answer-how-treelike-is-a-network(872e684e-5988-4177-bd00-d2be37564e53).html

An approach to answer: “How Tree-Like is
a Network”?

A dissertation submitted to the University of Manchester for the
degree of MSc in the Faculty of Life Sciences

Masters Thesis

Geraint James Duck
geraint.duck@postgrad.manchester.ac.uk

Submitted: 2010

Supervisors:
Dr. Simon Whelan
Dr. Cathy Walton

Faculty of Life Sciences
The University of Manchester

Manchester
M13 9PL

mailto:geraint.duck@postgrad.manchester.ac.uk

Contents

List of Figures 4

List of Tables 5

List of Abbreviations 7

1 Abstract 8

2 Preamble 9
2.1 Declaration . 9
2.2 Copyright Statement . 10
2.3 Acknowledgements . 11
2.4 The Author . 12

3 Introduction 13
3.1 Classical Phylogenetics . 14

3.1.1 Phylogenetic Trees . 14
3.1.2 Sequence Alignments 14
3.1.3 Biological Insight . 15
3.1.4 Substitution Models 16
3.1.5 Statistical Inference in Phylogenetics 21
3.1.6 Hypothesis Testing . 22

3.2 Alternative Phylogenetics . 24
3.2.1 Terminology . 25
3.2.2 Phylogenetic Trees: The Return 25
3.2.3 Phylogenetic Networks 26

1

3.2.4 Networks verses Trees 29
3.3 Related Work . 30
3.4 Aims and Objectives . 31

3.4.1 Initial Perl Pipeline . 31
3.4.2 Primary Java Application 32
3.4.3 Miscellaneous . 32

4 Materials and Methods 34
4.1 Methodology and Implementation 35

4.1.1 Sequence Pair-Wise Distances 35
4.1.2 Tree Based Distance Matrix 37
4.1.3 Least Squares Distances 39
4.1.4 The Bootstrap . 40
4.1.5 Statistical Confidence – P-Values 41

4.2 Datasets Used . 41
4.2.1 Mitochondrial DNA of Primates 41
4.2.2 Mitochondrial DNA of Mosquitoes 42

4.3 Software Used . 42
4.3.1 BEAST . 42
4.3.2 Other . 43

5 Results 46
5.1 Methodology Validation . 47

5.1.1 Initial Set-up . 47
5.1.2 Optimisation . 48
5.1.3 Statistical . 55

5.2 Optimiser Consistency Check 58
5.3 Additional Testing Notes . 58
5.4 Example Real Data Analysis 61
5.5 Benchmark Tests . 62

6 Interpretation and Discussion 66
6.1 Analysis of the Methodology 67
6.2 Application Completion . 67

2

6.3 Example Dataset Discussion 68
6.4 Scope and Limitations . 70

7 Future Work and Extensions 71

8 Conclusion 73

Bibliography 74

Appendix 81

A Parameter Convergence to Sequence Length - Data 81
A.1 GTR Parameters . 82
A.2 Branch Lengths . 83

3

List of Figures

3.1 Venn-Diagram of Amino-Acid Property Groups 19
3.2 5 Taxa Tree with Two Possible Non-Trivial Splits Highlighted 25
3.3 Network Representation of Simulated Tree Data 27
3.4 Different Network Types . 29
3.5 Trees verses Networks . 30

4.1 Methodology Flow Chart . 36
4.2 Example Unrooted Phylogenetic Tree 38

5.1 Alpha to Likelihood Surface 51
5.2 RAC Parameter Convergence against Sequence Length 56
5.3 Overall Parameter Convergence against Sequence Length . . . 57
5.4 Least Squares Brown Dataset (Random) 59
5.5 Least Squares Brown Dataset (Sorted) 59
5.6 Least Squares Seq-Gen Dataset (Random) 60
5.7 Least Squares Seq-Gen Dataset (Sorted) 60
5.8 Least Squares Estimates for Tree Based Sequence 61
5.9 Tree Based Representation of the Brown Dataset 62
5.10 Network Based Representation of the Brown Dataset 63
5.11 Tree Based Representation of the Anopheles annularis Dataset 63
5.12 Network Representation of the Anopheles annularis Dataset . 64

6.1 Least Squares Estimates for Brown Sequences 69

4

List of Tables

3.1 The Standard Nucleotide to Amino-Acid Genetic Code 20

5.1 Testing the Base Frequencies 48
5.2 Testing the Likelihood Calculation 48
5.3 GTR Model Parameters Test 49
5.4 Testing the Gamma Category Count 50
5.5 Testing the Gamma Distribution 52
5.6 Pair-Wise Distances Test . 53
5.7 Branch Lengths Test . 54
5.8 Least Squares Test . 55
5.9 Benchmarks . 64

A.1 GTR Optimisation for Varying Sequence Lengths 82
A.2 Branch Length Optimisation for Varying Sequence Lengths . . 83

5

List of Abbreviations

Γ Gamma – Site Rate Model

2D Two-Dimensional

3D Three-Dimensional

App. Application

AU Approximately Unbiased Test

BEAST Bayesian Evolutionary Aanalysis by Sampling Trees – Library

DNA Deoxyribonucleic Acid

GNU LGPL GNU Lesser General Public License

GTR General Time Reversible – Substitution Model

HKY Hasegawa-Kishono-Yano – Substitution Model

JC Jukes-Cantor – Substitution Model

JTT Jones-Taylor-Thornton – Amino-Acid Substitution Model

K2P Kimura Two Parameter – Substitution Model

LG Le-Gascuel – Amino-Acid Substitution Model

LS Least-Squares

MCMC Markov Chain Monte Carlo

6

mtDNA Mitochondrial DNA

NJ Neighbor-Joining

PAM Point Accepted Mutation – Amino-Acid Substitution Model

PAML Phylogenetic Analysis by Maximum Likelihood – Software

PHYLIP PHYLogeny Inference Package – Software

RAXML Randomized AXelerated Maximum Likelihood – Software

REV Synonym for GTR

RMSD Root Mean Squared Deviation

SH Shimodaira-Hasegawa Test

SS Sum of Squares

WAG Whelan and Goldman – Amino-Acid Substitution Model

7

Chapter 1

Abstract

This report aims to answer the question of “how networky is my data?”.
This question can have many repercussions on all types of phylogenetic data
analysis helping to highlight biologically significant events. These can include
hybridization, reticulation and gene flow. These events are all biologically
interesting, but can all cause the underlying analysis assumption of a tree to
no longer hold. The result of this project is a tested and verified methodology
on which to test for data “networkyness” through a parametric bootstrap ap-
proach providing a statistical measure to answer that question. This entirely
novel methodology is packaged up within a Java application for easy, every-
day use. This application has been thoroughly tested with each component of
the methodology validated in turn.

8

Chapter 2

Preamble

2.1 Declaration

Declaration: I, Geraint James Duck, declare that no portion of the work
referred to in this dissertation has been submitted in support of an appli-
cation for another degree or qualification of this or any other university or
other institute of learning.

9

2.2 Copyright Statement

Please note the following points regarding copyright and intellectual property
rights for this dissertation.

Copyright in text of this dissertation rests with the author. Copies (by
any process) either in full, or of extracts, may be made only in accordance
with instructions given by the author. Details may be obtained from the
appropriate Graduate Office. This page must form part of any such copies
made. Further copies (by any process) of copies made in accordance with
such instructions may not be made without the permission (in writing) of
the author.

The ownership of any intellectual property rights which may be described
in this dissertation is vested in the University of Manchester, subject to any
prior agreement to the contrary, and may not be made available for use by
third parties without the written permission of the University, which will
prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and ex-
ploitation may take place is available from the Head of the School of Life
Sciences (or the Vice-President and Dean of the Faculty of Life Sciences for
Faculty of Life Sciences’ candidates.)

Copyright of any software used or referred to for this dissertation remains
with the associated software’s authors.

10

2.3 Acknowledgements

The author would firstly like to thank Dr. Simon Whelan for his continued
help and support through the project. He would also like to thank all the
various creators of any software or tools used within this project and im-
portantly the BEAST developers. Thanks also goes out to his fellow friends
and colleges of the Bioinformatics Touchdown Room for support, advice and
friendship. Finally, an acknowledgement goes out to the BBSRC for funding
his Master Course and thus, this project and research.

11

2.4 The Author

Geraint Duck has a First Class degree in BSc Computer Science from the
University of Warwick, awarded in July 2009. His current research experience
consists of a 3rd Year Project (as part of the BSc in Computer Science) and
this MSc dissertation. His undergraduate project consisted of the generation
of a piece of software which aimed to simulate the spread of an infection
within an agent based population. He aims to go on to complete a PhD
at Manchester University starting September 2010 after completion of this
project.

12

Chapter 3

Introduction

13

3.1 Classical Phylogenetics

3.1.1 Phylogenetic Trees

Phylogenetic trees provide a way to describe which order a set of sequences
diverged from each other. For review see chapter 8 of the book by Higgs &
Attwood (2005). This report focuses on bifurcating trees – trees where there
is a two-way split at each branch point. Trees are split into two classes –
rooted and unrooted. Both are directed graphs providing a trace from one
sequence to another and it is this direction that provides order.

Rooted Trees Rooted trees, when drawn from the bottom up, can give an
indication of divergence times (and can be drawn proportionately to represent
this,) between two sequences by their vertical branches (though horizontal
branches are there to just space out the tree and have no such property).
The branch lengths can represent time, evolutionary change or distance, or
none of the above if such information is unknown. These trees can also be
manipulated to produce equivalent trees that are either rooted in the same
place or equivalent trees rooted in a different place (though this will change
the divergence ordering).

Unrooted Trees In the alternative case of an unrooted tree, internal nodes
represent potential ancestors and the only time related inference possible is
to say that such an internal ancestor node must have occurred prior to their
external children. Unrooted trees can be rooted with sufficient information
about sequence divergence order or the use of an outgroup (a sequence suf-
ficiently diverged from the others to be the root).

3.1.2 Sequence Alignments

Sequence alignment plays a substantial role in evolutionary biology. It forms
the basis of a wide variety of analyses including homology modelling, phy-
logenetic reconstruction and profiling as well as structural and functional

14

prediction based on sequence conservation (Sierk et al. 2010, Notredame
et al. 2000).

Multiple sequence alignment aligns more than two sequences together, of-
ten through an iterative approach, using a guide phylogenetic tree to dictate
the order in which to align the sequences and to do this often requires the
use of heuristics (Penn et al. 2010, Higgins & Sharp 1988). There are already
efficient algorithms for solving this problem in polynomial time that guaran-
tee the correct solution using dynamic programming – the most well known
and used solution is that of Needleman & Wunsch (1970). The heuristics are
required because of the high computational nature of perfect multiple pair-
wise sequence alignment which adds a great deal of additional complexity
to basic pair-wise alignment (from O(n2) to O(cn)). It is much harder to
accurately align more diverged sequences than those more closely related –
producing some alignment is easy (just putting any two sequences one above
the other produces an alignment – just not a good or insightful one).

Phylogenetic trees can be inferred directly from their sequence align-
ments, though alignments are also based on guide trees. The more nucleotide
or amino-acid substitutions that there are between two sequences, then the
more diverged these two sequences are and the further apart they appear on
an appropriate tree. Each base substitution can be corrected to give a better
measure of distance through the rate matrices as described later in section
3.1.4.

3.1.3 Biological Insight

A tree provides the primary way to view ancestoral history, whereas a se-
quence alignment provides an explicit way to see where sequences have diver-
ged at an individual site level as well as (and often more importantly,) where
these sites are conserved – this is the basis of site-wise homology. Homology
is loosely defined as similarly or relationship and can be used in a wide range
of fields. In the case of site-wise homology, it is being used specifically at the
phylogenetic sequence level, in which homology then directly implies com-
mon ancestry (for an in depth discussion on homology see Sattler (1984)).

15

So, if a specific site shows homology, then the sequences must have, at one
point in time, had a common ancestor and this can be displayed on a tree.

Site conservation can give an idea of structural and functional relation-
ships on a per nucleotide or amino-acid basis and gives an easy way to confirm
sequence relationships. For example, if a site is completely conserved within
a protein family alignment, then that site can be inferred to have a func-
tional impact on the protein whereas if, within the same protein family, a
group of sites have the same amino-acid properties (all acidic or all hydro-
phobic, for example,) then it is likely those residues have a high structural
impact on the final protein shape (though there could once again also be
functional reasons). Different amino-acids have different effects and occur-
rence probabilities within protein secondary-structures such as alpha-helices
and beta-sheets as well as other protein super-structures.

It is important, however, to distinguish between pure structural homology
and evolutionary homology (i.e. site-wise homology). Evolutionary homology
is where sequences that appear well aligned have indeed evolved from a com-
mon ancestor maintaining some similarity and conservation. The contrast
to this is structural homology – where sequences are related by structure,
and possibly function, but not necessarily by sequence. In this case, it is
possible that two different sequences, never related by a common ancestor,
have separately evolved to the same structure because of some advantage it
gives. So, it might be a more efficient structure or some sort of “optimum”.
Sequence alignments can help to highlight the differences between these two
types of homology. Though both types can be the same (for example, if two
sequence’s nucleotides are conserved for their structural traits), this is not al-
ways the case (as two separate sequences can converge to the same structure
without ever having had a common ancestor).

3.1.4 Substitution Models

Rate Matrices

Substitution models describe changes in character states, so either the rate
of change from one nucleotide to another (models of nucleotide substitution)

16

or the rate of change from one amino-acid to another (models of amino-
acid substitution) (Posada & Crandall 2001b). These models help pair-wise
sequence distance estimations and this resulting distance is then directly
proportional to time (Yang 1994). This provides a way to develop straight
parsimony scores (sequence site difference) into something more meaningful
trying to take into account multiple substitutions at a single site which would
not be represented by parsimony. E.g. A → C → G (which just looks like
A → G – a single substitution) or A → C → A (which does not look like a
change at all).

Many models have been developed over the years with each improving
and relaxing the assumptions of the previous. The most commonly used
nucleotide model (and the model used within this application) is the General
Time Reversible (GTR or REV) model as first introduced by Tavaré (1986).
It is well defined within the paper by Yang (1994) and is the model with the
most free parameters.

Each of these free parameters signifies an available variable used to try
to better describe the underlying biology within sequence evolution. By
enabling simulations to run with more biologically representative models,
then the more accurate the results and the better the overall understanding
of the underlying processes will be. Because of this, it is the GTR model
used within this application because it is best able to describe any sequence
alignment supplied to the program, and the more accurate the resulting
analysis will be.

The GTR model has a single parameter for each of the base frequen-
cies (3 free, one constrained by the sum of the others being equal to one):
πA, πC , πG, πT . It then has an additional 6 exchangability parameters des-
cribing each of the base substitution rates: RAC , RAG, RAT , RCG, RCT , RGT

(though the last is not free but instead a scalar for the other 5 giving 8 free
parameters in total). Note that because the model is reversible, the rate in
one direction is the same as the rate in the reverse direction, so: RAC = RCA.
The resulting Q matrix is shown below in equation 3.1. See the paper by
Yang (1994) for more information.

17

Q =


· RACπC RAGπG RATπT

RACπA · RCGπG RCTπT

RAGπA RCGπC · RGTπT

RATπA RCTπC RGTπG ·

 (3.1)

There are several other nucleotide substitution models, each of which is
a constrained version of the GTR model, and each of which was discovered
prior to the GTR model (in general, the more constrained the model, the
earlier it was found). The first restriction placed on the GTR model, sets
several base rate exchangability parameters equal, just leaving allowance for
biases between transitions and transversions. The result is the Hasegawa-
Kishono-Yano (HKY) model by Hasegawa et al. (1985). The HKY model
sets transitions equal to each other and both higher than transversions, so:
RAG = RCT > RAC = RAT = RCG = RGT . Following on from this, is
the Kimura Two Parameter (K2P) model by Kimura (1980) which adds the
restriction that all nucleotide frequencies are equal, so πA = πC = πG =
πT = 0.25. The final restriction removes the bias between transitions and
transversions setting all rates to be equal (RXY = 1.0), and this is the Jukes-
Cantor (JC) model (Jukes & Cantor 1969).

As well as the various nucleotide models already described, there are also
various amino-acid models of substitution (though none are used within this
project). The first is the Point Accepted Mutation (PAM) matrix by (Dayhoff
et al. 1978). This model is based upon an observed estimate of a collection
of aligned protein sequences and, because of the relatively high number of
amino-acids, has far more free parameters than any of the nucleotide models.
This model was later improved through a bigger initial dataset to become
the JTT (T.Jones et al. 1992) model. As with nucleotides, further models
have also since been developed with various assumptions and accuracies when
compared to those before it. Two common ones are the WAG model (Whelan
& Goldman 2001) and the LG model (Le & Gascuel 2008).

18

Figure 3.1: This figure shows the various relationships between amino-acid
properties through a Venn-Diagram. The figure is adapted from Livingstone
& Barton (1993).

Modelling Spatial Heterogeneity in Rate

It is well known that there can be mutational “hot spots” in many genes
(Golding 1983) where some sites evolve at a quicker rate than others. This
is an inevitable consequence of variation in functional and structural impact
as described before. Sites with no impact on function or structure have no
constraints on their evolution, whereas a specific site that is essential to either
is fixed and is very unlikely to change. This provides a continuous distribution
with these extremes to each side. This “give” is implicit in the genetic code
with some nucleotide positions having greater impact on the resulting amino-
acid than others. For example, changes in the third codon position often have
no effect on the resulting amino-acid, whereas changes in the second codon
position can have large effects changing amino-acids from one extreme to
the other (e.g. based on size or hydrophilic properties) – see table 3.1 for the
code and figure 3.1 for the various amino-acid properties. Changes that affect
the amino-acid composition are known as non-synonymous changes whereas
those that do not are synonymous changes.

This site variability can be modelled by a gamma (Γ) distribution. Though
it may not directly represent any biological process, it has been shown to hold

19

U C A G

U

Phe Ser Tyr Cys U
Phe Ser Tyr Cys C
Leu Ser STOP STOP A
Leu Ser STOP Trp G

C

Leu Pro His Arg U
Leu Pro His Arg C
Leu Pro Gln Arg A
Leu Pro Gln Arg G

A

Ile Thr Asn Ser U
Ile Thr Asn Ser C
Ile Thr Lys Arg A
Met Thr Lys Arg G

G

Val Ala Asp Gly U
Val Ala Asp Gly C
Val Ala Glu Gly A
Val Ala Glu Gly G

Table 3.1: The standard nucleotide to amino-acid genetic code read in the
order first codon down the left, second codon along the top and third codon
down the right. E.g. UGG is Trp.

20

on many occasions (for example, see Wakeley’s (1993) paper), and can be ei-
ther a continuous or discrete based distribution (Yang 1996). In the discrete
model, each rate comes from one of a given number of rate parameter classes,
whereas in the continuous model the number of rates classes is instead in-
finite and the results rely on the integration of the area under the curve of
each class. Each of these classes is internally described by a single value –
most often the mean or median value of the range, and this helps avoid issues
with the infinite curve in either direction. The gamma distribution involves
a single parameter alpha (α) to describe the shape and rate variation across
sites (Yang 1996). The standard gamma distribution also has an additional
parameter beta (β) which is a scalar. In the case of the gamma distribution
for site variability: α = β which implies µ = 1 and α = 1

σ
where µ is the mean

and σ is the variance. The given gamma distribution can be used within the
various model formulae (e.g. JC or GTR) to correct for variations within
each sequence providing a single additional free model parameter overall.

3.1.5 Statistical Inference in Phylogenetics

Maximum-likelihood

The most common statistical inference approach is the maximum-likelihood
selection process. This calculates a likelihood value (the probability of some-
thing happening by chance) of some data being produced (calculated through
simulation) for any given set of parameters. This can be converted to the
likelihood of some parameter values given the data through Bayes theorem
(Joyce 2008). The maximum-likelihood value, then, is the model with the
highest likelihood. This is a consistent method, unlike many before it, which
means that, given enough initial data, it will converge to the correct optimal
solution.

In this case, it is calculating the likelihood of the model parameters and
potential tree given some sequence alignment data (after applying Bayes
rule) and finds the evolutionary tree with the highest probability of having
generated the data (Shimodaira 2002, Felsenstein 1981), then extending this
approach to additionally optimise the model parameters as well as the tree.

21

For further information on the algorithm itself, see Felsenstein’s (1981) paper.

Sequence Simulation

Sequence Simulation is the automated creation of a sequence alignment
through a process of artificial evolution. It is implicit within likelihood ana-
lysis as well as within Monte Carlo simulation. It is of great importance
to molecular evolutionary analysis by aiding understanding of divergence
mechanisms (Strope et al. 2007). Simulation enables the user to vary the
conditions and assumptions of a model providing the ability to have a known
evolution, and thus both a true tree and true alignment for various methods
and ideas to be compared to allowing model accuracies to be calculated and
quantified (Strope et al. 2009).

Sequence simulation is performed by initially constructing a root sequence
and then simulating evolution across the tree using the specified models of
evolution (both rate matrices and/or site rate variation – see section 3.1.4).
This has the advantage that every ancestor node has a known sequence and
ensures that the baseline “true alignment” is of truly homologous sequences
(Rosenberg 2005).

Sequence simulation provides a way to calculate likelihoods. The likeli-
hood of some sequence, given some parameters, is exactly how often a given
sequence is generated from those parameters (generally very small probabi-
lities and this is why they are often calculated as log-likelihoods). However,
there are now more efficient ways to calculate likelihoods without needing to
do multiple huge sequence simulations.

3.1.6 Hypothesis Testing

P-Values

The application of statistical methods to hypothesis testing is now wide and
the most common approach is the P-Value. The p-value defines the proba-
bility of obtaining a result under the null hypothesis that is equal to or more
extreme than the observed data (Goodman 1999).

22

The p-value is often chosen to be at either the 0.05 or 0.01 (5% or 1%)
level. This means that there is only a 5% chance that the null hypothesis is
true and so the null hypothesis is then rejected in favour of the alternative
hypothesis (i.e. the given result is in the extreme).
The null hypothesis can now be defined as follows:

H0 = The initial data is treelike (3.2)

and the alternate hypothesis can be defined as:

H1 = The initial data is not treelike (3.3)

Likelihood Test Ratio

Given that the null and alternative hypotheses (L0, L1) are nested, the signifi-
cance of improvment between the two models can be tested with the likelihood
test ratio (Whelan et al. 2001). Nested hypotheses are where the null hypo-
thesis is a simplification of the alternative hypothesis (e.g. the GTR model
over the JC model of substitution). This is important because the alterna-
tive hypothesis will generally come out as better, but not always significantly
better. The test ratio (equation 3.4) provides a p-value confidence allowing
the null hypothesis to be rejected in favour of the alternative hypothesis.

2δ = 2ln
(
L1

L0

)
= 2 (lnL1 − lnL0) (3.4)

Bootstrapping

An additional approach for hypothesis testing is that of bootstrapping which
is required when hypotheses are non-nested (Whelan et al. 2001). This ap-
proach enables a distribution under the null hypothesis to be generated using
Monte Carlo simulation as data can be randomly and repeatedly generated
which obeys to the null hypothesis and then a statistic or confidence interval
to then be calculated (Goldman 1993b).

As described in Ostaszewski & Rempala’s (2000) paper, the bootstrap was
first introduced by Efron (1979) to try and improve on jackknifing as part

23

of the wider field of resampling. Bootstrapping aims to help calculate both
standard error and a distribution statistic on which to base a quantitative
level of confidence. There are two different versions of the bootstrap – the
nonparametic and the parametric bootstrap. The difference is that in the
nonparamtric case, a discrete distribution with equal probability is used,
whereas in the parametric case, the parameters have to first be estimated.

This report and project makes use of the parametric bootstrapping ap-
proach which relies on data simulation to provide the null hypothesis model
expected result for comparison (Rambaut & Grassly 1997, Goldman 1993b).
This approach has been widely used already in the past (e.g. Adell & Dopazo
1994, Goldman 1993a).

Bootstrapping, for example, is used to provide branch and taxon or taxa
topology support values in various phylogenetic trees. It does this through
a process of random resampling with replacement of the initial data with
reanalysis providing the bootstrap support value. For further reference, see
Dopazo (1994) or Felsenstein (1985).

Additional Statistical Tests

Some commonly used statistical tests for trees are the Shimodaira & Hase-
gawa (1999) (SH) and Shimodaira’s (2002) Approximately Unbiased (AU)
tests. These tests aim to reduce test bias produced from bootstrapping sup-
port values to maximum-likelihood tree selection and aim to provide the final
tree topology with a confidence value.

3.2 Alternative Phylogenetics

It is becoming clear that phylogenetic trees alone can not fully describe all
the complexities in real datasets. To resolve this, phylogenetic trees are being
defined in a new way (but without changing the principals or ideas behind
them) to allow the introduction of phylogenetic networks. These expand the
ideas behind phylogenetic trees further to better describe the data available.
Networks are able to describe datasets that otherwise do not follow a tree

24

Figure 3.2: 5 taxa tree with two possible non-trivial splits highlighted.

based evolution.

3.2.1 Terminology

Contrasting phylogenetic trees and phylogenetic networks requires some new
terminology to be defined. These definitions are the same as those from
Huson & Bryant’s (2005) paper.

Most importantly, a split is defined as

“A partition of the taxa into two nonempty subsets, such as
when we remove a branch from a phylogenetic tree.”

So, for example, given the taxa {A,B,C,D}, then all possible splits are:
{AB|CD}, {AC|BD} and {AD|BC}, alongside the four trivial splits of just
one taxon each. This can be expanded for any number of taxa and two
example splits have been labelled on figure 3.2.

3.2.2 Phylogenetic Trees: The Return

Now it is worth redefining phylogenetic trees in terms of splits. Every branch
on a tree defines a split between groups of taxa (this is clearer on an unrooted

25

than rooted tree). This has been done before with the alternative and less
commonly used “partitions” format. Phylogenetic trees then, are a set of
compatible splits (or at least, the set of most informative compatible splits).
A perfect phylogenetic tree will be fully compatible and have no conflicting
information. So, for example, the tree is figure 3.2 is defined as the set
of compatible splits: {AB|CDE}, {ABC|DE} and the 5 trivial single taxon
splits (e.g. {A|BCDE}). However, there are also incompatible splits not
represented in the tree shown (e.g. {AC|BDE} or {BE|ACD}) and this is
where phylogenetic networks come in.

3.2.3 Phylogenetic Networks

A phylogenetic network is defined by Huson & Bryant (2005) as

““Any” network in which taxa are represented by nodes and
their evolutionary relationships are represented by edges. (For
phylogenetic trees, edges are referred to as branches.)”

Networks are important because there are a number of biological evolu-
tionary processes that cause a given dataset to no longer follow a tree based
history. These are all primarily based around reticulation and gene-flow (e.g.
hybridization, recombination, gene transfer and duplication-loss and intro-
gression), but can also arise from homoplasy as well as from methodological
issues in data collection and analysis (Morrison 2010). If these issues are
present within a dataset, then this can void any further tree based phyloge-
netic analysis and so are important to note prior to any such analysis.

There are two primary types of network – implicit and explicit networks.
The difference between them is that within an explicit network, every node
represents either a specific taxon, or an evolutionary event (for example,
hybridization or recombination) (Huson & Bryant 2005). This is not the
case within an implicit network and thus is not the case with split networks.

26

Figure 3.3: Network representation of a dataset generated by simulation
down a tree which should be 100% treelike but still has noise causing a
visible networkyness aspect (as highlighted in red). Drawn in SplitsTree4
(Huson & Bryant 2005).

Implicit Networks

Split Networks Split networks are a group of phylogenetic networks that
use the concept of the “split” (as defined previously). They find such splits
in the data and then show these as edges within the drawn network. They
extend phylogenetic trees by enabling the user to way to describe all pos-
sible splits represented within the data including all incompatible splits. If a
phylogenetic network only has compatible splits, it is, by definition, a phy-
logenetic tree – a network with no cycles. The important point here is to
have a way to statistically analyse the data and say if the incompatible splits
are important or purely down to stochastic noise. This point is highlighted
in figure 3.3 where an alignment produced from simulation (and is thus tree
based) can still be shown as a network but with noise (the opposing but sup-
ported splits have been shown in red) – though this is an extreme example
due to the short simulation sequence length used.

27

Neighbor-Net Neighbor-Net is an algorithm designed by Bryant &
Moulton (2004). It aims to provide an efficient method for constructing phy-
logenetic networks, based on the Neighbor-Joining (NJ) algorithm (Saitou &
Nei 1987). Neighbor-Net works in a similar way to that of Split Decomposi-
tion (Bandelt & Dress 1992), though thought to be more resolved. A set of
weighted splits is constructed from a distance matrix and then represented
as a graph. It is worth noting that both NJ and Neighbor-Net are consistent
meaning that if a purely additive distance matrix is input into the methods,
then the correct corresponding tree or set of splits will be returned. The
Neighbor-Net algorithm is implemented in the SplitsTree4 software package
by Huson & Bryant (2005) provides a way to allow the user to visualise va-
rious networks on a 2D screen. As such, it is not a definitive description but
more of a sufficient interpretation.

Other Split Networks Other networks based on splits includeMedian-
Networks andMedian-Joining Networks (Posada & Crandall 2001a). Median-
networks convert sequences into binary data and then groups and weights
each split support. A vector is then created for each of these groups produ-
cing the final network. Median-joining networks, on the other hand, combine
the minimum-spanning trees and then add median vectors to the network on
a parsimony basis. This approach requires there to be no recombination and
so is limited in its applications.

Explicit Networks

Reticulate Networks Reticulate networks provide the alternate explicit
representation of the data. Reticulate networks are usually rooted, which is
in contrast to most split networks. A Hybridization Network is an example
of a reticulate network (Huson & Bryant 2005).

Various Networks Example

Figure 3.4 shows the same dataset in three different network representations.
The dataset is the Brown dataset by Brown et al. (1982) and is further des-

28

(a) Splits (b) Rooted (c) Hybrid/ Reticulate Net

Figure 3.4: Figure shows the same Brown dataset (see Section 4.2.1) for three
different phylogenetic network types. The first is as a normal Splits-Network,
the second as the same network, but rooted, and the third as a Hybridization
or Reticulation Network.

cribed in section 4.2.1 later in the report. The three representations are the
normal Splits-Network, a rooted Splits-Network and a Hybridization or Re-
ticulate Network (they produce the same output in this case). The resulting
graphs are produced using Huson & Bryant’s (2005) SplitsTree4 program.

3.2.4 Networks verses Trees

As networks provide a way of describing multiple incompatible splits (whe-
reas trees can only show a single set of compatible splits), networks provide a
way of viewing the multiple trees consistent with the data all at once within
a single structure. This enables the user to question if a single tree really
does have greater support than any others. Some of the issues of correct
data representation can be resolved through bootstrap analysis of the phy-
logenetic tree, giving an indication of how much confidence can be placed in
a single branch. So, if there is conflicting data, one might expect it to have
a lower bootstrap support value, however this may not be the case because
bootstrapping provides analysis after tree building whereas exploratory data
analysis (such as building a network for review) provides it prior to tree buil-
ding (Morrison 2010). This distinction has been acknowledged and discussed

29

(a) Tree (b) Network

Figure 3.5: Figure shows how any dataset can be represented as both a
tree (a) and a network (b) using the “North” dataset present in SplitsTree4
(Huson & Bryant 2005).

in the paper by Wägele & Mayer (2007).
The issue here is that if a tree based structure is chosen, as it often is,

without regard for the true nature of the dataset, this can render any further
analysis redundant (for more information and examples see: Morrison 2010).
Many further analysis tools make assumptions about the data that they are
analysing and often one of these assumptions is that the supplied data is
indeed “treelike” without any speciation or reticulation events. It is impor-
tant to know if this assumption holds – for example, figure 3.5 shows how
any network can be still represented as a tree, though it clearly (by visual
inspection)is better represented by a network because of the conflicting data
present.

3.3 Related Work

Not much work has been previously done in this area regarding any easy way
to compare the “treelikeness” of a given dataset with any statistical output.
However, one notable exception is the very recent, and as yet unpublished,
work done by Savva et al. (unpublished) which describes much of the pro-
cesses used within the application resulting from this project (thanks goes to

30

the authors for allowing us the use of the paper). It describes the appropriate
parametric bootstrapping approach used as well as a suggested test-statistic
of difference between the tree-based distances and the true distances also
suggesting that a least-squares (LS) measure is a good one. However, as a
purely theoretical paper, it only analyses the uses of these suggested statis-
tics and the method itself without providing any way of doing this test for
yourself. With their permission, this project aims to do just that.

3.4 Aims and Objectives

To summarise, the primary aims of the project are to produce a working piece
of software that can produce a statistic defining the “networkyness” of a gi-
ven dataset (when a guide tree is supplied) testing the evolutionary process
of the data. This requires optimisating the pair-wise distance parameters for
the true pair-wise distance matrix and optimisation of both model and tree
parameters to create the tree-based distance matrix. It also requires alterna-
tive sequence alignment generation for the null hypothesis distribution and
a distribution calculation and statistic providing a confidence in the treelike-
ness of the data. Finally, the correctness and accuracy of the software must
be tested by comparison to alternative software tools along side additional
self testing and validation.

The secondary aims of the project are to use this software to analyse a
sample dataset with some preliminary results and to additionally provide a
user interface to the software application.

The project is split into 3 main sections, and they are as follows:

3.4.1 Initial Perl Pipeline

The project started out with the aim to analyse a specific dataset for “networ-
kyness” (the two mosquito datasets – see section 4.2.2). That is, to determine
if the data would be better represented as a phylogenetic tree or as a phyloge-
netic network. Though many programs are available to display a dataset in ei-
ther form (e.g. Schmidt et al. 2002, Huson & Bryant 2005, Felsenstein 2009b),

31

there did not appear to be any statistical measure of the difference imple-
mented in the programs and this lack has been pointed out before by Gau-
thier & Lapointe (2007). This is contradictory to the literature in which
such a measure has been proposed on numerous occasions (e.g. Huson &
Bryant 2005, Gauthier & Lapointe 2007, Posada & Crandall 2001a).

Due to the apparent lack of availability of a program to calculate a “net-
workyness” statistic, a Perl pipeline was created which used a variety of soft-
ware already available with the intention to achieve this goal. This enabled
the methodology to be easily tested before any such application developed
ensuring that the test statistic works and is valid. Once the idea had its
proof of concept, and a test bed on which to be based, then an application
incorporating the ideas and individual components into a single piece of soft-
ware could be developed. This Perl script then acts as a validation tool for
the final application ensuring consistent and accurate results.

3.4.2 Primary Java Application

The Java application aims to provide an easy way to ask “How Networky
is My Data?” by bringing together all the various components used within
the Perl pipeline into a single application for both convenience and ease of
use. It provides a way to test the evolutionary process of a dataset through
a parametric bootstrapping approach, as described above. This application
aims to fill what appears to be a currently unexploited niche within the field
of phylogenetics. This application is the primary focus of this report and
project, though more emphasis has been placed on methodology rather than
software-engineering where possible.

3.4.3 Miscellaneous

This section tries to outline additional work done for this project that did
not form part of either the Perl pipeline or Java application. This includes
a Java class generated to perform the optimal least-squares calculation ba-
sed on the paper by Bulmer (1991). However, though this approach worked
correctly for optimising the branch lengths, it made it hard to additionally

32

optimise the GTR+Γ parameters. As such, it became more logical to opti-
mise the GTR+Γ parameters at the same time as the branch lengths within
the same class and this initial class was no longer required (though some of
the mathematical short-hands are still used elsewhere).

33

Chapter 4

Materials and Methods

34

4.1 Methodology and Implementation

So, given the null and alternative hypothesis in equations 4.1 and 4.2 (re-
produced below), the project needs to provide a way to compare the two
hypothesis and accept or reject them as appropriate.

H0 = The initial data is treelike (4.1)

H1 = The initial data is not treelike (implies networky) (4.2)

To do this requires a test of the difference between the networkyness and
treelikeness of the data given. To do this, the Least-Squares (LS) statistic
has been used which compares the difference between the true network based
distance matrix and the tree based distance matrix. The LS distance is
defined as:

LSdist =
∑
i

∑
j>i

(di,j − pi,j)2 for ∀i, j ∈ Sequences (4.3)

This measure of difference then provides a quantitative way to compare
the generated datasets to the initial dataset. If there is sufficient difference
between the two measures, then the null hypothesis model can be rejected
and the alternative hypothesis accepted with some confidence level.

This section of the report aims to describe each step performed in the
analysis of a sequence alignment for networkyness. The underlying aim here
is to generate alternative sequence data under the null hypothesis model,
and then compare the resulting LSdist values accepting or rejecting the null
hypothesis as appropriate. The process used is described in the flow chart in
figure 4.1 and is described in more detail in each section below.

4.1.1 Sequence Pair-Wise Distances

Method The first step is to calculate the true pair-wise distance matrix
for the given sequence alignment. This is done by calculating the number
of differences in nucleotides between each sequence pair and adjusting this

35

Figure 4.1: Figure shows the various methodology steps performed during
the analysis of a sequence alignment.

36

raw parsimony based score through a model of substitution – in this case the
GTR model.

This provides a way to calculate the networkyness of the data – the
alternative hypothesis. The pair-wise distances capture the complete and
true distance between two sequences and includes all conflicting data and
splits that may be present. This is required to calculate the LS distances.

Implementation The supplied data is used for a maximum-likelihood
based optimisation which, through a gradient search, aims to optimise both
the GTR+Γ model parameters as well as each individual pair-wise distance.
Though not an easy problem to solve, the output of this optimiser is each
true distance between each sequence pair and is used for the LS calculation.
This is done by optimising the single branch distance between two nodes
along side each GTR model and gamma distribution parameters.

4.1.2 Tree Based Distance Matrix

Method The tree branch lengths describe how quickly evolution has
taken place between the two branch nodes (along the branch). This can
be described as a time, as a rate per unit time (for example, substitutions
per year) or as a rate per site (for example, mean number of substitutions
per site). These tree based distances then provides the basis of the null
hypothesis model and are required for the LS distances calculation.

Implementation As well as estimating the GTR model and gamma
distribution parameters again, the program will also estimate and optimise
the branch lengths of the supplied tree topology based on the same maximum-
likelihood approach. This time the program optimises each individual branch
length, from which the additive tree based distance matrix is then calculated.
This distance is the sum of the branch lengths encountered going from the
first sequence node to the second sequence node. For example, in figure 4.2,
the distance from taxon A to taxon D is: 0.1 + 0.3 + 0.5 + 0.6 = 2.0. The
output of this alternative optimiser is each individual branch length used for

37

Figure 4.2: Example unrooted phylogenetic tree with branch lengths and 5
taxa.

the LS calculation as well as the GTR+Γ model parameters used for the
sequence simulation.

An efficient way of calculating these tree distances given the tree and
branch lengths has been implemented within the application (adapted from
Bulmer’s (1991) paper). As the tree topology never changes, the tree is
traversed only once and the branches linking each taxon pair are stored in a
2D matrix of size taxon pair’s by total number of branches. The number of
taxon pairs can be defined as:

species(species− 1)
2 (4.4)

So for figure 4.2, there are 5 × (5 − 1)/2 = 10 pairs and 7 branches. This
matrix contains either a 1 (one), if the branch is part of the route, or a 0
(zero) if it is not.

This matrix is then multiplied by the column vector of tree branch lengths
to produce a column vector of the summed distances requiring only simple
one/zero multiplication and addition. So, continuing the example from figure

38

4.2:



1 1 0 0 0 0 0
1 0 1 0 0 1 0
1 0 0 1 0 1 1
1 0 0 0 1 1 1
0 1 1 0 0 1 0
0 1 0 1 0 1 1
0 1 0 0 1 1 1
0 0 1 1 0 0 1
0 0 1 0 1 0 1
0 0 0 1 1 0 0



·



0.1
0.2
0.4
0.6
0.7
0.3
0.5


=



1× 0.1 + 1× 0.2 + · · ·
...
...
...
...
...
...
...
...

· · ·+ 0× 0.3 + 0× 0.5



=



0.3
0.8
1.5
1.6
0.9
1.6
1.4
1.5
1.6
1.3



(4.5)

4.1.3 Least Squares Distances

Method This distance measure is what the primary statistic is based
on. It is the measure of difference between the true distances (well repre-
sented as a network) and the tree based distances (which, if hold, show that
the data evolved in a treelike manor). In this case it is chosen to be the
LS distance between the two distance matrices, as given in equation 4.3 and
again in equation 4.6 below.

Implementation The LS distances are calculated by calculating the
LS sum of distances between each possible sequence alignment pairing by
comparing the true distance to the tree based distance, as given in equation
4.3, and reproduced below:

LSdist =
∑
i

∑
j>i

(di,j − pi,j)2 for ∀i, j ∈ Sequences (4.6)

So, the total LS distance is just the squared difference between the true
distance (pair-wise distance) and the tree based distance, summed for every
sequence pair.

39

4.1.4 The Bootstrap

Method Having calculated the various model parameters (branch leng-
ths, GTR model and gamma distribution), and the LS distance estimate for
the initial dataset, the program then uses the estimated parameters from the
tree based optimisation to generate alternative sequence alignments. This
process uses the substitution and site rate parameters to calculate where
each sequence evolves and which nucleotide to change from and to and then
uses the tree topology and branch lengths to work out what total distance
the sequences should be apart. The result is a sequence alignment that is
generated based upon a 100% treelike process. This process does not allow
for any of the potential difficulties found in real datasets that require the need
for phylogenetic networks instead. Given these new sequence alignments, the
LS distances are then calculated for each new sequence as before. Each of
these new LS distances would be the expected LSdist value if the original
data satisfied the null hypothesis.

Given the expected numbers produced from the null hypothesis model,
the actual number can then be compared to test the hypotheses via this
bootstrapping approach.

Implementation This is done through an adapted “Seq-Gen Class”
from within the BEAST library (Drummond & Rambaut 2007, Rambaut &
Grassly 1997). The original class within the library was designed to be stand
alone with many pre-set parameters and so it was adjusted for use within
this application instead to allow the parameters to be defined during runtime
dependant on previous calculations.

The class also includes parameters for both sequence “Substitution Rate”
and for sequence “Damage Rate”. This substitution rate is separate from the
substitution models described earlier and is a scaling factor for the branch
lengths and, as such, is left set at 1.0. It is there to allow the user to transform
the branch lengths into the mean number of substitutions per site (Rambaut
& Grassly 1997). The damage rate represents the average amount of damage
per nucleotide and is used to add such a number of substitutions to the

40

nucleotide sites to represent substitutions due to DNA damage and as such,
it is left set at 0.0 (Ho et al. 2007).

Once each new strictly tree based sequence has been generated, each
sequence is then fed back into the two optimisers previously discussed to
calculate each sequence’s own LSdist value providing the various LSdist values
expected from the null hypothesis.

4.1.5 Statistical Confidence – P-Values

Method Given the null hypothesis based LSdist scores, the 95th per-
centile of this distribution can be calculated. This gives a comparator from
which a p-value score can be placed into the “treelikeness” of the data. If the
original data is sufficiently treelike, then the evolved data will have roughly
equal LSdist scores to the primary data. Whereas, if the primary data is
going to be better represented as a network (so a tree is not sufficient), then
there will be a discrepancy between the results for the two datasets (primary
and evolved) and the true LSdist score will be in the extreme and outside of
the 95th percentile.

Implementation This is done quite simply. Given the LSdist values of
the alternative sequences, they are sorted and the 95th percentile calculated.
By a direct comparison of the real data LS distance to this percentile, the
resulting statistic can be output and the analysis completed. If the true
data LS distance is less than the simulated data LS distance, then the data
is described as treelike. On the other hand, if the true data LS distance
is more than the simulated LS distance, then the LS value must be in the
extreme and does not conform to the null hypothesis and is thus not treelike.

4.2 Datasets Used

4.2.1 Mitochondrial DNA of Primates

Throughout the various application tests done during development, the Brown
et al. (1982) dataset was used as a self-contained small dataset for quick re-

41

sults and easily comparison between the various programs for validation. It
was obtained from the PAML software package (section 4.3.2). It is mi-
tochondrial DNA (mtDNA) from a set of primates (Chimpanzee, Gibbon,
Gorilla, Human and Orangutan) and is 896 base pairs in length.

4.2.2 Mitochondrial DNA of Mosquitoes

Two separate alignments of both Anopheles annularis and Anopheles jeypo-
riensis are used as an example to show how analysis could be performed with
the software. As of the start of the study, it is unknown if this data is better
represented as a network or if a tree is sufficient. The data was donated to
this project by Dr. Cathy Walton. It is also mtDNA, like the Brown dataset
and is 636 base pairs long, containing 123 sequences for An. annularis and
only 86 sequences for the An. jeyporiensis dataset.

Both An. annularis and An. jeyporiensis are well documented and both
are known to have ties to malaria (Dash et al. 2008, Gunasekaran et al. 1989).

4.3 Software Used

The following is a description of all the software and tools used during this
project along with appropriate citations and a brief description of how they
are used within this project as a whole.

4.3.1 BEAST

BEAST (Bayesian Evolutionary Aanalysis by Sampling Trees) is a Markov
Chain Monte Carlo (MCMC) based Bayesian statistical framework for se-
quence data parameter estimation and hypothesis testing (Drummond &
Rambaut 2007). It is designed to allow the user to analyse molecular se-
quences that are related by an evolutionary tree. Though primarily packaged
as its own stand-alone application, the full source library is available to use
under the GNU Lesser General Public License (GNU LGPL) license. It is
this library that is used and adapted for use within this project.

42

This library is used to aid the implementation of trees, sequence align-
ments, substitution models, site models and is also used for its classes defining
an optimiser (gradient search) and for tree-likelihood calculations.

4.3.2 Other

The software cited below is all used to form part of the initial pipeline created
in Perl for validation of the final Java application or as application valida-
tion separate from the pipeline. They do not form part of the final Java
application itself.

TREE-PUZZLE TREE-PUZZLE (formally just PUZZLE) is a piece of
parallelized software that allows a variety of tree based phylogenetic analysis
of sequence data (Schmidt et al. 2002, Strimmer & von Haeseler 1996). It
has options to perform maximum-likelihood phylogenetic analysis on both
DNA and protein based sequences.

TREE-PUZZLE is used to generate the sequence pairwise distance ma-
trix using the GTR+Γ model of evolution with estimated parameters. This
distance matrix is then used as input for Fitch (see below).

RAXML RAXML (Randomized AXelerated Maximum Likelihood) is a
parallel and sequential program which is particularly efficient at yielding the
best tree phylogenies, with bootstrap support, using maximum-likelihood
(Stamatakis 2006, Stamatakis et al. 2010).

The program is used to calculate the maximum-likelihood phylogenetic
starting tree given a sequence alignment and some possible tree topologies on
which to test. The best tree is then used as input to Fitch (see below) along
side the pairwise sequence distance matrix from TREE-PUZZLE. This step
is not replicated within the Java application and a starting tree is requested
as input instead.

PHYLIP - Fitch PHYLIP (PHYLogeny Inference Package) is a software
package developed by Felsenstein (2009b) and contains a variety of tools for

43

phylogenetic inference. Within this package is Fitch, which is a program that
can carry out LS based tree estimations using the Fitch-Margoliash method
(Felsenstein 2009a).

This project uses Fitch to calculate the LS branch length distances for the
final additive tree given a initial starting tree from RAXML and a pairwise
distance matrix from TREE-PUZZLE (see above).

PAML - baseml & evolver PAML (Phylogenetic Analysis by Maximum
Likelihood) is a collection of software packages designed to do maximum-
likelihood based phylogenetic analysis on both DNA and protein sequences
(Yang 2007). It is very good at parameter estimation with a large variety
of evolutionary models implemented. Of particular note though, are the
two internal software programs baseml and evolver. Baseml uses maximum-
likelihood based analysis to estimate various substitution model parameters
from a sequence alignment. Evolver then uses set parameters to generate
and evolve a sequence alignment - see section 3.1.5.

Both baseml and evolver are used for the reasons described for this pro-
ject within the Perl pipeline as well as direct validation tools for the Java
application.

Seq-Gen Seq-Gen (or Sequence-Generator) is an alternative program to
PAML’s evolver performing a very similar function (Rambaut & Grassly
1997). Like evolver, Seq-Gen will generate a sequence alignment given a
substitution model and its parameters as well as an optional tree to perform
the generation along. In addition, it is a version of this Seq-Gen program
that is implemented in a Java class file within the BEAST Java Library (see
section 4.3.1).

This is used as a validation tool for the Java application only and not
within the Perl pipeline. The BEAST Library Seq-Gen class file is used
within the Java application.

BioPerl BioPerl is an Open-Source project which has helped create a large
Perl based library of various models for use primarily within the Bioinforma-

44

tics field (Stajich et al. 2002).
The BioPerl model for tree-based analysis is used within the Perl pipeline

to help calculate the bootstrapped distribution.

45

Chapter 5

Results

46

5.1 Methodology Validation

The application takes in both a set of aligned sequences in Phylip format
(Felsenstein 2009b) and a tree described in the Newick format (Olsen 1990).
This tree does not require branch lengths, but appropriate estimate branch
lengths may help to speed up the computation.

The final output will be a significance score describing how much confi-
dence can be placed in a phylogenetic tree of that data. If this score is low,
then the data is better off described by a network instead.

Note that during some testing sections, additional program components
may also be inadvertently tested due to the complex interlinking of these
components within the program. However, where ever possible, each com-
ponent (as shown in figure 4.1) will be tested individually.

The overall methodology and program will be split into three main sec-
tions; Initial Set-up, Optimisation and Statistical aspects. All values and
results are given to 5 decimal places.

5.1.1 Initial Set-up

Base State Frequencies The first test is to just ensure that the program
calculates average base frequencies correctly from the data, as this forms
the basis for all models that do not assume equal base probabilities (e.g.
HKY and GTR). The sequence alignment library within BEAST can do this
calculation directly from the alignments. As a comparison, the frequencies
will also be calculated using baseml from the PAML package (Yang 2007).
The overall frequencies are calculated by averaging the probabilities of each
individual base within each sequence. The results are shown in table 5.1.

These results suggest that the calculation is correct as they are equivalent
results to 5 decimal places after accounting for rounding.

Likelihood calculation This can be tested by fixing both the GTR mo-
del parameters to the JC model by setting all the GTR parameters to 1.0,
fixing the branch lengths and by not using the gamma distribution. This also
requires setting all the base frequencies to 0.25 rather than estimating them

47

Java App. baseml (PAML)
πA 0.31196 0.31196
πC 0.32894 0.32894
πG 0.10682 0.10682
πT 0.25229 0.25229

Table 5.1: Tables describes the results of the base frequency calculations
from both the Java application and PAML’s baseml program (Yang 2007).

Java App. baseml (PAML)
-4047.38265 -4047.38265

Table 5.2: Testing the likelihood calculation by setting the model to JC,
no gamma and fixing the branch lengths using the Brown dataset and the
baseml PAML program (Yang 2007) for comparison.

from the dataset. This tries to ensure that it is just the likelihood calculation
being compared as there are no longer any free model parameters needing op-
timisation. The two likelihood results from the Java application and PAML’s
baseml package (Yang 2007) are shown in table 5.2 and are identical to 6
decimal places confirming the validity of the likelihood calculation.

5.1.2 Optimisation

The optimiser class within the program uses a non-linear conjugate gradient
search using the Beale-Sorenson and Hestenes-Stiefel approach to update
direction (for more information on this method see MacKay (2004)). It tests
each parameter in turn a little in each direction to decide which direction
to go and by about how much moving into a new direction as appropriate
(represented as a vector). The bounds used within the program limits each
parameter value between 0.0 and 50.0.

GTR+Γ Parameter Estimation

GTR Parameter Validation By setting the branch lengths explicitly
(and thus not optimising them) as well as turning off the gamma distribution,
the optimiser can be validated on its GTR parameter estimation only. Table

48

Java App. baseml (PAML)

GTR

RAC 0.13866 0.13865
RAG 1.0 N/A
RAT 0.07866 0.07864
RCG 0.10335 0.10333
RCT 7.65749 7.65631
RGT 0.0 0.00001

Gamma α N/A N/A
bC 0.1
bGo 0.2
bO 0.3

Distances bGi 0.4
(set at) bH,C 0.5

bO,Gi 0.6
bH 0.7

Likelihood (ln) -3213.79005 -3213.79015

Table 5.3: Table comparing the optimised GTR model parameters for the
Brown dataset using both the Java application and the baseml package from
within the PAML program (Yang 2007). The branch length are set to fixed
values to reduce free model parameters.

5.3 shows how the optimised values are comparable to that of baseml to at
least 3 decimal places validating the GTR optimiser.

Γ Parameter Validation Testing the gamma parameter is quite diffi-
cult because of the different implementations of the distribution within dif-
ferent programs. The difference here is that one describes each internal rate
class using its mean value, the other uses its median value. This will produce
similar likelihood and classification values, but not identical. To test this,
the GTR model parameters will be kept constant, as will the branch lengths.
The comparison will once again be made to the baseml program within the
PAML package (Yang 2007). Initially, the alpha value, which describes the
gamma distribution, will also be kept constant at 0.5 and the number of rate
categories varied to test how close the resulting likelihood values are. These
will also be compared to the likelihood value without a gamma distribution
to ensure an increase in the value. Results for this initial test are in table

49

Likelihoods (ln)
Rate Categories Java App. baseml (PAML)
Off -4047.38265 -4047.38265
2 -3274.16148 -3274.28840
4 -3229.33540 -3208.97859
6 -3216.02753 -3198.79466
8 -3209.62531 -3195.36731
10 -3205.85124 -3193.80540

Table 5.4: Table giving likelihood results of the baseml program from the
PAML package (Yang 2007) and the Java application using the Brown da-
taset.

5.4 which suggests a good level of relationship between the two alternative
programs with a significant level of improvement over the likelihoods without
using the gamma distribution.

Next, the alpha value will be optimised, keeping the GTR parameters
and branch lengths constant for the Brown dataset along side baseml from
PAML (Yang 2007). Although the results will not be identical, they should
be at least comparable. Finally, a sequence will be generated with a gamma
distribution within the Java application and then analysed using the same
application, this way the resulting gamma values should be equal as they will
have been calculated through the same method.

However, during this test it was discovered that there was an issue with
the gamma alpha parameter optimiser. The optimiser function would repea-
tedly try to test α = 0.0, which is an undefined value resulting in undefined
likelihood values. This instantly resulted in the Java application failing to
optimise the value. Despite this, it is clear that alpha does have an optimal
value but, without additional work, the application is unable to optimise it.
The various likelihood values of different values of alpha are plotted in figure
5.1 showing the optimal to be at around 0.13 given the Brown dataset and
other fixed parameters.

As a test, based on the surface graph in figure 5.1, the alpha value has been
artificially bound at 0.02 to try to avoid the problem of the optimiser trying
α = 0.0, and the application rerun on the Brown dataset. This successfully

50

Figure 5.1: Graph showing the calculated likelihood values of the Brown
dataset using the JC model but without equal base frequencies and not es-
timating branch lengths. The only parameter being adjusted is the value
of the alpha shape parameter for the gamma distribution. This shows that
there is an optimal value of alpha at around 0.13.

51

Java App. baseml (PAML)
α 43.21695 999.00000
γ1 0.82998 0.96008
γ2 0.94692 0.98944
γ3 1.04364 1.00998
γ4 1.17945 1.04050

likelihood -5668.68044 -5668.43492

Table 5.5: Table providing results of comparison for the alpha value, the final
likelihood and the internal gamma distribution of 4 categories for a simulated
dataset with known initial parameters (where α = 0.8) after applying the
artificial lower bound of 0.02 to the alpha parameter. Program results are
being compared to those computed by the baseml program from within the
PAML package (Yang 2007).

ran without failing being able to optimise alpha (at 0.20776) along side all
other GTR parameters and the branch lengths. This is roughly comparable
to the alpha value produced by PAML’s baseml program (Yang 2007) of
0.23294 (bearing in mind the different gamma calculation methods) with
near equal maximum-likelihood values of -2632.61582 verses -2632.62148.

However, it does not appear that this function is completely working yet.
If a sequence is generated within the application using set GTR parameter
values as well as set branch lengths and a set alpha value for the gamma
distribution, the program should correctly optimise these parameters back
to their initial values with little error. Though the branch lengths and GTR
parameters are indeed optimised back to their initial set values, the alpha va-
lue is not. It was initially set to 0.8 for the sequence generation, but instead
was optimised back to 43.21695. When the same generation alignment was
analysed in baseml from the PAML package (Yang 2007), alpha was optimi-
sed to 999 exactly (suggesting that it may have hit the upper bound value).
On the other hand, the likelihood values and internal rates (of the various
gamma distribution categories) do look substantially more comparable than
the final alpha values do (see table 5.5). This clearly requires additional
investigation, but, due to time constraints, is now left to future work.

52

Java App. TREE-PUZZLE

GTR

RAC 0.16139 N/A
RAG 1.0 N/A
RAT 0.08895 N/A
RCG 0.07785 N/A
RCT 0.92426 N/A
RGT 0.05731 N/A

Gamma α N/A N/A

Distances

dH−C 0.09489 0.09489
dH−Go 0.11182 0.11183
dH−O 0.19078 0.19078
dH−Gi 0.22265 0.22264
dC−Go 0.11611 0.11611
dC−O 0.20596 0.20596
dC−Gi 0.23420 0.23419
dGo−O 0.19959 0.19958
dGo−Gi 0.23448 0.23447
dO−Gi 0.23644 0.23643

Likelihood (ln) -16404.06188 N/A

Table 5.6: Table comparing the results for the true pair-wise distances for the
Brown dataset between the Java application and TREE-PUZZLE (Schmidt
et al. 2002) for the same GTR model parameters.

Sequence Pair-wise Distance Optimisation To test just the pair-wise
distance optimisation component, the application was run and the various
optimised parameters from the pair-wise distance optimiser function taken
for the Brown dataset. The outputs were the six GTR model parameters, the
optional gamma parameter (not used in this case to reduce the free variables),
the various pair-wise distances and finally the state frequencies as calculated
from the data.

The resulting GTR parameters were then fed into TREE-PUZZLE (Schmidt
et al. 2002), which estimates pair-wise sequence distances, as the correspon-
ding GTR parameters with gamma off and making no use of a phylogenetic
tree. It was also set to calculate exact distances and estimate base frequen-
cies from the data. The results of TREE-PUZZLE were then compared to
the primary application and are show in table 5.6.

53

Java App. baseml (PAML)

GTR

RAC 0.15140 0.15137
RAG 1.0 N/A
RAT 0.08299 0.08299
RCG 0.07421 0.07420
RCT 0.96176 0.96155
RGT 0.03837 0.03835

Gamma α N/A N/A

Distances

dH 0.04188 0.04188
bC 0.05319 0.05319
bGo 0.05751 0.05751
bO 0.09969 0.09969
bGi 0.14051 0.14051
bH,C 0.01684 0.01684
bO,Gi 0.05516 0.05516

Likelihood (ln) -2672.03213 -2672.03213

Table 5.7: Table comparing the results for the optimised branch lengths and
optimised GTR model parameters for the Brown dataset between the Java
application and baseml within the PAML package (Yang 2007).

As you can see, these results are easily comparable to at least 4 decimal
places of accuracy suggesting that the application is estimating pair-wise
distances correctly.

Branch Lengths Estimation and Optimisation To test the branch
length optimiser, the outputs of this function were once again calculated for
the Brown dataset without the gamma distribution using the GTR model and
base frequencies as estimated from the data. For comparison, the same data
was analysed using the baseml program within the PAML package (Yang
2007) providing the results shown in table 5.7.

Once again, these results are easily comparable to four or five decimal
places. Please note, however, that the RAG rate is implicitly set to 1.0 within
the baseml package as it is not an additional free variable but instead a scalar.
In addition, the maximum final log-likelihood values can be compared which
suggest an equal optimisation resting place for both the programs.

54

Pair Distance Branch Length
dH−C 0.09489 bH 0.04188
dH−Go 0.11182 bC 0.05319
dH−O 0.19078 bGo 0.05751
dH−Gi 0.22265 bO 0.09969
dC−Go 0.11611 bGi 0.14051
dC−O 0.20596 bH,C 0.01684
dC−Gi 0.23420 bO,Gi 0.05516
dGo−O 0.19959
dGo−Gi 0.23448
dO−Gi 0.23644

Table 5.8: Table shows the optimised pair-wise distances and optimised
branch lengths for the Brown dataset. These were directly recalculated by
the program but could equally have been taken from previous results tables
above. These are then used during both the automatic and manual least-
squares calculation from equation 4.3 described previously.

5.1.3 Statistical

Least Squares Distances Calculation There are two main steps to this,
both of which just use basic mathematics. The first converts the optimised
branch lengths into distances and the second does the LS addition on the
two matrices (see equation 4.3).

To test this, the optimised pair-wise distances and branch lengths will
be taken from the program, then the LS statistic calculated by hand and
compared to the one calculated within the program. The optimised pair-
wise distances and branch lengths (for full GTR model) are shown in table
5.8 for the Brown dataset. The correct distances from the optimised data
and the program tree based distances were compared as came out as the
same, as expected. The LS distances were then also calculated by hand once
again providing an equal result of 0.00355.

Alternate Sequence Generation and Evolution By setting the inter-
nal sequence generator within the application (a class based on the Seq-Gen
program by Rambaut & Grassly (1997) within the BEAST library,) to use
specific model parameters, these can then be analysed within both baseml

55

Figure 5.2: Graph showing how the optimised parameter value converges
as the sequence length gets longer. This graph is based on the GTR RAC

parameter value which was set at 0.35 for each sequence generation based
on 100 sequence repeats at each length. The data for all GTR and branch
length parameters can be found in appendix A.

from PAML (Yang 2007) and the Java application optimisers to test if the ini-
tial parameters come out again (as they should with the generated sequence
being tree-like). The fact that each branch length and model parameter
converges to its starting place shows that the sequence evolver is generating
sequences correctly. For an example illustration of RAC see figure 5.2 and
for the convergence graph based on the calculated Root Mean Squared De-
viations (RMSD) (calculated using the formula in equation 5.1 below), see
figure 5.3. The data obtained is available in Appendix A.

RMSD =

√∑n
i=1 (xi − x̄)2

n
(5.1)

The Test Statistic To test the test statistic and distribution analyses, the
program was ran with a single input file, and the various LS estimates of the

56

Figure 5.3: Graph showing how the optimised parameter values converge
as the sequence length gets longer. This graph uses all the optimised GTR
model parameters (except for RAG) and branch lengths for each sequence
generation based on 100 sequence repeats at each length combined using the
root mean standard deviation statistic in equation 5.1. The data for all GTR
and branch length parameters can be found in appendix A.

57

generated distributions were then taken and plotted onto a graph. This was
done for both a treelike dataset (as generated from Seq-Gen (Rambaut &
Grassly 1997)) as well as the Brown dataset. The resulting graphs are shown
in figures 5.4 to 5.7 showing both the data in the order it was generated
(random) and after sorting it (sorted). The sorted data shows how the true
LS value (for the initially entered data) is compared to the generated values
(the 95% mark). With the treelike data, the true point falls well below the
95% mark whereas the non-treelike data, the resulting LS point is well off
the chart suggesting an extreme case and thus is networky. They also show
the range of values of LS fit that could result from within treelike data and
without too many extreme values suggesting that this is indeed perhaps an
appropriate test statistic.

The Seq-Gen alignment was generated using equal base frequencies, the
JC model of evolution, no gamma, the tree ((A:0.1, B:0.2):0.6, C:0.3, (D:0.4,
E:0.5):0.7) and a sequence length of 895 (same as that of the Brown dataset).

5.2 Optimiser Consistency Check

To ensure that the optimiser always converges to the same optimal values,
the program will be run 10 times from different randomised start points. The
results of this gave identical final values in each case to within the degree of
accuracy that the program calculates showing program consistency.

5.3 Additional Testing Notes

Some additional overall tests were also performed. The main additional test
here was to take a simulated sequence alignment (treelike) and to ensure that
this came back as treelike by the program. This was tested several times with
various internally simulated sequence lengths (for the distribution) of 50 and
1000 and the program consistently reported the initial alignment as treelike,
as expected.

However, upon testing against a simulated sequence length of 5000, the

58

Figure 5.4: Graph showing the least-squares values of 1000 randomly gene-
rated sequences based on the Brown dataset after parameter optimisation.

Figure 5.5: Graph showing the Least-squares values of 1000 randomly gene-
rated sequences based on the Brown dataset after parameter optimisation.

59

Figure 5.6: Graph showing the least-squares values of 1000 randomly ge-
nerated sequences based on a sequence alignment generated from Seq-Gen
(Rambaut & Grassly 1997) after parameter optimisation.

Figure 5.7: Graph showing the least-squares values of 1000 randomly ge-
nerated sequences based on a sequence alignment generated from Seq-Gen
(Rambaut & Grassly 1997) after parameter optimisation.

60

Figure 5.8: Graph showing the least-squares estimates for a simulated se-
quence of length 1000 against 100 simulated sequences of length 5000 and
it appearing to be not treelike despite the initial sequence being generated
from a tree.

result came back as not treelike, which is surprising for tree based simulated
data. The graph in figure 5.8 shows this statistical discrepancy.

Finally, there are some additional points to note which where picked up
on during testing. The program will occasionally fail to optimise some of the
data parameters as the internal method used fails to converge on an optimum.
This appears to most commonly happen when the sequence lengths are small
giving too little data on which to optimise the likelihood value. As such, it is
suggested to use a minimum sequence length of about 1000 bases to reduce
this problem.

5.4 Example Real Data Analysis

Performing a full test optimising GTR and branch lengths (though not the
gamma alpha value because it has failed validation) on the Brown dataset
resulted in a programmatic analysis of not treelike. Figure 5.5 shows this gra-

61

Figure 5.9: Figure shows the SplitsTree4 (Huson & Bryant 2005) represen-
tation of the Brown dataset using the Neighbor-Joining algorithm.

phically where the calculated true LS value is well above the range calculated
by the null hypothesis. However, if the substitution model parameters are
restricted requiring equal base frequencies, the result is then treelike instead
which is in direct contradiction. The NJ Tree and Neighbor-Net representa-
tions of the data are shown in figures 5.9 and 5.10 as drawn in SplitsTree4
(Huson & Bryant 2005).

The An. annularis dataset was also analysed with the program. However,
the program failed to converge on any parameter values for the dataset after
a couple of hours of execution. Due to time constraints and the result of the
An. annularis, the An. jeyporiensis dataset was not analysed. The NJ Tree
and Neighbor-Net representations of the An. annularis dataset are shown in
figures 5.11 and 5.12 as drawn in SplitsTree4 (Huson & Bryant 2005).

5.5 Benchmark Tests

Benchmark tests were run on the Brown dataset with both GTR and branch
lengths being optimised. The gamma distribution is off. This will use 100
simulations of sequence length 1000. Results will be taken to the nearest
second (as output by the program) and averaged across 10 runs. Various
benchmark results are given in table 5.9.

62

Figure 5.10: Figure shows the SplitsTree4 (Huson & Bryant 2005) represen-
tation of the Brown dataset using the Neighbor-Net algorithm.

Figure 5.11: Figure shows the SplitsTree4 (Huson & Bryant 2005) represen-
tation of the Anopheles annularis dataset using the Neighbor-Joining algo-
rithm. There is a clearly defined split between two halves (as highlighted)
but otherwise the splits are not so well defined.

63

Figure 5.12: Figure shows the SplitsTree4 (Huson & Bryant 2005) represen-
tation of the Anopheles annularis dataset using the Neighbor-Net algorithm.
There is a clearly defined split between two halves (as highlighted) but other-
wise the splits are not so well defined.

Processor Time (secs) Runs Failed
Mean High Low

Intel i7 @ 2.66GHz 85.11 86 84 1
AMD QL-66 @ 2.20GHz 246 274 227 0

Table 5.9: Tables giving run times of the program on various Processors.
This uses the Brown dataset with no gamma with 100 simulations of size
1000 optimising GTR and branch lengths. Results averaged across 10 runs.

64

The number of runs failed gives an idea of how often the program errors
from having a sequence length that is too small as discussed already in section
5.3. Though rare with a sequence length of 1000 (much more likely to fail
within one of the 100 simulated runs than the initial primary run due to
there being 100 times the chance), it does still happen.

65

Chapter 6

Interpretation and Discussion

66

6.1 Analysis of the Methodology

The methodology as a whole appears sound – using the parametric boots-
trap to generate a treelike distribution on which to compare the real data.
However, there are some potential issues with the specifics of the method.
Firstly, the measure of difference (equation 4.3) is of great importance. If this
measure is not appropriate, then the results gained from the analysis may
be void and irrelevant. The LS test seems appropriate and there is some
evidence to support this (see: Savva et al. unpublished) however it can also
clearly be improved. The result of “not treelike” from the program with the
tree based dataset (see figure 5.8) shows that there must still be error in the
overall analysis.

Given the nature of the methodology, where a long enough sequence will
cause the program to optimise to the correct initial parameter values, care
needs to be taken when deciding how long to make each of the simulated
sequences. If they are generated to be too long, then the variance of the
resulting parameter optimisation is greatly reduced causing the final distance
comparsion to be directly back to the initial parameters with little or no
variance or noise. This could be causing some problems with the internal LS
comparison and potentially be voiding the significance calculation. However,
a sequence length that is too small causes the program to fail to converge at
all, and so a balance must be made between the two (and this is before taking
into account the additional time required to do the additional analysis).

6.2 Application Completion

The results of the testing and analysis show that the program works suffi-
ciently well without use of the gamma function. With the gamma function
working correctly, the program would be complete and very useful in an ini-
tial form although improvements could then still be made (as discussed in
section 7).

It is currently unknown as to why (if at all) the gamma function is not
working correctly and this is in need of further investigation. Without being

67

able to fully prove the correctness of the function, it must be assumed to be
invalid and so this leaves the application partly incomplete.

Finally, coming back to the aims and objectives of the project, the appli-
cation successfully optimises all GTR and branch length parameters as well
as the sequence pair-wise distances although it does not necessarily correctly
optimise the alpha value of the gamma distribution. It does, on the other
hand, successfully generate the sequence alignments that describe the null
hypothesis (treelike) and will perform the correct statistical test against this
to accept or reject the null hypothesis, providing a way of measuring the
networkyness of a dataset given a guide tree. The correctness and accuracy
of the program have also been analysed and the results seem promising.

However, the secondary aims of the project have not been successfully
met as an example dataset analysis (though has been done on the Brown
dataset in a little depth,) was not completed for either the An. annularis or
the An. jeyporiensis datasets available. Additionally, no user interface has
been implemented into the program at present and is left for future work.

6.3 Example Dataset Discussion

The initial and primary result for the Brown dataset of not treelike is a
surprising one because the sequence data is mtDNA which, by its very nature,
has no reticulation within. This would suggest that the sequences are likely
to be treelike but the analysis result suggests otherwise and if this mtDNA
without chance of reticulation is not treelike, then this suggests that very
little sequence data, if any, is ever treelike unless it has been artificially
generated. However, this has been contradicted by the alternative result
when the base frequencies are all set to equal probabilities of 0.25. What I
believe that this shows is just that to have the most accurate and reliable
result, the most accurate models need to be used. Because of this, the result
above has the potential to change once retested using the optimised alpha
value of the gamma distribution and only then should the application result
be analysed with confidence.

As a result of this, the Brown dataset was additionally analysed using the

68

Figure 6.1: Graph showing the least-squares estimates for the Brown dataset
against 100 simulated sequences of length 895 using the full GTR+Γ model.
Though much closer than before, the final result is still not treelike.

full GTR model with gamma (given that it appears to work for the Brown
dataset) and a simulated sequence length of 895 for 100 simulated sequences.
This resulted in the distribution given in figure 6.1 and the result of not
treelike produced again, though the simulated and true LSdist values were far
closer than before.

In addition to this, there is still the underlying concern with the metho-
dology and this may also be the cause of this discrepancy. After all, looking
at the SplitsTree4 network of the Brown data, there is nothing that makes
it obviously network like (see figure 5.10).

There could be many reasons as to why the An. annularis dataset did
not converge within the program. Firstly, it could be a general error with
the program that caused this. This could be down to the dataset being too
similar and causing the program to fail to converge (it is known that there are
a few identical sequences within the dataset and these may be causing issues
and will certainly be slowing the progress), or the lack of use of the gamma
distribution could also be having an effect. Secondly it could be a more

69

general issue with the dataset. If the dataset is analysed with the baseml
program from the PAML package (Yang 2007), then the optimised branch
lengths all come back as very similar in length suggesting high sequence
similarity and thus little information on which to optimise the various model
parameters.

6.4 Scope and Limitations

At present the application does not optimise tree topology, just tree branch
lengths along side GTR model parameters. Due to the complex nature of
tree topology optimisation, it was outside the scope of this project.

The application only aims to give a statistical analysis of a given dataset’s
level of treelikeness – it does not say what needs to be done as a consequence
of the analysis or why the results may arise. It is down to the user to
investigate the reason for the result and any implications it may have on any
future analysis the user may decide to undertake.

70

Chapter 7

Future Work and Extensions

There are a few ways in which the application could be improved. The first
step would be to ensure that all aspects of the program work – most notably
the gamma distribution optimiser which is otherwise having some current
issues. Once this is up and running, it could also be extended to allow for
the invariant sites model. This is where a proportion of sites do not evolve
at all and can be used separate or together with the gamma distribution (for
overview see: Jayaswal et al. 2007). Additionally, there are various places
in which the program could be further optimised for both memory and time
efficiency. As well as various code optimisations, one major idea here would
be to adjust the program for multi-threading to make use of modern multi-
cored computers. This could be done, for example, by either splitting up
the tree and pair-wise optimisation steps into two separate threads or by
splitting the distribution generation and optimisation into separate threads
(or both).

Secondly, the program could also enable the maximum-likelihood estima-
tion of the best tree to describe the data as well as the parameters rather
than requiring a guide tree from the user. This would require an implemen-
tation similar to that of RAXML (Stamatakis 2006) to enable the best tree
to be found rather than assuming that this is going to be prior knowledge
before analysis.

As previously mentioned, a suggested extension of the program is to in-

71

clude a user interface to the software for ease of use as this has not already
been implemented. This would have clear usability advantages potentially
allowing the application to reach a larger target audience and wider user
base.

Separately from this, further alternative distance measures or statistics
could be implemented into the program along side the least-squares statistic
currently used. Two alternatives compared within the literature is that of
Tree Fit and Net Fit as described by Savva et al. (unpublished). Tree Fit is
shown in equation 7.3 and Net Fit is shown in equation 7.4. Both measures
require the additional definitions of Sum of Squares (SS) measures given in
equations 7.1 and 7.2

SST =
∑
i

∑
j>i

(dij − tij)2 (7.1)

SSN =
∑
i

∑
j>i

(dij − nij)2 (7.2)

where tij ∈ T given T is a Neighbor-Joining tree and nij ∈ N where N is
a Neighbor-Net both estimated from a pair-wise alignment distance matrix,
D, and thus dij ∈ D.

TF = SST (7.3)

NF = SST − SSN
SSN

(7.4)

These measures have been tested within the paper and are thus thought to
be better measures for the difference perhaps providing a better test statistic.

Finally, the program at present only works in the one direction – testing
for treelikeness. It may, however, also be appropriate to try the method
the other way around by generating maximum-likelihood networks instead
of maximum-likelihood trees. This approach has been described and detailed
in Jin et al.’s (2006) paper and is likely worthy of some investigation.

Additionally, more benchmark results need to be added to the current
table and benchmark results of memory usage also need to be included.

72

Chapter 8

Conclusion

In conclusion, the methodology described here seems sufficient as a test base
for data networkyness. The bootstrap approach provides a way to generate
datasets adhering to the null hypothesis model against which to compare the
initial data allowing a statistic and p-value level of confidence to be placed
in the final result of the full hypothesis test. This approach makes use of
tree based simulated sequence alignments modelled on the null hypothesis
and fully functional parameter optimisation functions for both the branch
lengths, pair-wise distances and GTR+Γ parameters. The final application
produced provides an easy way to quickly analyse your data for networky-
ness allowing you to know if you data fulfils the various assumptions of any
further phylogenetic based analysis that may be undertaken. Though there
is still room for improvement, the application filled most of its primary aims
and objectives successfully. This has been verified through in depth module
tests of each component in turn by comparing each section to its equiva-
lent program as well as through internal test runs. With a little more work,
this application could be of great use within the field of phylogenetics for
many years to come. This has been shown through an application run using
an example dataset testing for networkyness and a brief discussion of the
implications arising from such a result.

The source code for the program is available on request from the author
and is also attached to the back of this report.

73

Bibliography

Adell, J. C. & Dopazo, J. (1994), ‘Monte carlo simulation in phylogenies:
An application to test the constancy of evolutionary rates’, Journal of
Molecular Evolution 38, 305–309.

Bandelt, H.-J. & Dress, A. W. (1992), ‘A canonical decomposition theory for
metrics on a finite set’, Advances in Mathematics 92, 47–105.

Brown, W. M., Pragerand, E. M., Wang, A. & Wilson, A. C. (1982), ‘Mi-
tochondrial dna sequences of primates: Tempo and mode of evolution’,
Journal of Molecular Evolution 18, 225–239.

Bryant, D. & Moulton, V. (2004), ‘Neighbor-net: An agglomerative method
for the construction of phylogenetic networks’, Molecular Biology and
Evolution 21(2), 255–265.

Bulmer, M. (1991), ‘Use of the method of generalized least squares in re-
constructing phylogenies from sequence data’, Molecular Biology and
Evolution 8(6), 868–883.

Dash, A. P., Valecha, N., Anvikar, A. R. & Kumar, A. (2008), ‘Mala-
ria in india: Challenges and opportunities’, Journal of Biosciences
33(4), 583–592.

Dayhoff, M., Schwartz, R. & B. C, O. (1978), A model of evolutionary change
in proteins, in ‘Atlas of Protein Sequence and Structure’, pp. 345–352.

Dopazo, J. (1994), ‘Estimating errors and confidence intervals for branch
lengths in phylogenetic trees by a bootstrap approach’, Journal of Mo-
lecular Evolution 38, 300–304.

74

Drummond, A. J. & Rambaut, A. (2007), ‘BEAST: Bayesian evolutionary
analysis by sampling trees’, Evolutionary Biology 7, 214. Version 1.5.4.
http://beast.bio.ed.ac.uk/Main_Page.

Efron, B. (1979), ‘Bootstrap methods: Another look at the jackknife’, The
Annals of Statistics 7(1), 1–26.

Felsenstein, J. (1981), ‘Evolutionary trees from DNA sequences: A maximum
likelihood approach’, Journal of Molecular Evolution 17, 368–376.

Felsenstein, J. (1985), ‘Confidence limits on phylogenies: An approach using
the bootstrap’, Evolution 39(4), 783–791.

Felsenstein, J. (2009a), ‘Fitch – Fitch-Margoliash and Least-Squares dis-
tance methods’, World-Wide-Web Reference. Version 3.69 - Part
of the PHYLIP Package. http://evolution.genetics.washington.
edu/phylip/doc/fitch.html.

Felsenstein, J. (2009b), ‘PHYLIP (Phylogeny Inference Package)’, Distribu-
ted by the author. Department of Genome Sciences, University of Wa-
shington, Seattle. Version 3.69. http://evolution.gs.washington.
edu/phylip.html.

Gauthier, O. & Lapointe, F.-L. (2007), ‘Seeing the trees for the network:
Consensus, information content, and superphylogenies’, Systematic Bio-
logy 56(2), 355–363.

Golding, G. (1983), ‘Estimates of DNA and protein sequence divergence:
An examination of some assumptions’, Molecular Biology and Evolution
1(1), 125–142.

Goldman, N. (1993a), ‘Simple diagnostic statistical tests of models for DNA
substitution’, Journal of Molecular Evolution 37, 650–661.

Goldman, N. (1993b), ‘Statistical tests of models of DNA substitution’, Jour-
nal of Molecular Evolution 36, 182–198.

75

http://beast.bio.ed.ac.uk/Main_Page
http://evolution.genetics.washington.edu/phylip/doc/fitch.html
http://evolution.genetics.washington.edu/phylip/doc/fitch.html
http://evolution.gs.washington.edu/phylip.html
http://evolution.gs.washington.edu/phylip.html

Goodman, S. N. (1999), ‘Toward evidence-based midical statistics. 1: The P
value fallacy’, Annals of Internal Medicine 130, 995–1004.

Gunasekaran, K., Sahu, S., Parida, S., Sadanandane, C., Jambulingam, P.
& Das, P. (1989), ‘Anopheline fauna of Koraput district, Orissa state,
with particular reference to transmission of malaria’, Indian Journal of
Medical Research 89, 340–343.

Hasegawa, M., Kishino, H. & aki Yano, T. (1985), ‘Dating of the human-
ape splitting by a molecular clock of mitochondrial DNA’, Journal of
Molecular Evolution 22, 160–174.

Higgins, D. G. & Sharp, P. M. (1988), ‘CLUSTAL: a package for performing
multiple sequence alignment on a microcomputer’, Gene 73, 237–244.

Higgs, P. G. & Attwood, T. K. (2005), Bioinformatics and Molecular Evolu-
tion, Blackwell Publishing, pp. 158–161.

Ho, S. Y. W., Heupink, T. H., Rambaut, A. & Shapiro, B. (2007), ‘Bayesian
estimation of sequence damage in ancient DNA’, Molecular Biology and
Evolution 24(6), 1416–1422.

Huson, D. H. & Bryant, D. (2005), ‘Application of phylogenetic networks in
evolutionary studies’, Molecular Biology and Evolution 23(2), 254–267.

Jayaswal, V., Robinson, J. & Jermiin, L. (2007), ‘Estimation of phylogeny
and invariant sites under the general markov model of nucleotide se-
quence evolution’, Systematic Biology 56(2), 155–162.

Jin, G., Nakhleh, L., Snir, S. & Tuller, T. (2006), ‘Maximum likelihood of
phylogenetic networks’, Bioinformatics 22(21), 2604–2611.

Joyce, J. (2008), Bayes’ theorem, in E. N. Zalta, ed., ‘The Stanford Ency-
clopedia of Philosophy (Fall 2008 Edition)’, World Wide Web: http:
//plato.stanford.edu/entries/bayes-theorem/.

76

http://plato.stanford.edu/entries/bayes-theorem/
http://plato.stanford.edu/entries/bayes-theorem/

Jukes, T. H. & Cantor, C. R. (1969), Evolution of protein molecules, in
H. Munro, ed., ‘Mammalian Protein Metabolism’, Vol. III, Academic
Press, New York, pp. 21–132.

Kimura, M. (1980), ‘A simple method for estimating evolutionary rates of
base substitutions through comparative studies of nucleotide sequences’,
Journal of Molecular Evolution 16, 111–120.

Le, S. Q. & Gascuel, O. (2008), ‘An improved general amino acid replacement
matrix’, Molecular Biology and Evolution 25(7), 1307–1320.

Livingstone, C. D. & Barton, G. J. (1993), ‘Protein sequence alignments: a
strategy for the hierarchical analysis of residue conservation’, Computer
Applications in the Biosciences 9(6), 745–756.

MacKay, D. (2004), ‘macopt – a nippy wee optimizer’, World-Wide-Web:
http://www.inference.phy.cam.ac.uk/mackay/c/macopt.html,
Last Modified: June 2004, Accessed: September 2010.

Morrison, D. A. (2010), ‘Using data-display networks for exploratory data
analysis in phylogenetic studies’, Molecular Biology and Evolution
27(5), 1044–1057.

Needleman, S. B. & Wunsch, C. D. (1970), ‘A general method applicable to
the search for similarities in the amino acid sequence of two proteins’,
Journal of Molecular Biology 48(3), 443–453.

Notredame, C., Higgins, D. G. & Heringa, J. (2000), ‘T-Coffee: A novel
method for fast and accurate multiple sequence alignment’, Journal of
Molecular Biology 302, 205–217.

Olsen, G. (1990), “‘newick 8:45” tree format standard’, World-Wide-Web
Reference. http://evolution.genetics.washington.edu/phylip/
newick_doc.html.

Ostaszewski, K. & Rempala, G. A. (2000), ‘Parametric and nonparame-
tric bootstrap in actuarial practice’, www. actuarialfoundation. org/

research_ edu/ parametic. pdf .

77

http://www.inference.phy.cam.ac.uk/mackay/c/macopt.html
http://evolution.genetics.washington.edu/phylip/newick_doc.html
http://evolution.genetics.washington.edu/phylip/newick_doc.html
www.actuarialfoundation.org/research_edu/parametic.pdf
www.actuarialfoundation.org/research_edu/parametic.pdf

Penn, O., Privman, E., Landan, G., Graur, D. & Pupko, T. (2010), ‘An ali-
gnment confidence score capturing robustness to guide tree uncertainty’,
Molecular Biology and Evolution 27(8).

Posada, D. & Crandall, K. A. (2001a), ‘Intraspecific gene genealogies: trees
grafting into networks’, Trends in Ecology & Evolution 16(1), 37–45.

Posada, D. & Crandall, K. A. (2001b), ‘Selecting models of nucleotide substi-
tution: An application to Human Immunodeficiency Virus 1 (HIV-1)’,
Molecular Biology and Evolution 18(6), 897–906.

Rambaut, A. & Grassly, N. C. (1997), ‘Seq-Gen: An application for the
Monte Carlo simulation of DNA sequence evolution along phylogenetic
trees’, Computer Applications in the Biosciences 13(3), 235–238. Ver-
sion 1.3.2. http://tree.bio.ed.ac.uk/software/seqgen/.

Rosenberg, M. S. (2005), ‘MySSP: Non-stationary evolutionary sequence si-
mulation, including indels’, Evolutionary Bioinformatics Online 1, 81–
83.

Saitou, N. & Nei, M. (1987), ‘The neighbor-joining method: A new method
for reconstructing phylogenetic trees’, Molecular Biology and Evolution
4(4), 406–425.

Sattler, R. (1984), ‘Homology – a continuing challenge’, Systematic Biology
9(4), 382–394.

Savva, G., Multon, V., Huber, K. & Dicks, J. (unpublished), A novel statis-
tical measure for testing hypotheses of treelikeness in genomic datasets.
Personal Communication – Unpublished 2010: Systematic Biology.

Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. (2002),
‘TREE-PUZZLE: maximum likelihood phylogenetic analysis using quar-
tets and parallel computing’, Bioinformatics 18, 502–504. Version 5.2.
http://www.tree-puzzle.de/.

Shimodaira, H. (2002), ‘An approximately unbiased test of phylogenetic tree
selection’, Systematic Biology 51(3), 492–508.

78

http://tree.bio.ed.ac.uk/software/seqgen/
http://www.tree-puzzle.de/

Shimodaira, H. & Hasegawa, M. (1999), ‘Multiple comparisons of log-
likelihoods with applications to phylogenetic inference’, Molecular Bio-
logy and Evolution 16(8), 1114–1116.

Sierk, M. L., Smoot, M. E., Bass, E. J. & Pearson, W. R. (2010), ‘Impro-
ving pairwise sequence alignment accuracy using near-optimal protein
sequence alignments’, Bioinformatics 11, 146–160.

Stajich, J. E., Block, D., Boulez, K., Brenner, S. E., Chervitz, S. A.,
Dagdigian, C., Fuellen, G., Gilbert, J. G. R., Korf, I., Lapp, H.,
Lehväslaiho, H., Matsalla, C., Mungall, C. J., Osborne, B. I., Pocock,
M. R., Schattner, P., Senger, M., Stein, L. D., Stupka, E., Wilkin-
son, M. D. & Birney, E. (2002), ‘The Bioperl Toolkit: Perl modules
for the life sciences’, Genome Research 12, 1611–1618. Version 1.6.1.
http://www.bioperl.org/wiki/Main_Page.

Stamatakis, A. (2006), ‘RAxML-VI-HPC: Maximum likelihood-based phy-
logenetic analyses with thousands of taxa and mixed models’, Bioin-
formatics 21(22), 2688–2690. Version 7.0.4. http://icwww.epfl.ch/
~stamatak/index-Dateien/Page443.htm.

Stamatakis, A., Hoover, P. & Rougemont, J. (2010), A rapid bootstrap al-
gorithm for the RAxML web-servers. to be published.

Strimmer, K. & von Haeseler, A. (1996), ‘Quartet Puzzling: A quartet
maximum-likelihood method for reconstructing tree topologies’, Mole-
cular Biology and Evolution 13(7), 964–969.

Strope, C. L., Abel, K., Scott, S. D. & Moriyama, E. N. (2009), ‘Biological
sequence simulation for testing complex evolutionary hypotheses: indel-
Seq-Gen version 2.0’, Molecular Biology and Evolution 26(11), 2581–
2593.

Strope, C. L., Scott, S. D. & Moriyama, E. N. (2007), ‘indel-Seq-Gen: A
new protein family simulator incorporating domains, motifs, and indels’,
Molecular Biology and Evolution 23(3), 640–649.

79

http://www.bioperl.org/wiki/Main_Page
http://icwww.epfl.ch/~stamatak/index-Dateien/Page443.htm
http://icwww.epfl.ch/~stamatak/index-Dateien/Page443.htm

Tavaré, S. (1986), Some probabilistic and statistical problems in the analysis
of DNA sequences, in ‘Lectures on Mathematics in the Life Sciences, vol
17’, pp. 57–86.

T.Jones, D., R.Taylor, W. & M.Thornton, J. (1992), ‘The rapid generation of
mutation data matricies from protein sequences’, Computer Applications
in the Biosciences 8(3), 275–282.

Wägele, J. W. & Mayer, C. (2007), ‘Visualizing differences in phylogenetic
information content of alignments and distinction of three classes of
long-branch effects’, BMC Evolutionary Biology 7, 147.

Wakeley, J. (1993), ‘Substitution rate variation among sites in hypervariable
region 1 of human mitochondrial DNA’, Journal of Molecular Biology
37, 613–623.

Whelan, S. & Goldman, N. (2001), ‘A general empirical model of protein
evolution derived from multiple families using a maximim-likelihood ap-
proach’, Molecular Biology and Evolution 18(5), 691–699.

Whelan, S., Liò, P. & Goldman, N. (2001), ‘Molecular phylogenetics:
state-of-the-art methods for looking into the past’, Trends in Genetics
17(5), 262–272.

Yang, Z. (1994), ‘Estimating the pattern of nucleotide substitution’, Journal
of Molecular Evolution 39, 105–111.

Yang, Z. (1996), ‘Among-site rate variation and its impact on phylogenetic
analyses’, Trends in Ecology & Evolution 11(9).

Yang, Z. (2007), ‘PAML 4: a program package for phylogenetic analysis by
maximum likelihood’, Molecular Biology and Evolution 24, 1586–1591.
Version 4.4. http://abacus.gene.ucl.ac.uk/software/paml.html.

80

http://abacus.gene.ucl.ac.uk/software/paml.html

Appendix A

Parameter Convergence to
Sequence Length - Data

These table gives the average, actual, minimum and maximum parameter
estimates for each parameter from 100 repeats at various simulated sequence
lengths showing how the optimiser is consistent. That is, the more data it
has available (more sequence) then the closer it will converge to the correct
answer. The optimised parameters are all GTR parameters and the branch
lengths. The base frequencies were set to: πA = 0.2, πC = 0.3, πG =
0.4 and πT = 0.1

81

A.1 GTR Parameters

Length RAC RAG RAT RCG RCT RGT

N/A Actual 0.35 1 0.25 0.45 0.15 0.05

50
Mean 0.383 1.0 0.237 0.418 0.241 0.042
Max 2.439 1.0 1.059 1.836 8.395 0.335
Min 0.000 1.0 0.000 0.000 0.000 0.000

100
Mean 0.354 1.0 0.243 0.473 0.140 0.052
Max 1.007 1.0 0.717 0.966 0.468 0.312
Min 0.000 1.0 0.000 0.121 0.000 0.000

250
Mean 0.362 1.0 0.259 0.450 0.155 0.045
Max 0.812 1.0 0.531 0.732 0.411 0.245
Min 0.108 1.0 0.000 0.245 0.037 0.000

500
Mean 0.350 1.0 0.252 0.448 0.150 0.051
Max 0.592 1.0 0.433 0.678 0.281 0.157
Min 0.157 1.0 0.081 0.300 0.059 0.000

750
Mean 0.342 1.0 0.247 0.443 0.147 0.052
Max 0.505 1.0 0.442 0.599 0.236 0.116
Min 0.200 1.0 0.102 0.309 0.066 0.000

1000
Mean 0.355 1.0 0.242 0.457 0.150 0.056
Max 0.527 1.0 0.366 0.590 0.265 0.115
Min 0.197 1.0 0.131 0.356 0.080 0.000

2500
Mean 0.347 1.0 0.248 0.449 0.149 0.050
Max 0.446 1.0 0.360 0.542 0.204 0.083
Min 0.280 1.0 0.177 0.387 0.114 0.015

5000
Mean 0.347 1.0 0.247 0.449 0.150 0.050
Max 0.446 1.0 0.328 0.496 0.187 0.073
Min 0.283 1.0 0.201 0.403 0.113 0.028

10000
Mean 0.347 1.0 0.252 0.450 0.150 0.050
Max 0.430 1.0 0.309 0.509 0.181 0.074
Min 0.284 1.0 0.191 0.386 0.114 0.019

Table A.1: Table giving the Mean, Max and Min scores for optimised GTR
parameters after 100 simulations at varying sequence lengths. All values to
3 decimal places.

82

A.2 Branch Lengths

Length bH bC bGo bO bGi bH,C bO,Gi
N/A Actual 0.1 0.2 0.3 0.4 0.5 0.6 0.7

50
Mean 0.127 0.215 0.551 0.589 0.649 0.772 1.105
Max 0.642 0.893 5.751 5.424 2.782 3.541 9.846
Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000

100
Mean 0.116 0.209 0.314 0.429 0.601 0.689 0.804
Max 0.370 0.487 1.829 1.098 1.682 1.830 2.146
Min 0.000 0.000 0.000 0.000 0.000 0.065 0.000

250
Mean 0.091 0.214 0.307 0.392 0.564 0.650 0.752
Max 0.247 0.372 0.761 0.916 1.523 1.343 1.843
Min 0.000 0.090 0.000 0.000 0.210 0.335 0.307

500
Mean 0.105 0.199 0.301 0.425 0.510 0.612 0.725
Max 0.179 0.337 0.619 0.722 0.756 1.032 1.247
Min 0.000 0.109 0.055 0.262 0.243 0.193 0.283

750
Mean 0.105 0.199 0.308 0.403 0.506 0.600 0.740
Max 0.185 0.276 0.485 0.627 0.711 0.978 1.160
Min 0.042 0.102 0.098 0.226 0.331 0.428 0.406

1000
Mean 0.095 0.206 0.297 0.400 0.502 0.612 0.714
Max 0.146 0.301 0.456 0.551 0.666 0.821 0.970
Min 0.022 0.140 0.162 0.285 0.354 0.426 0.501

2500
Mean 0.099 0.200 0.301 0.398 0.503 0.601 0.703
Max 0.133 0.245 0.398 0.489 0.598 0.715 0.928
Min 0.058 0.162 0.196 0.274 0.411 0.494 0.544

5000
Mean 0.101 0.200 0.304 0.402 0.500 0.607 0.702
Max 0.137 0.241 0.376 0.499 0.576 0.694 0.782
Min 0.072 0.161 0.224 0.310 0.424 0.503 0.631

10000
Mean 0.102 0.198 0.300 0.401 0.502 0.606 0.711
Max 0.125 0.233 0.372 0.481 0.582 0.679 0.804
Min 0.071 0.162 0.229 0.334 0.436 0.534 0.640

Table A.2: Table giving the Mean, Max and Min scores for optimised branch
lengths after 100 simulations at varying sequence lengths. All values to 3
decimal places.

83

	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Preamble
	Declaration
	Copyright Statement
	Acknowledgements
	The Author

	Introduction
	Classical Phylogenetics
	Phylogenetic Trees
	Sequence Alignments
	Biological Insight
	Substitution Models
	Statistical Inference in Phylogenetics
	Hypothesis Testing

	Alternative Phylogenetics
	Terminology
	Phylogenetic Trees: The Return
	Phylogenetic Networks
	Networks verses Trees

	Related Work
	Aims and Objectives
	Initial Perl Pipeline
	Primary Java Application
	Miscellaneous

	Materials and Methods
	Methodology and Implementation
	Sequence Pair-Wise Distances
	Tree Based Distance Matrix
	Least Squares Distances
	The Bootstrap
	Statistical Confidence – P-Values

	Datasets Used
	Mitochondrial DNA of Primates
	Mitochondrial DNA of Mosquitoes

	Software Used
	BEAST
	Other

	Results
	Methodology Validation
	Initial Set-up
	Optimisation
	Statistical

	Optimiser Consistency Check
	Additional Testing Notes
	Example Real Data Analysis
	Benchmark Tests

	Interpretation and Discussion
	Analysis of the Methodology
	Application Completion
	Example Dataset Discussion
	Scope and Limitations

	Future Work and Extensions
	Conclusion
	Bibliography
	Appendix
	Parameter Convergence to Sequence Length - Data
	GTR Parameters
	Branch Lengths

