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ABSTRACT 
 
Techniques such as fluorescence microscopy reveal in three dimensions the complex mechanical structure of the 
cell cytoskeleton, made up of actin filaments, microtubules and intermediate filaments. Methods to quantify the 
degree of order in this structure could prove useful in classifying cells and may be related to the structural 
integrity of the cell. Approximate Entropy (ApEn) is a regularity statistic that has previously been used to 
quantify randomness in 1D time series data. We have extended the ApEn concept to define a multi-dimensional 
parameter suitable for application to three dimensional image data. This 3D ApEn parameter was applied to 
fluorescence microscopy images showing actin filaments in normal and cancerous human prostate cells. 
Differences between the ApEn calculated from the different images were observed, with cancer cells tending to 
have higher values indicating a lower degree of order. 
 

Index Terms— fluorescence microscopy, approximate entropy, prostate cancer, image texture, regularity 
 

1. INTRODUCTION 
 
The cytoskeleton is a highly complex, dynamic three-dimensional structure, which can be imaged using 
techniques such as laser scanning fluorescence microscopy.  Often large volumes of data are produced, requiring 
automated analysis to extract meaningful information, leading to the emerging field of bioimage informatics [1]. 
Key tasks in interpreting cell images include feature extraction, segmentation, and classification [2]. The actin 
cytoskeleton is instrumental in determining a cell’s shape [3]. Cancer is strongly associated with disordered 
changes in the cytoskeletal structure [4]. Hence it may be possible to recognize early malignancy by developing 
tools to analyze cytoskeletal image irregularity rather than waiting for obvious changes in cell shape/morphology. 
This would address the key challenge of subtle progression of malignancy between normal and diseased structural 
states, which currently requires expert histopathological interpretation to grade in terms of cell ‘differentiation’. In 
turn, this would inform automatic classification of cells as well as modeling of cytoskeleton structure and 
mechanical strength. 

Approximate Entropy (ApEn) is a regularity statistic in which the order of data and, consequently, inherent 
pattern is important [5]. This quality allows it to provide important additional  information compared to variability 
statistics (exemplified by mean, standard deviation, etc.) in the analysis of medical time series data such as fetal 
heart rate variability [6], particularly the ability to aid classification between different groups of patients. 
However, ApEn has found limited application to image data analysis, since it has only been defined for 1D data 
sequences. 

Following previous work using approximate entropy to classify perturbations in the speech patterns of larynx 
cancer patients [7], North Western Medical Physics has developed an extension to the original ApEn concept 
which allows it to be calculated for 2D and 3D image data, with clinical applications in mind. Here we describe 
the procedure for calculating the new multidimensional ApEn parameter and illustrate its application to the 
analysis of fluorescence microscopy images of normal and cancerous human prostate cells from Liverpool John 
Moores University.  
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2. METHODS & MATERIALS 
 

2.1. Approximate Entropy 
 
Approximate Entropy [5] measures the probability that two segments of data within a time series that are similar 
(within some threshold) will remain similar when the length of both segments is incremented by one. Three 
parameters, m, r and N, are required to define ApEn: m indicates the length of segments within the data to be 
compared; r is the threshold parameter for judging similarity of data segments; and N is the overall length of the 
sequence for which ApEn is to be calculated. ApEn is then defined as  
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where Cm(r) represents the prevalence of similar patterns of length m in the data. This is calculated by considering 
each segment of length m in turn and finding the fraction of all length-m segments that are similar to it. Averaging 
this fraction over all segments yields the value of Cm(r). Similarity between two segments is defined by 
calculating the maximum absolute difference between any element in one segment and the corresponding element 
in the other segment, and comparing this to the threshold parameter, r. 
 Formally, from N data points {u(i)} = u(1), u(2), …, u(N), a series of vector sequences x(1) to x(N  m + 1) 
are formed composed of m consecutive u values: x(i) = [u(i), …, u(i + m  1)]. The sequence x(1), x(2), …, 
x(N  m + 1) is used to construct )(rCi
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It is convenient to define the threshold parameter, r, as proportional to the standard deviation of the data, 
r=k×SD, where k is a constant. Lower ApEn value indicates the presence of repeating patterns in the data and 
hence a higher degree of order. With more randomness the probability that incremented segments remain similar 
is reduced, resulting in higher ApEn.  
 
2.2 Calculation of ApEn for 3D image data 
 
When defining an ApEn parameter for use in three dimensions, the aim is to calculate a local ApEn value based 
on the data values in a region of interest surrounding the point under consideration. This can be the immediate 
3×3×3 cube surrounding that point, or a larger region (e.g. 5×5×5, 7×7×7, etc.). It is convenient to define N as the 
side length of this cube and hence the number of data points over which ApEn will be calculated is N3.  

For application to 3D data, one must decide how to interpret a sequence of data starting at a particular point 
(the x(i) vectors). Three possibilities are (1) to extract a 1D data sequence in a pre-defined direction (as in [8]), (2) 
to extract 1D data in a raster fashion (as in [9,10]), or (3) to extend the sequence outwards from the initial point in 
all directions, so that the 26 nearest neighbor points surrounding the initial point are collectively considered as the 
second ‘element’ of x(i), the 98 next nearest neighbors form the third ‘element’ of x(i) and so on. We have chosen 
the last of these options as it removes directional dependence from the ApEn3D parameter, thus avoiding 
assumptions about the orientation of features of interest.  

Defining x(i) in this way, so that its elements are no longer all scalar values, requires a modified method to 
calculate d[x(i), x(j)], the “distance” between two vectors. This requires a difference between each element of x(i) 
and the corresponding element of x(j) to be calculated. For elements consisting of multiple values (i.e. all except 
the first element) the difference could be defined as the maximum difference between any of the corresponding 
values. This would be maximally consistent with 1D ApEn calculation, but would require all voxels to match the 
compared sequence, within tolerance r. This rather strict criterion would result in a small number of sequences 
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classed as similar (thus increasing noise in the calculated ApEn values). A more pragmatic approach is to define 
the difference between vector elements of x as the mean of the absolute differences between the corresponding 
values. Thus a series of scalar values, )(rCi

m
, are generated, from which ApEn3D can be calculated. 

It is important that our modifications to the ApEn algorithm for application to 3D data should not compromise 
the ability of ApEn to distinguish random from regular patterns. Validation tests were carried out to show this, 
firstly using a similarly modified 1D ApEn parameter and secondly by applying the new ApEn3D parameter to 
artificially generated regular and random 3D test patterns. These tests demonstrated that our modified calculation 
methodology for ApEn behaved very similarly to conventional 1D ApEn and was able to distinguish regular from 
random 3D test patterns (see figure 1).   

In practice we limit the calculation of ApEn3D to m=1 for 3D data, as the calculation time increases rapidly for 
larger values of m. Also it is important that sufficient numbers of point and extended segment matches should be 
produced for a statistically useful estimate of ApEn to be calculated. For larger values of m the number of matches 
is decreased, meaning that larger values of N are required. Pincus estimated that for 1D data N should be at least 
10m

 [6]. We typically calculate ApEn3D with m=1 and N=3 (i.e. 27 samples compared), which satisfies this 
requirement. 

 
 

2.3. Cell image data 
 
Fluorescence microscopy images of two cell lines were used in this work: prostate normal tissue (PNT) and 
prostate adenocarcinoma (PC-3). Cells of each type were grown in a monolayer, fixed and the actin filaments 
labeled using phalloidin conjugated with the fluorescent molecule FITC (Sigma, UK). Image stacks were acquired 
with a Zeiss LSM 510 laser scanning fluorescent microscope and using an excitation wavelength of 488 nm. 
Image size (x/y/z) was 512/512/98 for PNT and 512/512/81 for PC-3, with in-plane voxel size of 0.2 µm and slice 
(z) thickness 0.1 µm.   
 
2.4. Image comparisons 
 
For both the prostate normal tissue (PNT) and prostate cancer (PC-3) images the equator slice through the 
monolayer was selected (i.e. the z-slice showing the widest point on the cells, approximately half way from base 
to apex). ApEn3D (m=1, N=3, k=0.8) was calculated for each voxel of the equator slices (software implemented 
using IDL, ITT VIS, Boulder, CO). Regions of interest (ROIs) were defined  
 
 

Fig. 1. ApEn3D for regular 3D chequerboard pattern with 
increasing fraction (P) of points chosen at random replaced with 
uniformly distributed random noise. Each point shows the mean 
and standard deviation of 1000 randomly generated patterns for 
that noise fraction, P. Example 2D sections from the 3D test 
patterns are shown below the x-axis for a range of P values. 
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manually covering the cell contents of 6-7 typical cells on each image. In particular the cytoskeleton, located 
within cytosol, was selected. Histograms of the ApEn3D values within each individual cell ROI and the combined 
ROI were generated and the mean values calculated. Histograms and mean values were compared between PNT 
and PC-3 cells. For comparison to ApEn3D the Sobel approximation of image gradient magnitude was also 
calculated for both images. Histograms of image gradient magnitudes within the cell ROIs were also generated 
and compared in the same way. This was designed to demonstrate the calibrated, structural  discriminatory power 
of the ApEn regularity statistic compared to the more common forms of grey-scale image processing.   

 
3. RESULTS 

 
Figures 2a and 2b show the selected slices for PNT and PC-3 cells, showing the equator slice through the 
monolayer. Figures 2c and 2d show the same slices after ApEn3D processing. Computation of ApEn3D (m=1, N=3, 
k=0.8) for a 5122 image slice takes approximately 4 minutes using a 3GHz CPU with 2GB RAM.  

Regions containing little or no regular structure (i.e. flat or dominated by random noise) have high values of 
ApEn3D, while areas displaying regularity (e.g. edges, regular textures) are characterized by low values of 
ApEn3D. Note that an exactly flat image area would have low (zero) ApEn3D as this would be highly regular. 
However due to even small amounts of noise inherent in the imaging process, and the fact that the comparison 
threshold is defined as a fraction of the data standard deviation in the analysis region, flat regions of the image 
appear as pure noise (high ApEn3D). Figures 2e and 2f show the corresponding Sobel gradient magnitude images.  

Figures 3a and 3b show the cell ROIs defined on PNT and PC-3 cell images. Figures 3c and 3d show 
histograms of the ApEn3D values within the cell ROIs (black line shows histogram for the combined ROI, grey 
lines show histograms for individual cell ROIs). The histograms can be interpreted as containing a peak at high 
ApEn3D (around 2.2), corresponding to image areas with little structural regularity, along with a tail at lower 
ApEn3D values, corresponding to image regions containing regular structure. The histogram for the PNT cells 
shows a smaller peak at high values and a much more prominent tail at lower ApEn3D values, indicating that more 
regular structure is apparent in this image than the PC-3 image. The histograms for individual cells show that 
while there is some degree of variability between cells within each sample, the difference in histogram shape 
between the two samples remains consistent. The combined ROI histograms for PNT and PC-3 cells are compared 
directly in figure 4a. Both histograms are normalized to an area of 1.0, hence their similarity of shape can be 
quantified by the common area under both curves, 0.63.  

These differences in ApEn3D histograms are also reflected in the mean ApEn3D values. The PNT combined 
cell ROI has a mean ApEn3D of 1.06 ± 0.12 (SD of mean values for individual cell ROIs), while the PC-3 cells 
have mean ApEn3D of 1.59 ± 0.06. 

 



This paper was presented at IEEE ICIP, September 2011.                                                         http://dx.doi.org/10.1109/ICIP.2011.6116317 

 
 

Figures 3e, 3f and 4b show the corresponding gradient magnitude distributions for PNT and PC-3 cells for 
comparison. The differentiation between the two cell types is less significant. The combined ROI gradient 
histograms shown in figure 4b have an overlap area of 0.88. 

 

(a) PNT (b) PC-3 

Fig. 3. (a) Cell ROIs defined on PNT image (b) Cell ROIs defined 
on PC-3 image (c) Histogram of ApEn3D values within PNT cell 
ROIs (grey lines show histograms for individual cells, black line 
shows combined ROI histogram) (d) Histogram of ApEn3D values 
within PC-3 cell ROIs (e) Histogram of image gradient values 
within PNT cell ROIs (f) Histogram of image gradient values 
within PC-3 cell ROIs. 

(c)             PNT ApEn3D (d)          PC-3 ApEn3D  

(e)           PNT gradient (f)             PC-3 gradient 

(b) PC-3 (a) PNT 

20 µm 20 µm 

(c) PNT ApEn3D (d) PC-3 ApEn3D 

(e) PNT gradient (f) PNT gradient

Fig. 2. (a) and (b) Equator slices through actin labeled 
fluorescence microscopy images of PNT and PC-3 cells. (c) and 
(d) ApEn3D processed images corresponding to the slices shown 
in (a) and (b). (ApEn3D images are scaled to show values in the 
range 0.0-2.5). (e) and (f) Image gradient magnitude (Sobel) 
processed images for PNT and PC-3 cells (gradient images are 
scaled to show values in the range 0-600). 
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4. DISCUSSION 
 
We have described the application of a new multi-dimensional extension of the regularity statistic Approximate 
Entropy to fluorescence microscopy image data. Our focus was on calibrated differentiation of the actin 
cytoskeleton structure of normal and cancerous human prostate cells. The cancer cells indeed showed a higher 
mean ApEn3D value than the normal cells, indicating a greater degree of randomness in the image data. This is in 
agreement with the observation that the actin filaments of some cancer cells are disrupted causing the cells to have 
increased deformability compared to healthy cells [4]. Recent studies of the effect of radiation on the cytoskeleton 
have also observed changes in the organization of actin filaments [11]. Hence methods to quantify image 
regularity may also be of use here. 
 An important feature of ApEn is that it is a statistical measure sensitive to the range of inherent patterns and 
structures present in the image data itself, whose recurrence and extent are an integral part of the computational 
process. Hence, ApEn3D also responds to simplistic features such as edges, which can be visualised using gradient 
processing. This study shows that ApEn has distinctive,  additional value in being able to clearly differentiate 
between regular and irregular image patterns at a more subtle level, as demonstrated by the comparison to 
gradient processed cell images.  

The computation of ApEn in 3D rather than 2D includes additional data from adjacent image slices. This 
increases the number of data points available (thus decreasing noise) and takes account of regularity in all 
available planes, which may not be evident from a single slice extracted from the data volume. 
 In this work we used manual outlining of cell contents, however automatic detection of cell boundaries (e.g. 
[12]) could be implemented to make analysis of larger samples of images feasible. 
 

5. CONCLUSION 
 
Three dimensional approximate entropy processing of cell images may be a useful tool for measuring structure 
regularity of the cytoskeleton, which could help in classification of cells and modeling of cell structure.  
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