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Abstract: Valente and Fujimoto (2010) proposed a measure of brokerage in 

networks based on Granovetter's classic work on the strength of weak 

ties.  Their paper identified the need for finding node-based measures of 

brokerage that consider the entire network structure, not just a node's 

local environment.  The measures they propose, aggregating the average 

change in cohesion for a node's links, has several limitations.  In this 

paper we review their method and show how the idea can be modified by 

using betweenness centrality as an underpinning concept. We explore the 

properties of the new method and provide point, normalized, and network-

level variations. This new approach has two advantages, first it provides 

a more robust means to normalize the measure to control for network size, 

and second, the modified measure is computationally less demanding making 

it applicable to larger networks.   
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1 Introduction 

 

The ideas of bridging and brokerage have a long tradition in social network analysis. 

Granovetter’s (1973) classic paper on the strength of weak ties and the work that followed by 

various authors demonstrated that being in a position of control over bridging ties can 

empower actors. Burt (1995, 2007) further developed these ideas using ego network measures 

in his books on structural holes and brokerage and closure. Gould and Fernandez (1989) also 

took an ego approach in their classification of brokerage roles on data with categorical 

attributes. Shetty and Adibi (2005) develop entropy-based measures of edges which are then 

aggregated for each node to provide node level measures of importance. Valente and 

Fujimoto (2010) introduce a brokerage measure for nodes based upon an edge cohesion 

measure. A similar idea had in 2009 been implemented in UCINET (Borgatti, Everett and 

Freeman 2002). The k-local bridges routine (Granovetter 1973) was extended to include node 

level statistical summaries and these can be viewed as a measure of brokerage. In all of these 

papers the underlying assumption is that actors control resources which are flowing through 

the ties that they are incident to. Bridging is an edge property that measures the extent to 

which an edge forms a bridge. Brokerage is defined as control over bridging and is a node 

level property. By control over bridging we mean that a node’s brokerage is a function of the 

bridging scores of the edges it is incident to.   

 

 

In their paper Valente and Fujimoto (2010) propose a measure that indicates the degree to 

which a node occupies a brokerage position in a network.  In their method they systematically 

delete each edge in the graph and calculate the change in the amount of cohesion in the 

network, where cohesion is the average reciprocal distance between all pairs of vertices. This 

gives a value for each edge and the average of the edges incident to each vertex gives the 

brokerage score for that vertex. Their rationale for taking the average is that each edge 

requires resources to maintain it and so high degree nodes should be penalized for having 

many ties. We shall refer to their measure of brokerage as VF-brokerage or simply VF. (Note 

they call their measure a bridging measure but we prefer the term brokerage as it is more 

consistent with the literature.) This process is very similar to both the UCINET k-local bridge 

and the algorithm described by Shetty and Adibi (2005).    

 

   

We summarize the process as follows. 

 

1. Systematically delete each edge in the network. 

2. Once an edge is deleted measure the effect of the deletion on a network metric by 

calculating how much it has changed and assign this value to the edge. 

3. For each vertex assign a brokerage score which is the average of the edge values 

incident to it. 

 

Step 2 for k-local bridges assigns edges the distance between the nodes it previously 

connected and for the VF measure step 2 assigns the change in the average reciprocal 

distance between all pairs of vertices. The Shetty and Adibi (2005) approach is similar but 

cannot be specified in the same way using this process. 

 

One limitation with the k-bridge measure is that it only considers the change in distance 

between the end points of the bridge and does not look at the effect of deletion on the whole 

network. As a consequence in some circumstances the measure is very insensitive to network 
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structure. If we look at the case in which the deleted edge is a graph theoretic bridge ( an edge 

whose removal increases the number of components), then we can see the measure does not 

distinguish between bridges that bridge two large components, as opposed to a bridge that 

connects a singleton to the rest of the network. As an extreme example, in a tree every node 

would get the same brokerage score regardless of its structural position. The VF-brokerage 

does not suffer from this problem and will take account of the position of the bridges in the 

network.  

 

There are however three issues with the VF measure that we propose to address. First, 

Valente and Fujimoto argue that pendant vertices should be given a score of zero arguing:  

“Conceptually, bridging nodes cannot be nodes linked to only one other node. The one link 

these nodes have does not influence distances between other nodes” (p. 215). The argument 

they make is that the pendant nodes do not bridge anything as they do not lie on any shortest 

paths where they are not endpoints. This is of course true and we understand the reason for 

this argument, however, this categorizes pendants the same as isolates.  Although pendants 

have less brokerage potential than nodes that are within a shortest path, they may have some 

resource which they can use by virtue of the one connection they have. Clearly this will 

depend on the data and application area and is not a serious issue or criticism of their 

measure; but does require a trivial change if an analyst felt this was not valid for their 

situation. 

 

A second, and more serious concern, of the VF approach is that they only apply this 

reasoning to pendant vertices and not any vertex with that property. There could be vertices 

of higher degree that have no brokerage potential.  That is, they are not on any shortest path 

except as an endpoint, but are not also set to zero. Such vertices would have a vertex 

betweenness score of zero and are quite common in many networks. This occurs when the 

induced neighborhood of a vertex is a complete graph (see vertex 12 in Figure 1 for an 

example). For pendant vertices this neighborhood is simply the complete graph K2 (here we 

used closed neighborhoods, those that include ego, the same holds if we use open 

neighborhoods, those with ego removed, in this case the graph would be K1).  

 

A third issue is with the way they normalize their measure. A point we shall return to later.  

 

 

2 A simplified brokerage measure. 

 

As already discussed by Valente and Fujimoto the measure they discuss is actually an edge 

centrality computed by examining its influence on a graph invariant measure when the edge 

is deleted. Both Koschutzki et al (2005) and Everett and Borgatti (2010) discuss this general 

method for defining edge centralities but the concept is much older; for a review see 

Koschutzki et al (2005). The original term for these was vitality measures but Everett and 

Borgatti (2010) suggested naming them induced centrality measures.   

 

Rather than using an induced centrality, that is edge deletion, to obtain edge centralities, 

another approach is to use a standard edge centrality measure such as edge betweenness 

(Anthonisse 1971).  Edge betweenness has been well researched and can be calculated with 

standard algorithms available in most network analysis platforms. In addition edge 

betweenness is defined exactly the same for directed as well as undirected networks and so 

naturally extends to the directed case. Finally edge betweenness is a measure which takes 



(3) 

 

account of the sizes of the node sets the edge is between. We therefore propose a two stage 

process as follows:  

 

1.  Calculate an edge centrality measure 

2.  For each vertex assign a brokerage score which is the average of the edge 

centralities which are incident to it. 

      

Clearly this is the same as the process discussed in the introduction, as in that case the edge 

centralities were given by induced centrality methods for edges.  We suggest here that we use 

edge betweenness as the centrality measure. There is one real advantage in using edge 

betweenness as a consequence of the following theorem which is an extension of a result due 

to Koschutzki and others (2005, p. 31).  

 

Theorem 1. In a directed graph with n vertices the betweenness of a vertex v is the sum of the 

edge betweenness scores of the out-going (or in-coming) ties minus k, where k is the number 

of vertices that v can reach (or can reach v). 

 

Proof 

Koschutzki and others (2005) prove the result for strongly connected graphs (in which case 

k=n-1) and it is a simple matter to extend their proof to the case when the graph is not 

strongly connected so that k<n-1.  

 

In an undirected connected graph the result is similar but this time we need to halve the sum 

of the betweenness scores before subtracting n-1. This is a consequence of the way vertex 

betweenness was defined for undirected graphs as opposed to directed graphs. For undirected 

graphs we look at all shortest paths between pairs of vertices i and j where i<j. For directed 

graphs we look at all pairs.    

 

We can now use this result to calculate brokerage in a similar way to Valente and Fujimoto 

(2010) using any software package that calculates standard node betweenness. Let tjk denote 

the total number of shortest paths in an undirected graph G connecting vertex j to vertex k 

and tjik be the number of shortest paths connecting j to k that pass through vertex i then the 

standard node betweenness of i, CB(i) is given by:  

 

                                         (1) 

 

 

The property of pendants being set to zero is retained here for direct comparison with VF. For 

undirected networks this leads to the following method. 

 

1 Calculate standard vertex betweenness as given in (1) 

2 Double each score and add n-1 to every non-pendant entry  

3 Divide each non-zero score by the degree of the relevant vertex. 

 

The correlations between this new measure and the VF-brokerage one using the examples 

given in the VF paper range from 0.77 to 1.0.  Regardless of the correlation, both methods 

tend to identify the same nodes as having highest brokerage scores. The higher correlations 

are for the toy example networks in Figure 3 in the Valente and Fujimoto paper.  The lower 
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correlations are for the Kirke (2004) network of adolescents, 0.765, and for the network 

provided in Granovetter’s (1973) original strength of weak ties article (Figure 4 in their 

paper) shown here in Figure 1. 

 

<Insert Figure 1 about here> 

 

Their original un-normalized brokerage scores labeled “Link Deletion (VF-brokerage)” and 

those derived from the method described above labeled “Edge Betweenness Divided by 

Degree” are given in Table 1.   

 

<Insert Table 1 about here> 

 

We see that both measures place all 10 cutpoints (namely 1,6,7,8,13,15,17,18,20,24) in the 

first 10 places but the rank ordering is slightly different. However the real issue is not the 

minor differences between the cutpoint rankings but the way some non-brokerage nodes 

acquire higher scores in the VF measure than in the betweenness based measure. Three of the 

five nodes that have betweenness scores of zero, 16, 19 and 21, are ranked in the middle for 

VF, yet fall in the last six scores for the new measure. For example, actor 16 is ranked 12
th

 

out of 25 in VF whereas it is tied with nodes 19 and 21 in the 19
th

 through 21
st
 ranking in the 

revised brokerage. 

 

We suggested above that if the application area implies that actors only acquire brokerage by 

connecting pairs of actors that do not include themselves then we should set all actors with 

this property a value of zero, and not just the pendants. In this case the following would be a 

more appropriate brokerage measure for the undirected case.  

 
EV Brokerage for undirected graphs 

For each component of size n.  

 

1 Calculate standard vertex betweeneess 

2 Double each score and add n-1 to every non-zero entry  

3 Divide each non-zero score by vertex degree. 

 

 

 

 

We shall call this measure EV-brokerage. If the analyst feels that actors can acquire 

brokerage from themselves to their neighbours then step 2 becomes simply add n-1 to every 

vertex and this is then the same as using edge betweenness throughout. Implementing these 

steps on the Granovetter data yields exactly the same as in column 2 in Table 1 except 

vertices 9,12,16,19 and 21 will have values set to zero. 

 

3 Normalization 

 

Valente and Fujimoto (2010) claim that the measure they introduce is at a maximum for a star 

and they use this value to normalize their measure and they imply the following conjecture. 

 

Conjecture. Let vmax be a vertex with the maximum VF-brokerage over all graphs G with n 

vertices. Then the VF-brokerage score of vmax is given by 1/(n-1). 
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Actually they state the value is 1/(2n-2) for a star but they have an error in their calculation 

and it should be as given in the conjecture. Nevertheless this conjecture is false. As a counter 

example consider two copies of the complete graph K4 connected by a path of length 2 with v 

as the vertex of degree 2 on the path (Figure 2). The resultant graph has 9 vertices and v has a 

VF-brokerage score of 0.132 whereas the conjecture states the maximum should be 0.125. 

 

<Insert Figure 2 about here> 

 

While it is true that the highest change in the average reciprocal distance occurs when the 

edges of a star are removed; dividing by the degree of the vertex to obtain their score 

counteracts the high values obtained.  We conjecture that maximal VF-brokerage occurs 

when a vertex connects two vertices of two otherwise unconnected cliques of equal size by a 

path of length two. However we do not explore this further here but as a consequence anyone 

applying VF-brokerage should not use the formula they propose for normalization, but use 

the point scores. 

 

The following theorem, which uses a similar structure but relaxes the clique condition, allows 

us to normalize the EV- brokerage measure. To prove this result we first require the 

following lemma proved in Everett and others 2004. 

 

Lemma. If a vertex u is neither a pendant or cutpoint of a graph G then there exists a 

subgraph K of G such that the betweeness of u in K is greater than the betweenness of u in G.  

 

Theorem 2. Let vmax be a vertex with the maximum EV- brokerage over all graphs G with n 

vertices, where n>2. Then the EV- brokerage score of vmax is given by 

 

vmax = (n
2
-1)/4  if n is odd 

vmax = (n
2
-2)/4 if n is even                                       (2) 

 
Proof  

We shall give a slightly simplified proof for the sake of clarity but the argument can be made 

rigorous.  

 

Since n is larger than 2 then clearly vmax will not be a pendant vertex. By the lemma vmax must 

be a cutpoint since if it were not there would be a subgraph K in which vmax would have 

higher betweenness and, as it is a subgraph, the same or lower degree and hence a strictly 

higher EV-brokerage score. Let H be the component of G containing vmax. Suppose G is not 

connected then connecting any component of G different from H with a component of H- 

vmax will result in a graph in which the EV-brokerage score must increase, since the 

betweenness of vmax must increase and its degree will be unaffected. It follows that G is 

connected. 

 

Let the components of G- vmax be B1,B2......Bk. The betweenness centrality of vmax will be 

highest when the order of each of these components differs by at most one. It follows that 

each component has order (n-1)/k with some rounded down and the rest rounded up. Since 

geodesics in G with endpoints in different Bi must pass through vmax then each pair of Bi’s 

contributes ((n-1)/k)
2
 to the betweenness of vmax.  As there are k blocks it follows that there 

are k(k-1)/2 pairs of blocks so that the betweenness of vmax is approximately given by 
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                                                       (3) 

 

The EV- brokerage of vmax is now obtained by the construction described above, that is, 

doubling this value, adding n-1, and dividing the total by the degree of vmax (= k). This yields 

a value for EV- brokerage of vmax approximately given by 

 

 

                                                    (4) 

 

where k is vertex degree of vmax and n is the network size.  As k increases this value 

decreases for fixed n as it is dominated by the denominator. It follows EV- brokerage is at a 

maximum when k has the minimum value of 2. If n is odd then formula 2 is exact and the 

result follows by substituting k=2. If n is even then G- vmax will have two components one of 

size n/2 and the other of size (n-2)/2. It follows that the betweenness of vmax is n(n-2)/4 and 

so the EV-brokerage is n(n-2)/4+(n-1)/2 which reduces to (n
2
-2)/4. 

 

We note that if n=1 or 2 then any EV-brokerage cannot be non-zero. 

 

It should be noted that the theorem carries over with minor changes for the directed graph 

case and the same result holds. If we apply the normalization to Figure 1 then we obtain the 

normalized EV- brokerage scores reported in the final column of Table 1. 

 

It can be seen from the proof of the theorem that the overall structure of the graph on which 

the maximum score is obtained is not important. The only property we require is that the 

vertices are evenly distributed either side of the cutpoint vmax. They can have any structure 

and so there are a large number of configurations which give the same maximum value. The 

only limitation would be on the number of edges in each component and this implies the 

graph can have at most (n
2
-4n+11)/4 edges for n odd and (n

2
-4n+12)/4 for n even.  

 

4 Aggregate brokerage and brokerization 

 

Freeman (1979) introduced the idea of centralization, which measures the extent to which 

centrality is focused on one or a few nodes in the network. We can apply a similar idea to our 

brokerage measure which we call brokerization. For Freeman a star graph provided the 

structure in which the central vertex had all the centrality and all other vertices had the 

minimum centrality over all connected graphs. For the EV- brokerage we simply require that 

the graph described in the theorem above (Figure 2) is one in which B1 and B2 are complete 

graphs to ensure that the EV-brokerage of nodes in B1 and B2 are minimized. In this case all 

vertices except those connected to v will have EV- brokerage scores of zero. A simple 

calculation will show that the values of the non-normalized EV- brokerage of the two vertices 

adjacent to v are: (n
2
-5)/(n-1) for n odd (for both vertices), and (n

2
-2)/n and (n

2
-10)(n-2) when 

n is even (the first term for the larger of the two sets B1 and B2 and the second for the 

smaller).  

 

If we now calculate the value of the brokerization on these extreme examples using non-

normalized scores we obtain values for the denominator in any brokerization normalization 

and these are: 
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For n odd 

 

                                   (5) 

 

For n even 

 

                                               (6) 

 

Applying this to the Granovetter example we obtain a value of 0.20 or 20%. This compares 

with just over 14% for betweenness centralization. Hence the brokerage is slightly more 

concentrated in one, or few, actor(s) than betweenness.   

 

The aggregate brokerage in a network is simply the sum of all the brokerage scores of the 

vertices. The following theorem gives the maximum possible scores over all graphs but we 

first make use of a simple lemma. The lemma has been noted by others but has not been 

stated explicitly in print, it is a direct consequence of a result first noted by Freeman (1980) 

and more recently by Brandes and others (in print). We give a simple direct proof. 

 

Lemma 3. Let B(G) be the sum of the betweenness scores of every vertex in G. If x is an edge 

that is on a cycle then B(G-x)>B(G). 

 

Proof 

Since G-x is still connected then the lengths of some geodesics must strictly increase. Since 

each non-endpoint vertex on a geodesic acquires betweenness from the geodesic it follows 

that the total betweenness must increase. 

 

Note this implies that the graph with the highest total betweenness must be a path as it is the 

tree with the longest possible geodesics. 

 

Theorem 4 

Let G be a graph on n vertices with the maximum possible aggregate non-normalized EV-

brokerage. Then the aggregate non-normalized EV-brokerage of G is given by 

 

For n odd 

                                                  (7) 

For n even 

 

                                                                (8) 

 

Proof 

As already noted a path has the highest possible total betweenness. Since every non-pendant 

vertex has the lowest possible degree it follows that over all graphs of size n a path 

containing n vertices has the highest aggregate EV-brokerage. 
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As the proof for the odd and even case are similar we shall just prove the even case. The 

betweenness score for a vertex of distance k >0 from the nearest endpoint of  Pn is given by 

k(n-k-1). It follows that the EV-brokerage score will be k(n-k-1)+(n-1)/2 for each of the non-

end vertices. Hence the aggregate score will be 

 

                                                                (9) 

 

Which after a small amount of manipulation reduces to the result in the theorem. 

 

Again applying this to the Granovetter example we have that the sum of all the (non-

normalized) EV- brokerage scores is 663 this is the sum of the values in column two of Table 

1 but with 9,12,16,19 and 21 set to zero. For n= 25 the above formula yields a maximum 

possible score of 2576 giving a normalized aggregate brokerage of 0.26 or 26%.  

 

5 Directed data 

 

Both vertex and edge betweenness are directly applicable to directed data and as mentioned 

above we can apply our extended version of the Koschutzki and others (2005) result. As a 

consequence we define in-EV-brokerage of a vertex v as follows. 

 

1 Calculate standard directed betweeneess of v, CB(v). 

2 If CB(v) is non-zero add j to it, where j is the number of vertices that can reach v.  

3 Divide each non-zero sum by the in-degree of v. 

 

In a similar way we define the out-EV-brokerage of v as follows 

 

1 Calculate standard directed betweeneess of v, CB(v). 

2 If CB(v) is non-zero add k to it, where k is the number of vertices that v can reach.  

3 Divide each non-zero sum by the out-degree of v. 

 

We then define the EV-brokerage of v as the average of the in-EV-brokerage and the out-EV-

brokerage of v. This makes the assumption that resources to maintain in-coming ties are the 

same as those to maintain out-going ties. But if the analyst wants to reflect that maintaining 

out-going ties uses more resources than in-coming ties then they can take a weighted average 

of the two values rather than the average, or better compare the results with the overall mean. 

Normalization of in-EV-brokerage, out-EV –brokerage and directed EV-brokerage is exactly 

the same as the undirected case ie using equations (1) and (2) of Theorem 2.  

 

<Insert Figure 3 about here> 

 

<Insert Table 2 about here> 

 

Table 2 column 1 reports the non-normalized EV-brokerage for the campnet data, shown in 

Figure 3 and available in UCINET (Borgatti et al. 2002). Column 1 is the average of columns 

2 and 3 which are the in-EV-brokerage and out-EV-brokerage scores for each vertex. 

Columns 4 and 5 are the sum of the in-edge betweenness and out-betweenness scores for all 

the edges incident with the vertex and columns 6 and 7 are the in and out degrees of the 

actors. It follows that column 2 (3) is constructed by dividing elements of column 4 (5) by 
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corresponding entries in column 6 (7). Furthermore, columns 4 and 5 are constructed from 

columns 8, 9 and 10 as described in the steps above.  

 

 

We see that the actor with the highest EV-brokerage, 15, did not have the highest 

betweenness score which is node 1. In these data the top 3 outgoing ties were used and hence 

everyone has the same out-degree. However this does not mean that out-EV-brokerage has 

the same rank ordering as the betweenness scores. We see that node 9 has the second highest 

betweenness but it is node 15 that has the second highest out-EV-brokerage score. 

 

6 Some extensions and discussion 

 

Computationally the method we propose is of O(nm) where m is the number of edges and n is 

the number of vertices (Brandes 2001). This is computationally far more efficient than the VF 

algorithm and can be used to analyze large sparse networks. Typically in social networks 

actors need to use resources to maintain ties and so the m will be bounded so that large 

networks are sparse.   
 

One simple extension is to use some of the many variants of betweenness. In their paper 

Valente and Fujimoto use average reciprocal distance as their cohesion measure. This of 

course gives less value to longer paths. The software package UCINET (Borgatti et al 2002) 

has an implementation of betweenness which also allows for the weighting of longer paths so 

they contribute less or ignoring paths that are longer than a prescribed value. Either of these 

could be used to extend the brokerage method described here. UCINET also has an attribute 

weighted betweenness measure that incorporates attribute values of the vertices on the 

geodesic paths. For valued data flow betweenness can be used as an alternative to the regular 

betweenness scores. All these extensions use node betweenness rather than edge betweenness 

but given the relationship between the node and the edge version this is not seen as a major 

issue. We do not pursue any of these (or any other obvious extensions here) but merely 

highlight these as possibilities analysts could explore if it was relevant for their data. In 

addition Brandes (2008) gives a number of variants on shortest path centrality algorithms and 

these can all be used as a basis for node brokerage measures. These readily available 

extensions make us optimistic that the many uses to which centrality measures have been put, 

will now be applied to brokerage. 

   

One of the central preoccupations thus far in the study of social networks has been to develop 

various measures of centrality.  This is to be expected as central positions are important to 

many processes on, for, and of networks.  Brokerage, on the other hand, has received 

considerably less attention, perhaps in part because it can be less intuitive to understand what 

occupying a brokerage position means (it is not prominence, for example), and perhaps 

because it is unclear whether brokerage is advantageous or deleterious.  By introducing 

several computational methods for calculating brokerage, and highlighting the various 

measures available, we hope to stimulate more research on how to conceptualize, measure, 

and understand brokerage in networks. 

 

Like centrality measures, we offer various nuanced definitions of what it means for a node to 

occupy a brokerage position. Brokerage can be characterized as having links that reduce the 

overall cohesiveness (as measured by inverse distances) of a network, or they can be nodes 

with links that have high betweenness, or those which disconnect a graph when removed.  In 

the EV and VF expositions, the chief insight was to calculate brokerage by dividing by each 
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node’s degree.  Although this conceptually need not always be the case, to date this seems the 

key distinguishing feature between brokerage and centrality.  A an actor incident with many 

bridge like connections is central, one with few, is a broker.  

 

Node centrality has been associated with processes that occur on networks such as diffusion 

of innovations (Rogers, 2003), opinion leadership (Valente & Davis, 1999), and behavioral 

influences (Alexander, et al., 2001).  Some studies have linked brokerage to similar 

processes, notably Burt’s application of constraint and brokerage to success (Burt, 1992).  

Other research has confirmed, contradicted, and expanded the association between brokerage 

and outcomes.  These studies, however, have relied on brokerage measures confined to the 

local, neighborhood environment:  Constraint, a useful and flexible measure of brokerage 

requires only the local neighborhood for its computation.  While this is certainly an 

advantage, it is possible that sociometric measures of brokerage, defined and elaborated here, 

may provide more insights into how occupying a brokerage position can affect such 

outcomes. 

   

In addition, our intuition is that a macro-level understanding of how “bridgeable” a network 

is, that is, the extent that the network is characterized by one or a few brokers/bridges will 

provide important insights into role of network structure on outcomes.  A highly brokered 

network is likely more vulnerable to attack, and more dependent on one or a few actors to 

remain functional.  Such structures are likely unstable and being able to measure such 

structures is likely to provide important diagnostics for organizational and community 

performance.  

 

We do not feel this is the last word on brokerage or bridging, but hope that we have clarified 

some of the conceptual and mathematical underpinnings of these concepts so they can be 

applied more readily to substantive phenomena.   
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Figure 1 Granovetter’s hypothetical network reported in the strength of weak ties article 

  

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

Figure



 

 

 

Figure 2. A maximally bridgeable network with v having the highest brokerage score. 
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Figure 3. The campnet dataset 
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