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Pairing Correlations: II. Exact Model 
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Abstract. In this series of papers, the so-called ground-state version of the 
[exp(S) or] coupled-cluster formalism (CCF) of quantum many-body theory is 
applied to the general problem of pairing correlations within a many-body 
system of identical fermions. In this second work in the series we restrict 
ourselves to exact calculations and concentrate on analytic solutions to the 
generalised ladder approximations formulated in the first paper. We focus 
attention on the particular model case of a general (non-local) separable 
potential, and work within the so-called complete ladder (CLAD) approxi- 
mation which was shown in the earlier paper to be the CCF formulation of the 
well-known Galitskii approximation. We show how the CLAD approximation 
reduces in this case to a highly non-trivial pair of coupled nonlinear integral 
equations for the four-point correlation function, $2,  which provides a measure 
of the two-particle/two-hole component  in the true "ground-state" wave- 
function. In the further derivation of exact analytic solutions for both $2 and the 
corresponding "ground-state" energy, we also see how various types of 
composite pairs within the many-body medium manifest themselves as "virtual 
(de-)excitations". We thus show how our CCF provides an efficient and unified 
framework in which to describe all aspects of pairing, such as: (i) a possible free 
bound pair and its gradual approach to "dissolution" as the density is increased; 
(ii) the possible appearance of a second bound pair of predominantly hole-like 
quasi-particles above some lower critical density (which depends on the total 
momentum of the pair); (iii) the unstable but bound resonant pairs that can exist 
for densities above a comparable upper critical density at which the two previous 
types of  real bound pairs have "dissolved"; and (iv) Cooper pairs. Even though 
each of these composite pairs leads to a new "condensed-pair phase" of lower 
energy, we further show that our so-called ground-state CCF leads only to the 
fluid-like state of uncondensed particles. In a third paper in this series we use the 
solutions obtained here as input to the analogous excited-state version of the 
CCF, and show how these various composite pairs materialise as "negative 
energy (de-)excitations". 

* On leave of absence from: Nuclear Theory Department, Institute for Nuclear Studies, Ho~a 69, 
PL-00-681 Warsaw, Poland 
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1 Introduction 

The present paper is the second in a series which considers the general problem of 
pairing correlations within a many-body system of identical fermions. In the 
previous first paper [1] (hereafter referred to as I), to which the reader is directed, we 
gave a rather full motivation for and historical discussion of this problem. We 
demonstrated furthermore how the ground-state (g.s.) version of the so-called 
[exp(S) or] coupled-cluster formalism (CCF) of quantum many-body theory may 
be rather generally applied to it. It was shown in I how the CCF provides a 
particularly powerful and unifying approach to the very broad problem of 
investigating such sub-structure as bound clusters within an interacting many-body 
system. 

Particular attention was paid in I to the pairing phenomena that arise due to 
particle-particle (pp) and hole-hole (hh) correlations, and it was shown how the CCF 
could be used to express the various generalised ladder approximations that arise 
from correlations in these two (pp and hh) channels, treated simultaneously. We 
specifically demonstrated how one could formulate within the CCF each of: (i) the 
Bethe-Goldstone (BG) approximation [2] which keeps only the pp-ladders 
(PPLAD); (ii) an intermediate approximation that adds to PPLAD the hh-ladders 
(HHLAD), and which seems to have been investigated earliest by Chisholm and 
Squires [3] and by Mehta [4]; and (iii) the so-called complete ladder (CLAD) 
approximation that adds to PPLAD and HHLAD the mixed pp/hh-ladders 
(MLAD). This latter approximation is fully equivalent to the so-called Galitskii 
approximation within the Galitskii-Feynman (GF) formalism, which is itself just the 
ladder approximation to the Bethe-Salpeter equation [5]. 

The lowest level of truncation of the CCF which goes beyond an independent- 
particle (Hartree-Fock) approach is the so-called SUB2 approximation. We 
pointed out in I how this SUB2 approximation fully describes the most general 
aspects of pairing within a many-body system. In particular, it couples together 
simultaneously, and treats on an equal footing, the pp, hh, and particle-hole (ph) 
channels. We saw explicitly how the CCF may be cast, at this SUB2 level, as a 
nonlinear integral equation for a four-point correlation function, $2, which 
describes the two-particle/two-hole component of the exact g.s. wavefunction [~P) of 
the interacting system. 

In many ways the present paper and its predecessor [lJ may be viewed as the 
analogue for pp-hh channels of an earlier paper [6] by one of the current authors 
and his co-workers, which dealt with the correlations in the ph channel as a 
precursor to a full calculation [7] of electron correlations within the one-component 
Coulomb system (or "electron gas"). In that particular paper [6], we focussed 
attention in the first instance on the random-phase approximation (RPA) [8] within 
the CCF. We showed that the RPA could be expressed within the CCF at the SUB2 
level, and in terms of a highly non-trivial, nonlinear ( -actual ly  bilinear) integral 
equation for the four-point function $2 �9 In particular, we found the exact, analytic 
solutions of this equation in the case of local pairwise potential interactions between 
the particles. It is our main aim again in the present work to restrict ourselves to 
exact calculations within the pp-hh channels, and to concentrate on analytic 
solutions to the generalised ladder approximations, particularly the most general 
CLAD approximation, formulated in I. To this end we restrict ourselves here to the 
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particular model case where the particles interact via non-local pairwise potentials of 
the separable kind. 

We find that both the RPA equation and the CLAD equation for $2, each of 
which arises as a distinct sub-approximation to the full SUB2 approximation, are 
bilinear integral equations. In the present paper, we draw on our earlier experience 
of the RPA in the ph channels with local potentials, to help solve the corresponding 
CLAD approximation in the pp-hh channels with separable potentials. We note that 
separable potentials are chosen here purely so as to be able to obtain analytic 
solutions. However, we should point out that there is no particular problem with 
solving the CLAD equations numerically for local potentials. Moreover, even rather 
general local potentials may be very well approximated by choosing a sum of a 
sufficiently large number of suitable separable terms. 

The interested reader is referred back to I for further introductory remarks and a 
fuller discussion of the CCF. In Sect. 2 we present a brief resum6 of the formalism 
and the imbedding within it of the generalised ladder approximations with which we 
are mostly concerned here. In Sect. 3 we then solve, in the case of separable 
potentials, for the two-body correlation function S : ,  for both the CLAD and 
PPLAD cases that correspond respectively to the Galitskii and BG approximations. 
Exact analytic expressions are given in each case. The results are discussed and 
compared in Sect. 4, with special attention being given to the various types of 
composite-pair states that emerge from these respective calculations in the coupled 
pp-hh channels and pp channel only. Further extensions of the work are also 
discussed in Sect. 4. 

2 Ladder Approximations Within the CCF 

We consider a homogeneous system of Nidentical " spin-5 particles, of mass m each, 
contained in a normalisation box of volume f~, and interacting via two-body 
potentials. We shall ultimately be interested in the thermodynamic limit where 
N ~ o% f~ --, o% such that the density p ~- N/f 'z  remains finite. It is thus convenient 
to choose to work in a plane-wave single-particle (s.p.) basis of states, f s ) ,  labelled 
by wavenumber ~ and spin-projection s along some fixed quantisation axis. Very 
specifically, these s.p. states are given in the coordinate-space representation as 

( lYcs) = n -  1/2 exp(ik. P) q(s), (2.1) 

with r/(s) the two-component spin wavefunction. If we denote s.p. creation and 
destruction operators as the Hermitian conjugates a~= and a~= respectively, we have 

l~:s) = a~,]0), (2.2) 

where I0) is the vacuum state. Uncorrelated but antisymmetrised n-body states are 
then represented as 

. + . . .  a + Iklsl ,  "" ; Tcns~)A = a~,,~ r~===]0). (2.3) 

Alternatively, the uncorrelated but non-antisymmetrised n-body states may be 
represented as the direct product states 

1~':i s l ;  -..; Yc~,s,) ~ fClSl ) . . .  f%s=). (2.4) 
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Henceforth we shall deal only with systems interacting via spin-independent 
pairwise potentials, V. Taking Galilean invariance into account explicitly, we have, 
in terms of relative and centre-of-mass momentum variables, 

" ' -  vI �89  " '  " " (�89 + D, sl , yP  - fJ, s21 + p ,s3, wP - p ' , s4 )  = (PIVIp  )(~,l,~(~szs~, (2.5) 

independent of the total momentum P of the interacting pair. 
We have seen in I how, in terms of the usual uncorrelated, antisymmetrised 

product of the lowest N s.p. states (of the form of Eq. (2.3) with the N wavenumbers 
chosen to be the lowest eigenstates in the normalisation box up to a Fermi 
wavenumber kF), which forms the usual zeroth-order Slater determinant reference 
state [q5), the CCF represents the exact ground-state (g.s.) wavefunction I~P) of the 
interacting system in the lowest SUB2 level of approximation as 

[W) = exp(S2)[@), (2.6) 

$2 (2!) 2 Sl,S2 P,Y,P 2P+P, 1 2 P, 2 

We have discussed in detail in I how the wavefunction of Eq. (2.6) couples the 
particle-particle, hole-hole and particle-hole correlations simultaneously and on an 
equal footing. The derivation of the SUB2 equation for the matrix elements of the 
operator $2 expressed in Eq. (2.7), is described in detail in I. The antisymmetrised 

~SlS2 [~2~ nature of the matrix elements ~'2;pp' ~ J  in Eq. (2.7) can be made explicit, for a system 
whose exact g.s. is assumed to share the invariance under spatial reflections of the 
underlying Hamiltonian, as 

SlS2 S2;b~, (P) = Tpb, (P) - c~,1s2 Tp, _p, (P), (2.8) 

with the non-antisymmetrised matrix element Tbp, (P) given by the expression 

rbp,(P) = (�89 + [~,s; g P - p ,  sIS21gP + p ,s; ~ P - p ' , s ) ,  (2.9) 

independent of the spin projection s. 
We have explained rather fully in I how the complete ladder (CLAD) 

approximation is that further approximation ( - fu l ly  equivalent to the Galitskii- 
Feynman approximation-)  to the CCF SUB2 approximation, which incorporates 
all of the (mixed) particle-particle and hole-hole ladder terms simultaneously, but 
which ignores all particle-hole correlations (and self-energy insertions). The CLAD 
approximation is expressed graphically by Fig. 1 of 1, and algebraically by the 
nonlinear equation (2.21) of I, which we reproduce here, 

172 
__(pZ _ p, 2)Tbb,(p) + @]VIP' )  
m 

+ 2 ( Plv Ik> Z~, (P)0(~c, P) + ~ Tb~, (P)(fc'l vIP'>Q(/c', P) 

+ ~ Zb~, (P)<~'lVf)Z~b, Q(~, ~)Q(~', P) = 0. (2.10) 
~,~' 

The factors Q(p', P) and Q(p, P) in Eq. (2.10) respectively restrict the associated 
sums to run over pairs of momenta associated with the intermediate scattering states 
of two holes inside the Fermi sea and two particles outside the Fermi sea, 
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respectively. Thus, 

Q(/5', [') = n(�89 +/?')n(�89 - /3 ' ) ,  Q(p, P) = fi(�89 +/5)h(�89 -/5), (2.il)  

in terms of the unperturbed hole and particle distributions, n(k) and h(k), 

n(k) = O(kf - k), fz(k) = O(k - kF), (2.12) 

where O(x) is the usual unit-step function, defined to be one (zero) for x greater (less) 
than zero. 

We have also derived the g.s. energy, E, of the system in the SUB2 approximation 
as Eq. (2.23) of I, which we again reproduce as, 

h Z k  2 

E = 2 ~ - m  n(k ) + ~ Q(/5' ,P)[2(/5'IVI~') - (/5'IV[ -~b ' )  
p',P 

+ 2 (/5'1Vl~b){ZTp~, (P) - Tb, _p, (P)}~(/5, P)], (2.13) 
b 

where the factors of 2 are from the spin sums. 
Finally, in the thermodynamic limit in which we are interested, the s.p. sums are 

replaced by integrals in the usual way, 

~f(fc)  --, ~(2n) 3 ~d~f( fc)  (2.14.) 
k 3 

for an arbitrar~r function f(fc). In particular, we have as usual that for a spi~- 
saturated spin-~-system, the Fermi wavenumber kF is given by kF = (37c2p)1/~. 

In the following section, we shall show how the nonlinear CLAD integral 
equation (2.10) may be solved, exactly and analytically, in the particular case of a 
non-local model potential of the separable kind. 

3 Application to Separable Potentials 

3.1 General Comments 

The most general rotationally-invariant separable potential can be written in the 
operator form 

V =  ~ ~ Cnz[g~t)(gnll ~ I lm)( lml ,  (3.1) 
/ = 0  n - 1  m 

where the states Ilm) are the usual spherical harmonics, and in each partial wave l we 
consider a rank-N1 separable form. The constants Cnt are real but may be of either 
sign. We shall restrict the present discussion to a one-term S-wave separable form for 
simplicity, although the method can also readily be extended to the more general 
form. In this case we have 

h 2 
(Pl V[P') = 2 --g(r)g*(r ' ) ,  (3.2) 

m 

where (rig) =- g(r), 2 is the strength of the interaction, and the factor h2 m - 1 has 
been separated for later convenience. Equivalently, in our plane-wave (momentum- 
space) basis, we have 
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~2 1 , , 
(PlVlF) = 4--m  g(P)g (p )' 

g(p) = ~ d~" e -i~.~ g(r). (3.3) 
i I  

We note that if 2 is considered dimensionless, then g(r) has dimensions L - 5/2 and 
g(p) has dimensions L 1/2 where L is a length. 

3.2 The CLAD (GF) Approximation 

As already discussed the Galitskii-Feynman (GF) approximation is now analogous 
in our CCF to solving the CLAD equation (2.10), for the matrix elements Tpb, (P). 
Inserting the separable potential (3.3) into Eq. (2.10) and passing to the thermody- 
namic limit as in Eq. (2.14), yields the factorizable form 

(p2 _ p, 2)Tpp,(p) = - ~  (p) + f~ (~)3 g(k )Tp~,(P)Q(k ,P') 

x f g * ( p ' ) + n f ~ g * ( k ) T ~ p , ( f ) Q ( f z ,  P)l .  (3.4) 

Equation (3.4) can thus be written in the form 

2 g(p)g*(p') l(p2)b(p , 2), (3.5) rpp,(P)- n p2_p,2 

where the functions l(p 2) and b*(p' 2) are themselves given in terms of T by 

f dk , ~ ~ ,p ,  l__~_ f~ ~ ' l@,P)-- l (p2)= 1 +g(p) (~)3g(k  )Tp~,(P)Q(k, ), 

b(D', [') - b(p' 2) = 1 + ~ f~ g*(k)T~p, (P)Q(fc, P). (3.6) 

It should be noted that the functions/(p2) and b(p' 2),also both depend on the total 
momentum P, but for ease of notation we henceforth suppress this dependence, as 
indicated in Eq. (3.6). Inserting the form (3.5) into Eqs. (3.6) then shows that the 
CLAD (or GF) approximation within the CCF has reduced to solving the following 
coupled pair of nonlinear integral equations for the functions l(p 2) and b(p' 2), 

fo ~ Ig(k')[2 b(k'2)q(k',P), (3.7a) l(p 2) = 1 -- 21(p 2) 2 n ~  p2 _ k' 2 

b(p '2) = 1 - 2 b ( p  '2) f. ~176 /cT]g(k)12-_~7; l(k2)gt(k,P), (3.7 b) 

where the functions q and 7/are the angle-averaged Q and Q functions respectively 
that limit the two-hole intermediate scattering states to be inside the Fermi sea and 
the two-particle intermediate scattering states to be outside the Fermi sea 
respectively, 
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1 f Q(k,P), q (k ' ,P)=-~  da " - 

t P), (3.8) //(k, P) = 

where the integration is over the full angular range f~ of the directions of P. Using the 
explicit forms (2.11) and (2.12), the angular integrations may be performed explicitly 
in Eq. (3.8) to give 

0, 

g/(k, P) = (k 2 + �88 _ k~)/kP, 

1, 

k < (k f - �88 

(k2F 1 2 1/'2 1 ~P ) < k < g P  q- k F ,  

1 k >~ 5P + kF, 

, 

q(k',P) = (k~ - �88 _ k' 2)/kP, 

O, 

in the case P <~ 2kF; and 

1, 

~(k,P) = (k + - k )/kP, 

1, 

I k' <~ k F - gP, 
l k '  2 1 2 1/2 

k F - ~P < < ( k  r - ~P ) , 

k' i> (k~ _ 4-1 p2]  1/2] , (3.9 a) 

l k <~ ~P - k F ,  

1 k >~ ~P + kF, 

q(k', P) = 0, (3.9 b) 

in the case P > 2k F . 
Before we turn to a solution of Eqs. (3.7) let us first evaluate the g.s. energy in this 

case. Inserting the explicit solution (3.5) into Eq. (2.13) gives 

3 h2kF2 h2 ~p'2dp ' ~ P2dP , , 2 
E - 5  2m U + ~ 2 - - j m  2~  .] ~ 2 q(p 'P)lg(p )I 

[ (p2dp 'g(P)]2 '(P2)q(P'P) 1" x 1 -2b(p '2 )  j 2re z p 2 _ p ,  2 

Using Eq. (3.7a), we may finally express the g.s. energy per particle in the form 

E 3 h2k~  h2C2k  f'2'P  N - 5  2m + 2 ~ F  jO P2dP zzc. [g(p')12b(p'2)q(p',P). (3.10) 

As they stand, the coupled pair of nonlinear equations (3.7) are non-singular 
in the physical regime (or scattering regime) which is defined, via the defining 
Eq. (2.1 1), to be the region where [�89 _+/31 > kF and [�89 _+ p'] < kF. In this case the 
energy denominators in Eqs. (3.7) never vanish in the physical regime due to the 
restrictions implied by the q and 0 functions in the integrands. However, in order to 
make further progress with the solution of Eqs. (3.7) it appears inevitable to make 
some appeal to analytic continuation. We therefore define enlarged functions l(z) 
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and b(z) over the entire complex energy plane as the solutions to the coupled 
equations arrived at by analytically continuing Eqs. (3.7), 

fo ~ k '2 dk' I g ( k ' ) [  2 b(k'2)q(k',P) = 1 _ 
J[ 27~ 2 Z -- k t 2 l(z)  1, 

fo ~ k 2 dk Ig(k)l 2 1 
- t ( k  2)//(k, P )  - b ( z )  - 1.  

(3.11 a) 

(3.11 b) 

Although our basic Eqs. (3.11) are two coupled equations, nevertheless their 
basic structure is remarkably similar to the analogous RPA equation for local 
potentials in the CCF, given by Eq. (3.26) of ref. [6]. We therefore follow a similar 
procedure as in ref. [6] to attempt to bring them into linear form. Let us therefore 
multiply Eq. (3.7 a) by the quantity 2p2(2rc 2)-11g(p)12(p2 __ z ) - l ~ ( p ,  p) and 
integrate on the variablep. (It is possible to perform the same analysis on Eq. (3.7 b) 
to arrive at the same result.) After a simple algebraic manipulation on the second 
term on the right-hand side employing the trivial identity, 

_ I E , _ I  1 
( p 2 z ) ~ p 2 k , 2 )  ( z _ k ,  2) 2 -  z p 2 - k , 2  , 

we find 

__ _ _  f p 2  dp Ig(p)l 2 ~ p2 d_p Ig(p)l 2 ~(p, P) = ,~ _ _ _  t(p2)O(p, P) 
2 j  2~ 2 p 2 _ z  j 2~2 p 2 _ z  

+ 22 ~ k'2dk'2n 2 zlg(k')12- k' 2 b(k'2)q(k', P) 

l(p2)gt(p, P). • ~pZ _ z p2 _ k, 

Substituting from Eq. (3.11 b) in thep-integrations on the right-hand side now gives, 

( p2 dp Ig(p)12 1 
, ~ j  2~2 p 2 _ z q ( P , P ) - b ( z ) - i  

~k'Zdk '  lg(k')12b(k,2)q(k,,p)( 1 1 ) 
+ 2 j -2-~ z =~" 2 b(z) b(k' 2) �9 

Finally, using also Eq. (3.11 a), gives the very important functional relation between 
l(z) and b(z), namely 

fo ~ k 2 dk Ig(k)[ 2 [~(k,P) - q(k,P)]. (3.12) [b(z)l(z)]- l = K(z) - 1 + 2 21r 2 k 2 ~  

This functional relation (3.12) may now be used to substitute back into our 
original coupled equations (3.11), and this not only effects the desired linearization 
but also as a bonus decouples the equations. The result is 

fo ~ k' 2 dk' [g(k')[ 2 K(z)b(z) = 1 + 2 2re ~ z - k '2 b(k'2)q(k"P)' (3.13a) 
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fo ~ k 2 dk Ig(k)] 2 l(k2)gl(k, p). (3.13 b) K(z)l(z) = 1 + 2 2r~ 2 k 2 - z  

The price that we have paid for this simplification is the production of equations 
(3.13) that are now singular in the physical regime. Thus the kernel of Eq. (3.13 a) 
becomes singular for all physical values z ~ p '  2, since the energy denominator 
( p , 2 k ,  Z)=,f[[fpi~ +/3,12 +1�89 2 - 1 � 8 9  2-[12 p - ~ ' 1 2  3 can now 

vanish for all physical values of p' 2, because /5' and k' now have the same 
restrictions ]�89 +/5' I < kF and 1�89 _+ fc' I < kF. Similar considerations apply to 
Eq. (3.13 b). The solution of the remaining Eqs. (3.13) now rests upon the general 
theory developed by Muskhelishvili [9] and Omn~s [ 10] for singular equations of 
the Hilbert type, and we first now show how Eqs. (3. l 3) may be brought into the 
standard Hilbert form. 

From Eq. (3.12), by letting z - - , p2+  it~, in the usual convention where t/ 
henceforth represents a positive infinitesimal, it is easy to see that for p real, 

f k  dk ImK(p  2 • it/) = 2 2 ~ _  [g(k)[2(_ + 7c) 5(k 2 _p2)  [~(k, P) - q(k,P)] 

= +_ --~ [p][g(p)[z[(l(p, P) - q(p, P)]. (3.14) 

Inserting this result into Eqs. (3.13), and making use of the trivial observation from 
their definitions that the product q(p, P)gl(P, P)  = 0, it is easy to derive the results, 

1 ~ xo2 Im K(k' 2 _}_ it/)b(k' 2) 
= 1_+-~ | dk'2 k ' 2 - z  , (3 .15a)  

~0 

K(z)l(z)= 1 + _1 ( T  d k 2 I m K ( k 2  ++_ iq)l(k 2) 
--7C k 2 - z  

xo 

where from Eqs. (3.9 a, b) we have defined x0 by 

2 (k 2 _ ~_p2)O(2kF _ p). X o 

(3. 5b) 

(3.16) 

Making further use of Eq. (3.14) it is also now readily seen that in their respective 
physical regions, the functions b and I are explicitly real as required, i.e. 

2 b(p' 2 +_ itl) = b(p' 2), 0 < p' 2 < Xo ' 

2 ]32 l(p 2 +_ iq) = l(p2), x o < < ~ .  (3.17) 

Finally, defining new functions ~(z) and ~(z) by 

- K ( z ) b ( z ) ,  - ( 3 . 1 8 )  

we may rewrite Eqs. (3.15) in the standard Hilbert form 

1 ( ' x~  h(k'2)4)(k'2 + it/) 
0~(z) = 1 +--|zrc dk'2 U -  ~~ - -z  ' (3.19a) 

, a0  
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1 ~ h(k2)$(k 2 + itl) 
= 1 + - -  J x  e l k  2 k 2 , 17~ ~ -- Z 

where for real values of x 2 

(3.19 b) 

h(x 2) ~- i I m  K(  x2 + itl) 
K(X  2 qt- iq) (3.20) 

The equations (3.19) are now in the required standard form and may be solved by 
standard methods [9, 10] to give the general solutions as 

eU(Z) [ x2 2 e-u(k '2 +i~l) -- e-u(k'2-i t l )  
- - -  + P(z)e  "(z), (3.21 a) %(z) = 1 2zci d k '  k '  2 _ _  Z 

I ~  e - ft(k2 + in) - -  e - fi(k2 - i~/) fi(z) 
e 

d k  2 k 2 _ z ~(z) = 1 2rci + P(z)e  ~'(z), (3.21 b) 
x0 

where the functions u(z) and h(z) are defined as 

1 ~ X 2 d k , 2  LnE1 /G(k '  2)] (3.22 a) 
u ( z )  - k,'  2 _ z ' 

,Jo 

with 

- d k  2 L n [ 1 / G ( k  2)] (3.22 b) 
k 2 --z ' 

G(x 2) ~ 1 - 2h(x2), (3.23) 

and where the symbol Ln indicates any value of the multivalued logarithmic 
function continuous in the ranges (0, x~) and (x 2 , oo) respectively. It should also be 
carefully noted that, as usual, the general solutions (3.20) to our singular equations 
are not unique since they still contain the unknown functions P(z)  and _P(z) which are 
analytic functions of z in the entire complex z-plane with the exception of 
singularities at their corresponding end-points of integration, namely (0, x~) and 
(x 2 , oo) respectively. 

At this point it is possible to simplify some of the expressions and to bring them 
into a more transparent form. Firstly, from Eqs. (3.20) and (3.23), we may write 

2 i I m K ( x  2 + itl) K*(x 2 + it/) _2ia(x2+i,) (3.24) 
G(x 2) = 1 - K ( x  2 + i11) - K ( x  2 + i~1) = e 

where the phase angle 6(x  2 + itl) is real and defined by 

K ( x  2 ..{_ itl) = IK(x 2 +_ itl)le +_ i~(x2 + iv), (3.25 a) 

or, equivalently, by 

( ImK(x 2 + it/)'~ 
6(x 2 + i~/) = Tan-1 \Re  K ( x  2 + b l ) ] '  (3.25 b) 

and where, consistent with the Ln function in Eqs. (3.21), the symbol Tan-  1 now 
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indicates any value of the multivalued inverse tangent function which is continuous 
over the respective integration intervals. We thus have the important relations, 

1  x02 2 + 
b/(Z) = - [ d k ' 2  k ,  2 , (3.26 a )  

7~ - z  
d0 

f~(z) = 1 d k  2 6(k 2 + i~) 
- k 2 (3.26 b) 
TC 02 - - Z  

For convenience and in order to be definite henceforth, we now consistently choose 
to work on that branch of the phase function 6 which is zero at infinity. In this case 
both u(z) and fi(z) tend to zero at infinity. Further simplification of the integrals 
in Eqs. (3.21) is now possible by considering the contour integrals of the functions 
e x p [ - u ( z ' ) ] / ( z ' - z )  and exp[ - - r t ( z ' ) ] / ( z ' - z )  respectively with respect to the 
variable z' around the contour comprising the circle at infinity indented to 
exclude the positive real axis. Comparison of direct evaluation with the result 
obtained using Cauchy's residue theorem easily leads to the final general solu- 
tions of the singular equations (3.15), 

e u(z) e ~(z) 
b(z) = K--~ [1 + P(z)], l(z) = K ~  [1 + _P(z)]. (3.27) 

At this point, it only remains therefore to eliminate (as far as possible) the 
unknown functions P(z) and _P(z). Of great assistance here is the fact that our 
solutions are still required to satisfy the original (nonlinear) Eqs. (3.7), and more 
particularly also the functional relation (3.12) derived from them. Inserting from Eq. 
(3.27) into Eq. (3.12) yields the relation 

[1 + P(z)][1 + P(z)] = K ( z ) e x p { -  [u(z) + fi(z)]}, (3.28) 

which, in passing, demonstrates that the functions [1 + P(z)] and/or [1 + P(z)] 
must have the same zeros as the function K(z). Equation (3.28) may now be rewritten 
in more useful form by using Eqs. (3.26) and (3.25 a), 

[ l L n K ( x 2 + i ~ l ) - L n K ( x 2 - i t l )  1 
[i + P(z)][l + P(z)] = exp LnK(z) - 2 ~ i  dx2 x z - z " 

(3.29) 

The integral term on the right-hand side may now be simplified by considering the 
contour integral I(z), 

Ln K(z ' )  
1 dz' z' (3.30) 

I ( z )  - c - z ' 

where again we work with the same branch of the multivalued Ln function that is 
continuous over the contour C. The contour C is chosen to comprise (i) the circle at 
infinity (which gives no contribution with our chosen branch), with suitable 
indentations to exclude both (ii) the whole of the positive real axis z' --, x 2 since this is 
the (only) branch cut of K(z) and (iii) all additional branch cuts of Ln K(z) which can 
only arise from any zeros in the complex z-plane of the function K(z). In this case, the 
function Ln K(z')  is analytic everywhere inside the contour C and I(z) is immediately 
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evaluated as Ln K(z) by Cauchy's  theorem. Compar i son  with direct evaluation then 
enables us to write Eq. (3.29) as 

= e x p  - dz' z - z  ] '  (3.31) [-1 + P(z)][1 + P(z)] ~ z=t 

where the contours  F i sur round (in the usual anticlockwise sense) each of  the 
branches B i arising purely f rom any zeros in the K-function. In this case, choosing 
the contours  Fi to be infinitesimally close either side of  the branches B~, the 
discontinuity across the branch Bi will be 2=ini for some (positive or negative) 
integer ni .  I f  we choose ai and bi to be the end-points  of the branches Bi ,  then 
Eq. (3.31) reduces to 

- z )  "i 
[1 + P(z)][1 + _P(z)] = I~Ii~kb i _ z ) "  (3.32) 

The exact ar rangement  of  the branch cuts B~ depends  in each case on the 
part icular  branch of  5(z) or equivalently of  Ln K(z) which we have used. In each case, 
however, at least one of  the end-points  a; or b~ must  (by definition) be one of  the 
zeros of  K(z). The other end-point  may be either another  zero of  K(z) or one of  the 
remaining branch-points  (0, x 2) of K(z). 

It is clear at this point  that  any possible zeros in the funct ion K(z) now play a very 
crucial role in our  discussion, and it is these as we shall see later that  correspond 
precisely to the energies of  the "bound  pairs" in the med ium in this approximation.  
The zeros in the K-function of  Eq. (3.12) will depend specifically upon  the particular 
form of  the form factor g(k) and on the strength 2 of  the interaction, and particularly 
on whether  the potential  is "repulsive" (2 > 0) or "attractive" (2 < 0). Even for a 
specific potential  the K-function still depends bo th  on the total m o m e n t u m  P of  the 
interacting pair and on the density p, or equivalently the Fermi m o m e n t u m  kF, of 
the system. In this present work  we are less interested in the details of  the calculation 
for a specific system than to enumerate  the main  possibilities that  can arise in 
practice, wi thout  specifying a particular form for the potential.  Since we are 
specifically concerned here with the particular problem of  pairing we restrict 
ourselves mainly to a discussion of  the case 2 < 0. We defer to the Appendix  a 
discussion of  the various possibilities that  can arise for the zeros in the K-function, 
and cont inue in this section to use the results obtained in the Appendix  to 
demonst ra te  how to calculate explicitly the g.s. wavefunct ion and energy in some of  
the various cases that  can arise. 

Before proceeding with some particular cases however,  it is of  some interest to 
use our  solution to re-express the g.s. energy given by Eq. (3.10). Using the starting 
integral equat ion (3.13 a) for b(p 2) it is easy to see that  

f /21 1 2 P~a2P [g(p')[2b(p'2)q(p',P) = lim {zEK(z)b(z) - 1]}, 
2 - + 0 9  

which allows us to rewrite the interact ion term in Eq. (3.10) accordingly. This may  be 
further simplified by using the general solution f rom Eq. (3.27) to write 

K(z)b(z) - 1 = e u(z) [1 + P(z)] - 1. 

Taking the limit z -+ ~ now yields the result 
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E 3 h2k  3 {I 1 } 
N - 5  2rn +2mk~t---.j0 PadP~rn~ z--~z Jo dk'~-6(k'2 +itT) [l + P ( z ) ] - z  , 

(3.33) 
where we have used the definition (3.25 a) and expanded the exponential. 

Thus, in order to calculate the exact CLAD g.s. wavefunctions and energies, all 
that remains is to evaluate the functions P(z) and P(z). As we have so far attempted 
to treat the problem as generally as possible by not introducing an explicit 
expression for the form factor g(k) we cannot perform any of the remaining 
integrals, in Eq. (3.33) for example. However, by substituting the expressions 
obtained below for [1 + P(z)] using the results obtained in the Appendix for various 
cases, we may also put the energy expression (3.33) into forms which allow us to 
make some definite deductions about the structure of the g.s. obtained by our g.s. 
CCF for these cases. 

In order to be specific we now consider the particular case which is physically 
most interesting, namely the case of an attractive potential (2 < 0) which is strong 
enough to bind a free (i.e., in vacuo) pair of particles. As detailed in the Appendix (to 
which the reader should now refer), there are three main possibilities in this case. At 
least at small enough values of the total momentum P, there is first a range of 
densities 0 < k F < kFm for which the real negative zero at z = -1r in K(z) 
corresponds to the free bound state becoming progressively less bound when 
immersed in the many-body medium. Secondly, there is a density range specified by 
kFm < k F < kFm in which a second realzero appears a tz  = - ~ ,  with ~2 < K~. In 
this range there are thus two "bound states", the former remaining predominantly 
particle-particle like and the new one (which has no counterpart either in the free 
case or in the BG approximation) being predominantly hole-hole like. Lastly, there 
is a range of densities corresponding to k g > kFm for which the two previous zeros 
merge at k F ~ kFM and then move into the left-half complex plane as conjugate 
pairs, and which we therefore expect to manifest themselves physically as 
resonance/antiresonance pairs. This behaviour is illustrated in Fig. 3 of the 
Appendix. (For increasing values of the total momentum P, these "bound states" 
become progressively less bound until for given density there is a critical value of P 
above which they disappear.) The behaviour of the phase angle fi(z) is considered in 
the Appendix in some detail for these three cases (referred to there as Cases I, II and 
III, respectively), and is shown in particular in Figs. 5-7 respectively for z ~ x + it/. 
We therefore now discuss these three particular cases in turn, referring to the 
Appendix for the necessary details, and noting that the remaining cases of weakly 
attractive potentials (not able to support a bound pair in vacuo) and repulsive 
potentials may be handled in an essentially similar manner. 

Case/(strong attraction, i.e. sufficient to bind a pair in vacuo; with 0 < k f  < kFm ). 
In this case the only zero in K(z) is at the real negative value z = - K~, and as 
considered above in the discussion teadJng to Eqs. (3.3 ~)-(3.32), our derivation of 
the solution may be completed by considering the contour C in the integral of 
Eq. (3.30) to comprise in this case the circle at infinity indented only to 
circumnavigate (infinitesimally above and below) the entire real axis. Working on the 
branch of the phase angle 6(z) indicated in Fig. 5 for this case, it is now simple to 
show that Eq. (3.32) reduces in this Case I to 
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[1 + P(z)][1 +/5(z)] - - -  
2 

Z --1- N 1 
(3.34 a) 

All that thus remains is for us to decide how the factors on the right-hand side of 
Eq. (3.34 a) actually divide between the two factors on the left. First we recall that the 
functions b(z) and l(z) given by Eq. (3.27) must (in order to satisfy the functional 
relation (3.12)) be real, non-singular, and non-zero over the ranges for which they 
are "physical", namely b(z) ~ b(p'  2) with 0 ~< p' 2 ~< x~, and l(z) ~ l (p 2) with 

2 where x0 is defined in Eq. (3.16). Now, from the definitions (3.26) of the p 2  /> X0 ' 

functions u(z) and fi(z) and from our sketch of the phase angle 6(x 2 + itl) given in 
Fig. 5 of the Appendix for this case, we may readily verify the limiting forms below, 

const. 
e u(~ , (const.) z, eU(Z) z_~x ~ z 2,  

z ~ 0  - -  X 0 

e ~(z) ~ const. (z - x~), e ~(z) - ~ 1. 
Z"e, X 2 Z---~ 0(3 

(3.35 a) 

This information is now precisely sufficient to allow us to determine the factors 
[1 + P(z)] and [1 + P(z)] up to an arbitrary multiplicative constant factor c~, 

-1 respectively (where ~ can itself be fixed by observing that both b(z) and l(z) 
approach unity asymptotically as z ~ oc from their original defining equations 
(3.11)), when we also recall that P(z) and P(z) may have singularities only at the 
respective end-points (0, x 2) and (x~, oe) of their "physical" ranges. Thus we have 
from Eqs. (3.34 a) and (3.35 a) the final results, 

2 2 

1 + P(z) _ _ _ z  - x~ 1 - - ~ / D ( z )  - z -t- ts 12 , (3.36 a) 
z Z - -  X 0 

and hence the full (and unique) solutions for this Case I, 

b(z)= 1 -  K(z ) '  ~z - - - ~ )  K--~ " (3.37 a) 

Finally, we can also use the solution (3.36 a) to rewrite the expression (3.33) for the 
energy per particle of the many-body system in this case in the form 

E _ 3 h . . . .  k F -t- dP  - dk '  2 [n + 6(k '  2 + itl)] (3.38a) 
N 5 2m 2mk3r  n 

oO oo  

We note only for the moment that from the plot of 6(x 2 + it/) given in Fig. 5 in 
this Case I, the contribution to the potential energy from pairs of total momentum P 
(and at densities corresponding to the range 0 < kv < kFm under consideration) is 
posi t ive-def ini te  even though the potential is attractive. We shall leave a more 
detailed discussion of this important point until Sect. 4, after we consider the 
remaining Cases II and III. 

Case H (strong attraction, i.e. sufficient to bind a pair in vacuo; with 
kFm < k F < kl~M). In this case the only zeros in K(z) are at the real negative 

2 and z 2 and otherwise the discussion proceeds exactly as in values z = - / s  ~ - /~2 , 

Case I. Working now on the branch of the phase angle 6(z) indicated in Fig. 6 for this 
case, a comparable analysis shows that Eq. (3.31) reduces to 
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[1 + P(z)][1 + _P(z)] = (z + ~ ) ( z  + ~c22) z2 (3.34 b) 

In this case, use of Eq. (3.26) and the phase angle shown in Fig. 6, leads to the 
limiting forms 

const. 
e u(~ , (const.) z 2 , e "(~ , - -  

- 

e ~(z) , const. (z - x~) ,  e ~(z~ , 1. 
Z--~ X20 Z"+ O0 

(3.35 b) 

Similar considerations to Case I now again lead from Eqs. (3.34 b) and (3.35 b) to the 
final results, 

1 + P ( z )  = ( z  - x )(z + 
Z 2 

and hence to the full solutions for this Case II, 

b ( z ) =  1 -  1 + K ( z ) '  

2 

1 + P( z )  - z + ~l (3.36 b) 2~  
Z - -  X 0 

2 K(z)" 
- - X  0 

(3.37 b) 

We note here that the only non-uniqueness that enters the expressions (3.36 b) and 
(3.37 b) is the possibility of interchanging the roles of ~cl and ~c 2 . The decision to 
write the final expressions in this particular definite form rests (only) on an appeal to 
continuity with Case I at k F  --, kFm �9 Finally we may also use the solution (3.36 b) to 
rewrite the expression (3.33) for the energy per particle in this case, as 

E 3 h2k 'Z  3 h z  f 2ke _ F J F _  - p 2  { 1 (  x2 ~} 
N 5 2 m  2 m k  3 F d P  - -re d k '  2 E7 ~ _]_ (~(k' 2 _~_ i ~ ) 3  JF tr . 

d O  ,JO 

(3.38 b) 

Once again, inspection of Fig. 6 for this Case II shows that the potential energy 
contribution from Case II pairs is positive-definite. 

Case  I I I  ( s t rong  attraction, i.e. sufficient to bind a pair in v a c u o  ; with k F > k FM and 
"resonance pairs"). In this case the two real zeros in K ( z )  have first coalesced as 
k F  ---, k F ~  and have then moved into the complex plane as the conjugate pair at 

2 + iF R for k F increasing through kFM Drawing the consequent branch Z m- - - R ;  R __ 

cut in Ln K ( z )  as the straight line joining these zeros (as assumed in Fig. 7 for this 
case), our solution is now completed by considering the contour C in the integral of 
Eq. (3.30) to comprise the circle at infinity indented only to circumnavigate 
(infinitesimally closely) both the entire real axis and the branch cut joining these 
zeros. Working now on the branch of the phase angle ~(z) indicated in Fig. 7 for this 
case, Eq. (3.31) reduces in this Case III to 

2 2 _ iFR) [1 + P(z)][1 + P(z)] = (z + 1r R + iFR)(z + tr R 
z2 (3.34 c) 

Again, use of Eq. (3.26) with the phase angle of Fig. 7 leads to the same limiting 
forms (3.35 b) for this Case III as for Case II, and hence to the final results, 
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2 __ iFR) z + 2 1 + P(z) = (z - x~)(z + KR 1 + P(z) = KR + iFR 2 (3.36 C) 
Z 2 ' Z - -  X 0 

for the functions P(z) and _P(z), and finally also to the full solutions for this Case III, 

b ( z ) = ( l - x @ ) ( l  + ~c2 -- iFR~ l ( z ) = (  z+~c2 +iFR~ __-77r.. 
' 2 " z K(z) z - ]K(z) 

(3.37 c) 

The only possible non-uniqueness remaining in our solution for this Case Ill  is the 
possibility of changing everywhere in Eqs. (3.36c) and (3.37c) the sign of the 
imaginary part FR of the "resonance" energy, which displays the usual symmetry 
between conjugate resonance/anti-resonance pairs. Physical boundary conditions 
must ultimately decide the issue by the usual choice of the exponentially decaying 
state. Finally in this case, the energy per particle expression (3.33) may now be 
rewritten, using the solution (3.36 c) as 

E 3h2k  2 3 1i2 f2lCFp2 { 1 fx2 2 --iFR} 
_ e +  d P  - -  d k ' 2 [ r c + 6 ( k ' 2 + i t / )  ] + K R  . 

rc N 5 2m 2 mk 3.jo ,Jo 
(3.38 c) 

We note only that the total energy is now complex, as expected, and that inspection 
of Fig. 7 for this Case III shows as in the previous two cases that the real part of the 
potential energy contribution from Case III pairs is positive-definite. 

We defer a discussion of our now complete analytical solutions to Sect. 4, but for 
purposes of comparison we end this section with a brief discussion of the (almost 
trivial) analogous solution for the case of the BG approximation. 

3.3 The ppLAD (BG) Approximation 

The Bethe-Goldstone (BG) equation with bare kinetic energies in the intermediate 
two-body propagators, may be obtained by further ignoring in the complete ladder 
(CLAD) summation the hole-hole and mixed particle-particle and hole-hole 
scattering ladder terms represented diagrammatically by the terms (d) and (e) in 
Fig. 1 of I. This corresponds equivalently to ignoring the last two terms on the left- 
hand side of Eq. (2.16) of I. The resulting ppLAD approximation then gives the 
analogue of the BG equation for the two-body correlation operator $2 of the CCF as 

h 2 __ (p2 _ p, 2,~s1~2 I'~'~ ~' m Jo2;bp' ~ + (/~[ Vl,b') - (/31VI - p )c5~1s 2 

-}- 2 ~ ~ SlS2 (Pl Vlk)S2.~p, (/')Q(k, P) = 0. (3.39) 

Once again the solution to the BG equation (3.39) may be written in explicitly 
antisymmetric form as 

S~I~" ( p ) =  TBG BG /, ep pp' (p) - 6s,~2Tp,-Y ( )" (3.40) 

Proceeding to the thermodynamic limit and working in the same plane-wave basis as 
in the CLAD approximation, we have trivially that T BG satisfies the equation 
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h2 - P  '2)TB~ f ~  ~ TB~ ~_(pZ , ~ , ( P ) = - @ l V j b ' ) - a  (/31VIk) ~b,(P)Q(k,P). 

(3.4D 

With the same one-term, S-wave, separable potential (3.3) as before, Eq. (3.41) is 
now trivially solved as 

TppB~ (~) _ 2 g(p)g*(p') 1 (3.42) 
f~ p2 _ p, 2 KBG(P' 2) ' 

where 

f ~  k: dk ]g(k)l 2 g/(k, P). 
KBo(z)-- 1 + 2  2~r2 k 2 - z  

x0 
(3.43) 

Comparisons of the CLAD solution (3.5) with the ppLAD solution (3.42) and also 
of the corresponding K-functions defined in Eqs. (3.12) and (3.43), then show that 
formally the ppLAD solution may be obtained from the CLAD solution by the 
replacements 

l(z)  - , / B G ( z )  -- 1, 

b(z) ~ bB~(Z) -- 1/KBG(z), 

K(z) ~ KBG(z). (3.44) 

With the solution given by Eqs. (3.40), (3.42) and (3.43), the BG total energy may 
also be evaluated from Eq. (2.13) as 

EBG 5 2m N + f22 h2 dp' p2 dP , 
- m 2re 2 ~ q(P' P)ig(P')[2 

[ )~ (p2dp [g(p)[2 1 
x 1 KB~(p'2) j ~2  p2_p ,  2gl(P,P) �9 

Using Eq. (3.43) enables'us to write the g.s. energy per particle in the BG 
approximation in the final form, 

2 ~ h2 i2kF ~X~p'2dp'lg(p'),2 
EBG __ 3 h2kF + 2 PzdP 2rc2 KBG(p,2) q(p',P). (3.45) 
N 5 2m ~ ,Jo ,Jo 

Comparison of the CLAD and ppLAD expressions (3.10) and (3.45), respectively, 
again shows that the latter may be formally derived from the former by the same 
replacements (3.44) above. The BG energy expression (3.45) may similarly also be 
written for the various BG cases in terms of the corresponding phase angle 6BG of 
KBG, in analogy with Eqs. (3.38) for the various CLAD cases. 

4 Discussion and Conclusions 

From the results derived in Sect. 3 for the CLAD functions l(z) and b(z) and the 
corresponding g.s. energies, it is possible to draw certain conclusions concerning the 
g.s. structure. The important points may be summarised as follows. 
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For densities corresponding to 0 < k F < kFm where the potential is assumed 
capable of supporting a bound state in vacuo, the "bound state" zero manifests itself 
[-and see Eq. (3.37 a)] in that part of the wavefunction called l(z) in our notation 
which in the physical scattering regime corresponds to two particles outside the 
unperturbed Fermi sea. As a consequence we have seen that this bound state does 
not manifestly contribute to the g.s. energy expression (3.38 a). This alone is dear  
evidence that the so-called g.s. obtained within our so-called g.s. CCF within which 
we have been working, is an uncondensed fluid-like phase, with the bound pairs of 
binding energy h 2 ~c~/m remaining unrealised possibilities. We expect the formation 
of these bound pairs to give rise to what must be treated therefore as excited states 
within this formalism. Clearly the term "excited state" here is something of a 
misnomer since the formation of such real bound pairs will clearly lower the energy 
of the system, and hence perhaps the term "de-excited state" would be more 
apposite. 

For densities corresponding to kFm < k F < kFM the second zero in K(z) at 
2 z = -~c 2 now appears in that part of the two-body cluster wavefunction, b(z), 

which in the physical scattering regime describes two holes interacting inside the 
2 Fermi sea, while the other zero corresponding to the more bound state at z = - ~l 

appears in l(z) as before [-and see Eq. (3.37 b)l. As we have seen in this case from 
Eq. (3.38 b) the g.s. energy now manifestly acquires a positive contribution from 
what are now the predominantly hole-hole-like pairs of bound quasiparticles within 
the many-body medium of binding energy h 2 K~/m, but conversely again the g.s. 
energy has no contribution from the predominantly particle-particle-like pairs of 
binding energy h 2 ~2~/m. It would thus seem that the so-called g.s. given by the 
CCF in this case does contain bound hole-hole-like pairs (which however in- 
crease the energy) but no bound particle-particle-like pairs. Again we conclude 
that the formation of the latter, whose existence in this density region is 
proven, must manifest itself in the (de-)excited state spectrum of the system 
within the CCF. 

Finally for densities corresponding to ks  > kyM the two previously real bound 
states have moved into the complex energy plane as conjugate resonance- 
antiresonance pairs. In this case the resonant state, say, manifests itself in the 
function b(z) whose physical scattering regime corresponds to real hole-hole 
interactions inside the Fermi sea, and conversely the antiresonant state manifests 
itself in the function l(z) whose physical scattering regime corresponds to real 
particle-particle interactions outside the Fermi sea [and see Eq. (3.37 c)l. In this case 
the g.s. energy duly becomes complex as expected, as an indication of the finite 
lifetime of the resonant states. The real part of the energy, however, is again 
manifestly increased [and see Eq. (3.38 c)] when the real part of the resonant pair 
energy is negative. Thus again the g.s. obtained within the CCF does not contain the 
extra binding due to the possible formation of the (admittedly unstable) resonant 
bound pairs; and we again therefore expect a comparable (de-)excited state to exist 
accordingly in the excited-state CCF. 

In order to verify these assertions concerning the (de-)excited states of the system 
(and indeed also really to prove that the zeros of the K-function actually do 
correspond to composite pair states, as we have consistently asserted from the very 
suggestive manner in which they arise in this g.s. CCF), it is clearly of considerable 
interest to formulate a treatment at this same CLAD level of approximation, within 
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the excited-state CCF due to Emrich I11, 12J. Suffice it to say here that this is done in 
a subsequent paper El31 by the present authors. 

In conclusion we note that our main aim in I and in this work has been to 
formulate the complete ladder (CLAD) summation within the CCF, i.e. the CLAD 
sub-approximation to the SUB2 approximation of the g.s. CCF. As we have pointed 
out, the physical approximations involved here are completely equivalent to those 
made in the Galitskii-Feynman approximation in the Green's function formalism of 
time-dependent perturbation theory. In order to make analytic progress we have 
discussed a simple many-body system, in which the constituent particles interact via 
an S-wave, pairwise, one-term separable potential, and which can be solved exactly 
at this level of approximation. The basic CLAD equation for the two-body 
correlations, or equivalently for the two-particle/two-hole wavefunction, was shown 
to be exactly equivalent to a pair of highly non-trivial, coupled, nonlinear integral 
equations. We succeeded in simultaneously exactly decoupling and linearising these 
equations, being guided by the remarkable similarity which exists between the 
various "ring" (or "bubble") approximations for the Fermi plasma with local (e.g., 
Coulomb) two-body interactions and the various generalised "ladder" approxi- 
mations for (non-local) separable two-body interactions. In this way we reduced our 
coupled nonlinear equations to a pair of linear, but singular, integral equations of 
the Hilbert-Muskhelishvili-Omn~s type. We showed further that a complete solution 
of these equations rests intimately upon a detailed knowledge of the analytic 
structure of the function Ln K(z) which we discuss in some detail in the Appendix. 
We derived exact solutions for the many-body wavefunction and its corresponding 
energy within the CLAD approximation, for several cases of interest when the 
potential is attractive. We showed further how these solutions give strong 
indications of the structure both of the uncondensed so-called ground state obtained 
within our so-called g.s. CCF, and also of the so-called (de-)excited states. These 
results also suggested that an examination of the so-called excited state CCF wou!d 
be necessary and of considerable interest in its own right, in order to confirm our 
suspicions regarding the role of the zeros in the K-function as representing the 
energies of the various composite-pair states, and also how these actually manifesl: 
themselves in our CCF many-body states. 

What we have seen in this method of discussion based on the assumption of 
a uniform fluid-like (i.e., a fluid of the constituent particles, not of their com-- 
posites) ground state, is that the formation of such bound pair states gives rise to 
the (de-)excited states of the system We have seen that the g.s. CCF already 
gives a considerable amount of information on the structure of these (de-)ex- 
cited states. Indeed one could see very clearly that they are contained in our g.so 
calculation as "virtual (de-)excitations". It is clear, however, that the formation of 
bound pairs in a many-body system must physically lower its energy, and hence as 
we have seen our (de-)excited states will have lower energy than our fluid-like 
ground state obtained here. This is indeed borne out in ref. [13]. We might 
legitimately ask, however, how this situation has arisen. Its origin clearly lies in our 
choice of model state I~) to be itself an uncondensed fluid-like state (namely, the 
unperturbed g.s. or filled Fermi sea of plane-wave states). In this case the so- 
called g.s. CCF employed here generates the state I~)  (of lowest energy) that 
by construction has non-zero overlap with Iq~), since from Eqs. (2.6) and (2.7), 
(q~[~I') = 1. By contrast, the so-called excited-state formalism of Emrich 
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[ 11, 12] is constructed to describe those ("excited") states I~e)  which are orthogonal 
to Iq5). The states involving composite pairs that we have observed have essentially 
different symmetries to, and hence zero overlap with iq~), and so naturally arise 
within this formalism as (de-)excited states in our approach. The interested reader 
may also be referred to a fuller discussion of these points by Kiimmel [14]. The 
problem is in essence therefore one of nomenclature alone (and indeed, one that may 
not arise with a different choice of model state 1~)). 

There are several more points worth noting about the calculations presented 
here. We have kept the discussion as general as possible by not referring to any 
specific form for the separable potential. In so doing (and by comparison with 
previous numerical calculations [15-18] using local potentials) we believe that we 
have enumerated all of the various general possibilities that may arise for the 
singularities of the function Ln K(z). In the process we have discovered in particular 
the necessity of resonance states which to our knowledge have not previously been 
mentioned in this context. For application to a specific form of separable 
interaction, such as the commonly used Yamaguchi type [ 19], the analysis presented 
here can be immediately put into effect. It is still possible that other special 
structures may exist, with consequent physical implications, for such special forms of 
the separable form factor as those suggested by Tabakin [20] (and as further 
referred to in the Appendix) to enable both repulsion and attraction to be 
represented in the one-term separable form. However, even in such cases our general 
analysis is still applicable with obvious modifications. 

We should perhaps also comment on the obvious fact that by comparison with, 
for example, the Green's function techniques that for the present problem are almost 
trivial for calculations of the g.s. energy, our g.s. CCF is very much more 
cumbersome and involves much more complicated mathematics (necessarily 
nonlinear in the case of the CLAD approximation even). If one was only interested in 
the g.s. energy it is clear that the CCF would hardly be the method of first choice. 
However, there are two salient points worth making in this regard. Firstly we stress 
that our CCF solution has provided us with much more information in the form of 
real two-body wavefunctions in the physical scattering regime, which the GF 
formalism using Green's function techniques do not give. These wavefunctions are 
of course not vital for the g.s. energy but are certainly needed to calculate 
expectation values or other matrix elements of any other operator. They are even 
more useful, as we show in a later paper [ 131, for a calculation of the wavefunctions 
describing the actual composite pairs (as (de-)excited states) within the many-body 
medium. Secondly we note that while the ladder approximation reduces in the GF 
formalism to a linear equation (and indeed for separable potentials to just an 
algebraic equation), the moment one tries to improve upon the ladder approxi- 
mation (for example by including the equivalent effects of other neglected terms in 
the full SUB2 approximation) this ceases to be the case. Thus for further calculations 
the GF method instantly loses what we now argue to be a rather artificial advantage 
it has in this very special limit, and the full power of the CCF becomes apparent, as 
has been discussed more fully elsewhere [6, 7]. 

We note also that while the one-term separable interaction employed here is 
clearly rather artificial, there are three main points that may be made in its defence. 
Firstly we note that the method presented here readily lends itself to the 
generalisations to include other partial waves and/or multi-term separable poten- 
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rials in a given partial wave. With these generatisations one can model even a 
local potential rather accurately. Secondly, and more importantly, we note that 
considering only the various types of composite pairing observed here, the one-term 
separable potential model displays qualitatively exactly the same behaviour (but 
now seen analytically) as had only previously been observed numerically for local 
potentials [15-t8]. Thirdly, and ultima~ety perhaps most importantIy, we hope later 
to be able to extend these CLAD sub-approximations to the CCF SUB2 
approximations, to include other neglected terms in the SUB2 approach (and 
perhaps beyond). It will undoubtedly then be necessary to approximate further the 
integral equations involved for the four-point S2-function. In this case the present 
exac t  analytic results can be used as a yardstick against which to measure the quality 
of these further approximations. We note here the analogous precedent for this 
approach in the work [6, 7] on the one-component Coulomb plasma (or "electron 
gas") using the g.s. CCF. In this case the exact  solution for $2 in the random-phase 
approximation was first obtained [6], and later very successfully used [7] in a 
comparable fashion to give a complete treatment of the electron gas in the metallic 
density range (where the effective dimensionless coupling constant becomes of the 
order of unity) using a CCF approach based on a complete SUB2 treatment and 
beyond. In this case the CCF treatment gave a microscopic description of the 
electron gas (which is probably the most well-studied of all quantum many-body 
systems) which has not been bettered. 

We also stress that there are two main aspects of the present calculations on 
which to focus. The frst  is the way that the various composite pairs have arisen in 
this g.s. calculation (and also their role as (de-)excited states which is discussed more 
fully elsewhere [ 13]). Concerning this aspect we stress that really for the first time do 
we have a unified framework in which to imbed and to describe all aspects of pairing 
(e.g., a possibIe free bound state and its gradual approach to "dissolution" when 
immersed in the many-body medium of identical constituent fermions and as the 
density is increased; the possible appearance for some densities of a second bound 
state of two quasiparticles of predominantly hole-like character, that arises solely 
due to the inclusion of hole-hole interactions; the unstable but bound resonance 
states that exist for densities above which the two previous types of real bound pairs 
have "dissolved"; Cooper pairs), both for the pairs "in isolation" (i.e., their two- 
body wavefunctions W~ within the medium) and for the system as a whole (which 
may now condense into a new (de-)excited phase formed of the composites). The 
second aspect that we stress equally is that quite independently of the existence of 
any of these various composite-pair states, we have a general solution for the two- 
body correlations S~_ of our problem in the physical scattering regime of the two- 
particle/two-hole excitations described by $2~ 

Finally, and focussing for the moment just on the first aspect above, we note that 
looking beyond the present CLAD approximation one may well find that as one 
includes the effects of extra SUB2 (or higher) terms, that some of these composite 
pairs are either (i) destroyed by the interactions with these other terms or with 
higher-order subsystems; or (ii) superseded by more tightly bound higher-order 
clusters (e.g., in nuclear matter we expect the four-body a-particle clustering to be 
the preferred low-density condensed phase). Alternatively, the composite pairs may 
turn out to be stable with respect to the inclusion of such other neglected effects (as 
seems to be the case for Cooper pairing in superconductors) in which case the present 
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solutions should provide a good starting-point for a description of the consequent 
condensed phase built from such composites. 

In any case it is of considerable interest to extend the CLAD approximation, and 
it is our hope that the present work will provide a good starting-point for such 
extensions. Many authors have considered such extension, generally within different 
formulations of many-body theory. For example, the extension of either the ppLAD 
or CLAD approximations to include in the propagation of the intermediate 
scattering states the effects of interactions with the rest of the system through an 
averaged one-body potential (and which has the effect of replacing the bare kinetic 
energies in the left-hand side of Eq. (2.11) of I with the so-called self-consistent hole 
and/or particle energies), has a long and chequered history. From the ppLAD 
approach this has led to the well-known Brueckner-Bethe-Goldstone (BBG) 
approach, in the standard treatment of which, following Brandow [-21 ], the holes are 
treated self-consistently thus but the particle potential is left at zero. This has the 
effect in general of introducing a gap at the Fermi surface in the single-particle 
spectrum, which in turn may easily by itself wipe out the composite pairing that we 
have observed. An early discussion of this point within the CCF, which only 
considered particle-particle interactions, was given by Kiimmel 1-22]. More recently 
similar considerations have been made both within the BBG approach and in the 
Green's function formulation by the Liege group [23], who discuss the de-merits of 
introducing such a gap at the Fermi surface and the importance of treating particles 
and holes symmetrically. 

Our own viewpoint is that one should not focus too hard on one single term from 
the complete SUB2 approach but should rather attempt to incorporate at least 
approximately all the remaining SUB2 terms. In particular it seems to us to be at 
least as interesting to investigate the interplay between the short-range correlations 
(which largely produce the few-body bound clusters focussed on here) and the long- 
range correlations (which are effective in producing the collective behaviour and, in 
particular, the "giant resonances" or collective excitations); or equivalently in the 
language of Kohn and Sherrington 1-24], to investigate the interference between the 
type I particle-particle and/or hole-hole pairs discussed here and the so-far neglected 
type II particle-hole pairs. For such discussions it is clearly important that particles 
and holes be treated symmetrically from the outset, as in the present CLAD 
discussion. Finally we are also interested in extending the present approach to at 
least a qualitative enquiry into the analogous various possibilities of bound three- 
and four-body clusters and the consequent condensed phases associated with them. 
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Appendix: Analytic Structure of the CLAD Function Ln K(z) 

A.1 General Comments; Pairs in Vacuo 

In this Appendix we investigate the analytic structure of the function Ln K(z) where K(z), defined by 
Eq. (3.12), has been seen to play a key role in our discussion of pairing. It is clear from the definition 
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(3.12) that the function K(z) is analytic in the entire complex z-plane with the exception of a branch cut 
along the positive real axis (or, physically, the scattering regime). The function Ln K(z) therefore has the 
same analytic structure except for the addition of any extra branches generated by any zeros (or 
infinities) in K(z). In particular, as we have seen in Sect. 3, a knowledge of  the position of  the zeros is 
essential [and see Eq. (3.32)] for the evaluation of  the only unknown functions, namely P(z) and P(z), 
that remain for the complete solution of the CLAD equations. 

By analogy with the standard theory of two-body scattering in vacuo, the zeros of the K-function 
are a priori likely to be intimately connected with bound states (or composite pairs). Thus, for the free 
scattering (i.e., in vacuo) of two particles (taken for ease to have antiparallel spins to avoid the trivial 
complications of antisymmetry) with relative momentum h,b', we have that the Schr6dinger equation in 
the center-of-mass coordinate system is given by 

(V 2 +P'2)~'b,(~') = h~ ~ dP'(?IVIP')~'b,(P'). (A.a) 

Using the usual outgoing-wave (scattering) boundary condition for example, and our separable 
potential (3.3), the Schr6dinger equation (A.1) is readily solved to give in the momentum 
representation 

1 
~b,(~b) = ~ (2re) 3 6(t3 - - P ' )  + T~ pp ' 

2 g(p)g*(p')  1 
T~.., = (A.2) 

Pp ~ p 2  _ p ,  2 _ iq  K 0 ( p  ' 2  + #/) '  

where the function Ko(z ) is defined by 

( ~o k2 dk  [g(k)f 2 

x0(z) _= 1 + L -- j (A.3) 

The reduction of  our CLAD solution (3.5) to the free solution (A.2) in the limit k F ~ 0 is then readily 
seen. Thus, from Eqs. (3.6) and (3.13) we readily see that in the limit k F --~ 0 (where Q -~ 1 and Q ~ 0), 
then l(p2)--+ 1 and b ( z ) ~ K - l ( z ) .  A similar comparison of Eqs. (A.3) and (3.12) shows that 
K(z) ~ Ko(z) as k r ~ 0, as required. Furthermore, the two-body Schr6dinger equation is similarly 
trivially solved in vacuo for bound states to show that the eigenvalue condition for free bound pairs of 
center-of-mass energy Ee  - h 2 e e/m is 

K0(~B) = 0. (A.4) 

It would thus seem sensible to examine first the function Ko(z), which as we have seen is the limiting 
form of K(z) for k E -~ 0. From the definition (A.3) it is easy to see that Im Ko(z ) can vanish nowhere in 
the complex z-plane except on the real axis. On the negative real axis it vanishes identically and on the 
positive real axis (real scattering regime), Im Ko(p~ ) = 0 only at those values o f p  2 where g(Pc) = O. 
Thus in the right-half energy plane, K 0 has zeros only at those real values z --+ p2 where both g(p ~) = 0 
and Re Ko(p 2) = 0 simultaneously. This situation generally only arises in practice by deliberate design, 
and has in fact been discussed by Tabakin [20] as a method of getting both attraction and repulsion 
into a one-term separable potential, which is otherwise impossible to achieve. We do not discuss this 
case further since it adds little to our results. With the exception of deliberately designed potentials like 
those of Tabakin the only possibility of  zeros (for example, for such commonly used separable 
potentials as that of Yamaguchi [ 19]) is therefore for negative real values of z, which hence correspond 
to real bound states as in the derivation of Eq. (A.4). In this case, considering z --* - e B , it is trivial to 
show that 

s g n ( d R e K o ( -  eB)/dee) = sgn2, V e e > 0. 



202 R.F .  Bishop et al. 

ReKo(x+iq) 

8o(X§ q) 

~ w X 

1 

Fig. 1. The real and imaginary parts of the function K o ( z  ) just above the real axis, and the 
corresponding branch of the phase angle 50 for which 60 vanishes at infinity, for an attractive one-term 
separable potential that supports no free bound state. Two different possibilities are shown for Re K0 
and the respective cases for 50 are shown correspondingly 

1 ~ 

ImK0(x§ q) 

X 

60(• q) 

i ~ 
-1121-t. 

-TT. 

Fig. 2. As in Fig. 1 but for an attractive one-term separable potential that supports a free bound state of 
energy E B =- - h 2 tc~/m 
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Hence, since K 0 ( -  eB) ~ 1 as e B -* o% these one-term separable potentials must either have no real 
negative-energy bound  states in the case 2 > 0 ("repulsive" case), or only the two possibilities of zero or 

one bound  state in the case 2 < 0 ("attractive" case) depending on the strength f21 of  the attraction. 

For purposes of later comparison it is instructive to consider typical behaviour in these various 

cases of the real and imaginary parts of Ko(z ) along the real axis, and of the corresponding phase angle 
do(z ) [defined as usual by Ko(z ) = IK0(z)l exp(i6(z))], chosen again to be the branch on which 60 
vanishes at infinity. Since the repulsive case is of  less interest here, we show in Fig. 1 the attractive case 
(2 < 0) where a free bound  state does not  exist, and the corresponding case in Fig. 2 where it does exist 
at e~ = - ~c~. For clarity, we illustrate only the case where the form factor g(p) has no zeros for real 
positive values ofp (as previously discussed). For  the moment  we note only from Fig. 2 the jump in 60 of 
7c at the point  - K~ which is a zero in the function Ko(z), or equivalently a branch point of Ln Ko(z ). 

A.2 Zeros in K(z); General Remarks 

Turning now to the zeros of the CLAD function K(z), we shall first consider by analogy with the free 
bound states, the real negative zeros. As we shall see, a second type of "bound state", impossible in 
vacuo and aIso totally absent in the BG approach to the ladder sum, may appear in certain 
circumstances. As has previously been discussed [-15-17], this new "bound state" may be interpreted as 
having a strong hole-hole component.  

Clearly, the precise structure of the zeros depends on the details of the form factor, the sign and size 
of the strength parameter 2, the density of the medium, and now also the total momentum P. We first 
consider below typical behaviour of how the positions of the real zeros vary with k F, and then use this 
information to plot analogous curves to Figs. 1 and 2 for the function K(z). 

The function K(z) is given by Eq. (3.12) as 

~ c~ k2 dk [g(k)l 2 
K(z) = 1 + 2 ~o 27r2 k~-~z  [~t(k'P) -q (k ,P) ] .  (A.5) 

Writing z = x + iy, where x and y are real, we may decompose K(z) into its real and imaginary parts: 

fO o~ k 2 dk Ig(k)12(k 2 - x) 
ReK(x + iy) = 1 + ;t - - - -  [g/(k, P) - q(k,P)], (A.6) 

2~z 2 (~ -  ~ x~- + y 2 

(.0o k2 dk [g(k)[ 2 
ImK(x  + iy) = 2YJ0 ~ (k 2 _ x) 2 + y ;  [g/(k,P) - q(k,P)]. (A.7) 

It is again clear that Im K is zero on the negative real axis. However, due to the appearance in 
the integrand of the non-definite function ( g / -  q) which changes sign in the integration region at 
k = (k 2 - 1p2 )  1/2 = x0,  for P < 2kF, it is now quite possible for l i n K  also to be zero elsewhere in 

the complex plane. Thus the discussion of the zeros of K(z) is considerably more complex than either 
the free two-body case for Ko(z ) or the BG case obtained formally from the CLAD case by setting 
q(k, P) ~ 0, as seen from Eq. (3.43). 

Restricting ourselves first to the possible zeros at z = - ee on the negative real axis, as indicated 
above, and considering also just  the case P = 0 for ease, it is apparent that e B = ee (kF) is the solution 
to 

I f ~  k2dk  [ g ( k ) ' 2 - = . K ( - - e B ; k F ) = O .  (A.8) 
1 +2L.yk J0 J 27z2 k2 + e B  

F 

From Eq. (A.8)we see that for either sign of 2 there is a possibility of such a zero (for some values OfkF) 
since one or other of the two integral terms will be negative. The corresponding K-function for the BG 
approach is obtained by neglecting the integral over the range (0, ke) in Eq. (A.8), and in this case 
"bound  state" zeros are possible only for ,t < 0. 
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We begin by looking at the case 2 < 0. Firstly, if 2 is not sufficiently negative to support a bound 
state in vacuo, there remain no possibilities of zeros for k e r 0. We need consider therefore only the 
case where a free bound state does exist (at k e = 0). In this case it is then easy to show from Eq. (A.8) 
that the slope of the curve es(kF) is given by 

I(;O fk ~176 ) [g(k)[ 2 7-1 de s 2k2[g(ke)12 k r _  kZ dk (kF  + 7-B)2] " (1.9) 
dk F k 2 + e~ e 

Eq. (A.9) then immediately gives that, so long as g(k) --+ const, as k --. 0 (as should be true for all 
reasonable form factors), 

d e s / d k e ~ O -  as ke-+O, 

deB/dkr-+O + as e s --+0, (A.10) 

and more generally therefore that the curve eB (ke) must "backbend" as in Fig. 3, in contrast to the BG 
case where the slope is everywhere negative. It is clear without a detailed derivation by appealing to 
continuity in P that this same behaviour must also persist for small enough non-zero values of P. (We 
also note that in the CLAD case, although we have shown the slope of the eB (kF) curve becoming 
infinite once, the proof  presented only rigorously shows that one must have an odd number of such 
infinities. In the ensuing discussion we restrict ourselves to the simplest case shown in Fig. 3.) 

We see that in the CLAD approximation for separable potentials sufficiently attractive to bind a 
two-body state in vacuo, for small enough values of P at least the density regime divides into three 
regions. (For large enough values of P these "bound-state" zeros will all finally disappear.) In region I, 
0 < k F < kFm, there is just one zero (or "bound pair"). In region II, kern < k e < kFar a second 
"bound state" appears. This, represented by the lower limb of the curve, can only be interpreted as a 
predominantly hole-hole-like pair. As k F approaches the upper critical value kFM from below the two 
zeros approach each other and then coincide at kFM. In region Il l ,  k F > keM, no such real zeros are 
possible. However, it would be most surprising if the "bound states" completely "dissolved" in this 
region. What actually must happen is clear without going into details. Thus the two zeros coincide at 
k F --+keM and then for k e > kFM, they move into the complex plane as conjugate "resonant- 
antiresonant" pairs. Thus in region III we find complex zeros corresponding to the formation of 
resonant states with finite lifetimes. How close these states remain to the real axis and their ultimate fate 
for very large values of k F (i.e., whether they move into the right half plane), depends on the details of 
the interaction. We intend to discuss these resonant states in more detail in a later paper. We note also 
that the critical values k.Fm and kFM themselves depend on the total momentum P. For given density 
there is a critical value of P at which kFm and kFM tend to zero, and above which no real "bound states" 
exist. 

In the case of repulsive potentials (2 > 0), the BG approximation clearly does not permit bound 
state zeros. However, it is clear that if the inverse of the original repulsive potential (i.e., changing only 

e B 

C~, \~ \ \BG \ 

kFm kFM 
- k F 

Fig. 3. Schematic plot of the real negative 
zeros at z = - e B (for small enough values 
of total momentum P) in the CLAD func- 
tion K(z) and its analogue for the BG case, as 
a function of Fermi wavenumber k F, for the 
case of an attractive one-term separable 
potential that supports a free bound state 
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el3 

Fig. 4. As in Fig. 3 (for the CLAD case) but 
for a repulsive one-term separable potential 
whose inverse (i.e., 2 ~ - 2) supports a free 
bound state kFm 

~,.-k F 

2 ~ - 2) could support a free bound state, then for large enough values ofk F there must again be a real 
zero possible in the CLAD K-function. An equivalent analysis of the derivatives as in the attractive case 
allows us to make a similar schematic plot in Fig. 4 for the present "sufficiently repulsive" case as Fig. 3 
was for the "sufficiently attractive" case. (Again we have sketched the eB(kg) curve as if it were 
monotonic increasing, although this is not guaranteed.) 

A.3 ReK(x + it/), ImK(x + iq) and Phase 6(x + iq) 

We now use the above results to give sketches for some of the various CLAD possibilities analogous to 
Figs. 1 and 2 for the free pair case. Before doing so, however, we shall need some further properties of 
the K-function. First, from Eq. (A.5) we have for real p 

(4~z)-12[pl[g(p)[2{1(p,P), p2 > x 2, 
ImK(p  2 + iq) = _ (4rc)-12lplrg(p)[2q(p,p), p2 < x~, (A.11) 

and hence the sign of Ira K(z) can be definitely decided everywhere in the physical scattering regime (i.e., 
just above or just below the positive real axis). Conversely, close to the negative real axis, where Im K(z) 
approaches zero, we can decide on the sign of  the (infinitesimal) Im K ( -  e + #/) in terms of the slope of 
Re K ( -  e + it/) from the relation 

I m K ( - e + i ~ ) = r l d R e K ( - e + i q ) / d ( - e  ), e > 0 ,  (A.12) 

which is readily proved from Eqs. (A.6) and (A.7). 
Secondly we prove an important result about the sign of Re K(x 2 + iq) in the case that K(z) 

has at least one zero in the left-half complex plane. Thus if there exist real e > 0 and F such that 
K ( -  e + iF) = 0, we may write from Eq. (A.5) 

f 
oo k2 dk [g(k)[ ~ 

1 = - 2  
0 2rc2 k2 + e - i F [ ? ~ ( k ' P )  

Substituting into Eq. (A.5) from the real part of the above result gives the relation 

( '~k2dk  2 (  k k 2 ) 
Re K(x~ + iq) = 2 Jo ~ 5 -  Ig(k)[ 1 + e Z-x02 (k2 + e)Z + F 2 [q (k 'P ) -q (k 'P )3  

['~ k2 dk e)(e --F x~) q- F 2 
= 2J0 2 - ~  -[g(k)]2 (k2 + I-~/(k, P) q(k,P)]. 

(k~--- x02)l-(k2 + e) 2 + V 2] 

In the above form we note that the integrand is everywhere positive since [{/(k, P) - q(k, P)] is negative 
(positive) for 0 < k 2 < x 2 (k s > x02), respectively. We thus have the important result 
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2ReK(x~ + it/) > 0, (A.13) 

in case there exist real positive e and real F such that K ( -  e + iF) = 0. 

Finally we note that apart  from zeros in the function K(z) we should also consider any infinities 
since these will also be branch points of LnK(z). However, it is clear from Eq. (A.5) that such 
singularities can arise only for z at points on the positive real axis where the integrand itself is 
discontinuous. By inspection we see that this occurs only for the case P = 0 at the Fermi surface z --+ k~,  

and in this case 

2 
ReK(p  2 + it~) , - 2~z~kFlg(kF)]2 lnlp 2 -- k~.l, P = 0. (A.14) 

p ~ k  F 

For non-zero total momen tum P there are no such singularities anywhere in K(z). The singularity 
(A. 14) is well known (see, e.g., ref. [-25]) to lead in the case 2 < 0 to the phenomenon of Cooper pairing, 

and we therefore do not  discuss this further here, preferring to return to this point  in a later paper. 
We are now in a position to discuss in turn the following cases (for ,~ < 0): 

I. Strong attraction (i.e., sufficient to bind a pair in vacuo); with 0 < k e < kFm, as in Fig. 3. 

l 
ReK(x+iq) 

-K2 " ~  
" ' ~ 0  ~ X 

~ ImK(x§ 

8(x+iq) 

-K~ 01 _ x,g ~x 

Fig. 5. The real and imaginary parts of the CLAD function K(z) just above the real axis and the 
corresponding branch of the phase angle ~5 which becomes zero at infinity, for an attractive one-term 
separable potential that supports a free bound  state. Shown is the case 0 < k e < kF,,, where one '~ 

pair" exists at z = - ~ 
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ImK[x+iq) 
8(x+iq) 

., - r t l  

I 

4 

X 

Fig. 6. A s  in  Fig.  5, b u t  for  the  c a s e  ]{'Fm < kF < k'FM where  two  " b o u n d  pa i r s "  exist  a t  z = - ~c~ 

a n d  z = - ~c~ 

1L ~ R e K ( x + i q )  

ImK(x+iq) 
6(x+iq) 

-4 ! 4 

J 
Fig. 7. A s  in Fig. 5, b u t  for  the  c a s e  k F ?> kFM a n d  whe re  two  " b o u n d  r e s o n a n c e  pa i r s "  exist  a t  
z = - ~ _+ i F ~  
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II. Strong attraction; with kFm <~ k F < kFM. 

III. Strong attraction; with k F > kFM and a pair of complex resonance zeros in K(z) at z = 
- e  R _ i F  R ,e  R > 0 .  

IV. Weak attraction (i.e., insufficient to bind a pair in vacuo). 

Case L In this ease we simply have one zero at z = - x 2  on the negative real axis, and Eqs. 
(A. 11)-(A. 13) enable us to plot the phase angle in Fig. 5, which is analogous to the case in vacuo shown 
in Fig. 2. 

Case IL In this region we now have two zeros, namely at z = - x~ and - x~ on the negative real axis, 
and similar considerations allow us to plot the phase angle in Fig. 6. We see in this case the separate 
jumps of n in the phase angle at both zeros. 

Case III. In this region the above two real poles have moved into the complex plane to positions 
z = - x2 + iFR. The function Ln K(z) thus has a branch cut joining these, and if we choose the cut 
simply to be the straight line joining them, then the phase angle now appears as in Fig. 7, where the jump 
of 2z~ now reflects that we should indent around this branch in the usual way for the phase to return to 
zero along the positive axis, i.e. to ensure that we stay on our chosen branch of 6(z) which becomes zero 
at infinity. 

Case IV. This case can be handled similarly to the above cases, but since it is of less direct interest, we 
shall not consider it further. 

The analogous possibilities in the case of repulsive potentials (2 > 0) may also be handled 
similarly. 
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