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Performance of wrist based electrocardiography with conventional ECG
analysis algorithms

Alexander J. Casson

Abstract— Wrist worn activity monitors are becoming in-
creasingly popular and could be greatly enhanced by the
inclusion of additional physiological monitors. This paper
investigates integrating wrist based electrocardiography into
such devices. Results show that when no motion is present
techniques and algorithms developed for traditional chest ECG
can be directly re-applied to the wrist with a valid analysis
present more than 90% of the time. With motion artefacts from
keyboard typing this falls to 50%, still allowing significant re-
use of existing approaches.

I. INTRODUCTION

Wearable electronics are beginning to have a massive
impact in the healthcare arena. The fitbit [1] and Nike+ fuel-
band [2] are two well known examples of wrist worn activity
monitors for personalised and preventative healthcare. It is
estimated that 90% of type 2 diabetes, 80% of heart diseases
and 70% of strokes could be avoided with the use of suitable
preventative techniques [3]. Given this, there is is now a
major drive to integrate more physiological monitoring into
similar wrist band devices. Cardiac monitoring is one such
parameter, and the integration of this into wearable sensors
is essential for studying heart function, cardiac arrhythmia,
and oscillations during sleep, in the general population in a
way not possible with traditional Holter monitors.

Several cardiac analysis algorithms have recently been
implemented as low power consumption hardware circuits
suitable for integrating into wearable and smart sensor de-
vices [4], [5]. However these are all designed for traditional
chest ECG. In contrast, for wearable applications the wrist is
the most natural location to position the sensor, with a strong
association with the use of watches. Pulse oximetry, typically
placed on a finger, has long been used for non-chest heart
monitoring, but it is severely corrupted by motion artefacts
limiting its utility [6]. Wrist electrocardiography, the same
as the ECG but with electrodes placed on the wrist, is a
potential alternative [7] which is now of renewed interest,
but which is yet to gain traction due to the signal collection
and processing challenges present.

A recording of wrist ECG is shown in Fig. 1. The core
cardiac information is clearly visible, although with a much
reduced amplitude; typically 50 µVpp. This is the same order
of magnitude as brain signals recorded via the EEG and
recent advances in EEG analysis have allowed the robust
use of these low amplitude signals even in the presence
of motion [8], [9]. It is now essential to map these into
the electrocardiography domain and this paper begins the
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Fig. 1. Wrist ECG information is in the 50 µVpp range requiring new
sensors, devices and signal processing for wearable ECG applications.

process by collecting wrist ECG and analysing it using two
conventional QRS analysis algorithms. This demonstrates the
extent to which chest measurement techniques can be directly
mapped to the wrist and also quantifies how much of the
wrist ECG data is corrupted by motion artefact.

II. METHODS
Three 45 minute wrist ECG recordings were carried out.

Standard pre-gelled surface electrodes were placed on the
wrist of the non-dominant hand: two on the upper forearm,
and one underneath, corresponding to typical positions on
a watch body and strap. A fourth electrode was placed on
the chest for simultaneous conventional ECG monitoring.
A camNtech recorder was used (512 Hz, 10 bit sampling,
50 Hz notch) with one of the upper forearm electrodes as
the combined reference and ground giving three recording
channels. The upper and lower wrist channels were set to
use an EEG signal range in order to accurately collect
low amplitude signals. In two of the recordings the subject
was asked to remain still, inducing minimum artefacts. The
third recording was carried out while the subject operated a
computer performing standard typing tasks including word
processing, emails and Internet browsing.

Each recording channel was analysed separately to deter-
mine R peak onset times. To compare performance two R
detection algorithms commonly applied to chest ECG were
used to analyse the data: firstly [10] based upon the derivative
of the trace and an adaptive threshold; secondly [11] based
upon fitting a low order polynomial for baseline removal
and then applying a fixed threshold of 500 µV for the ECG
trace and 40 µV for the two wrist traces. R onset times from
both algorithms were used to determine the heart rate as
measured on the chest and on the wrist, updated with each
new detected R onset. This rate was post-processed using a
15-point median filter to eliminate brief transients present in
the detections, and also used for the generation of standard
ECG statistical measures.
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Fig. 2. Heart rate in record 1 measured using the algorithm [10] and ECG
electrodes from the chest and upper wrist.

TABLE I PERCENTAGE OF TIME RR BASED HEART RATE

MEASURED AT THE CHEST AND WRIST DISAGREE BY MORE THAN 2 BPM.

Algorithm [10] [11]

Record 1 Upper wrist 03.9% 17.2%
Lower wrist 11.6% 38.0%

Record 2 Upper wrist 06.1% 09.3%
Lower wrist 21.2% 37.6%

Record 3 Upper wrist 40.6% 42.8%
Lower wrist 43.6% 53.2%

III. RESULTS
Fig. 2 shows a typical heart rate measured from the

chest and upper wrist illustrating the common pattern of
good agreement between the two sensing locations, but with
transient periods of large disagreement. Table I quantifies
how often the wrist based measurements differ from the
chest measurement by more than 2 beats per minute. In
the no motion records (1 and 2) the vast majority of the
wrist data can be correctly analysed using the conventional
ECG algorithms but re-applied to the new sensing locations.
In the motion record (3), more data is corrupted, but large
periods of valid analysis are still present. Within these valid
analysis periods Table II shows the RR interval statistics
for the chest and upper wrist locations, with a very good
agreement present in all cases.

IV. DISCUSSION AND CONCLUSIONS
Two algorithms designed for chest ECG analysis have

been re-applied to wrist ECG data, and Table I demonstrates
that in the no motion case these algorithms can be used to
generate correct heart rate measurements more than 90% of
the time. New algorithm development is not necessary, and
within the periods where the analysis is valid Table II shows
that the wrist ECG can be used to accurately measure the RR
interval mean and standard deviation. The algorithm of [10]
outperforms [11] in all cases, but the performance of [11] is

TABLE II ECG RR STATISTICS FROM TIMES WITH VALID DATA

(ALGORITHM [10] FOR R DETECTION).

RR interval Mean [s] Standard
deviation [ms]

Record 1 Chest 1.29 46
Upper wrist 1.28 48

Record 2 Chest 1.20 50
Upper wrist 1.20 49

Record 3 Chest 1.25 78
Upper wrist 1.23 79

impressive given the use of a non-adaptive threshold (signif-
icantly simplifying a low power implementation). Likewise,
despite being closer to the reference electrode and hence
having smaller signals, the upper wrist based measurements
outperform the lower wrist measurements in all cases. This
is clearly the more promising sensor location for future wrist
ECG developments.

In the typing task (record 3) the data analysis is valid for
approximately half of the total collection time. In general
wearable sensors applied in non-controlled and varying en-
vironments do not have continuously valid data, trading-off
this off with the benefit of time to collect more data. This
paper provides an initial quantification of how much wrist
ECG data is valid, and dealing with new discontinuous data
sets is an emerging research challenge in wearable sensing
applications. For realising low power wearable devices it is
important that conventional ECG analysis algorithms can be
directly re-mapped to the wrist, and this also allows the
sensor to switch between low power non-motion and high
power motion-present algorithms depending on the current
situation, maximising battery life.
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